File: dflt_style_changes.rst

package info (click to toggle)
matplotlib 3.6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 76,280 kB
  • sloc: python: 133,763; cpp: 66,599; objc: 1,699; ansic: 1,367; javascript: 765; makefile: 153; sh: 48
file content (1232 lines) | stat: -rw-r--r-- 37,172 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
.. redirect-from:: /users/dflt_style_changes

==============================
 Changes to the default style
==============================

The most important changes in matplotlib 2.0 are the changes to the
default style.

While it is impossible to select the best default for all cases, these
are designed to work well in the most common cases.

A 'classic' style sheet is provided so reverting to the 1.x default
values is a single line of python

.. code::

  import matplotlib.style
  import matplotlib as mpl
  mpl.style.use('classic')

See :ref:`customizing-with-matplotlibrc-files` for details about how to
persistently and selectively revert many of these changes.


.. contents:: Table of Contents
   :depth: 2
   :local:
   :backlinks: entry



Colors, color cycles, and colormaps
===================================

Colors in default property cycle
--------------------------------

The colors in the default property cycle have been changed from
``['b', 'g', 'r', 'c', 'm', 'y', 'k']`` to the category10
color palette used by `Vega
<https://github.com/vega/vega/wiki/Scales#scale-range-literals>`__ and
`d3
<https://github.com/d3/d3-3.x-api-reference/blob/master/Ordinal-Scales.md#category10>`__
originally developed at Tableau.


.. plot::

  import numpy as np
  import matplotlib.pyplot as plt

  th = np.linspace(0, 2*np.pi, 512)

  fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3))


  def color_demo(ax, colors, title):
      ax.set_title(title)
      for j, c in enumerate(colors):
          v_offset = -(j / len(colors))
          ax.plot(th, .1*np.sin(th) + v_offset, color=c)
          ax.annotate("'C{}'".format(j), (0, v_offset),
                      xytext=(-1.5, 0),
                      ha='right',
                      va='center',
                      color=c,
                      textcoords='offset points',
                      family='monospace')

          ax.annotate("{!r}".format(c), (2*np.pi, v_offset),
                      xytext=(1.5, 0),
                      ha='left',
                      va='center',
                      color=c,
                      textcoords='offset points',
                      family='monospace')
      ax.axis('off')

  old_colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']

  new_colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728',
                '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',
                '#bcbd22', '#17becf']

  color_demo(ax1, old_colors, 'classic')
  color_demo(ax2, new_colors, 'v2.0')

  fig.subplots_adjust(**{'bottom': 0.0, 'left': 0.059,
                         'right': 0.869, 'top': 0.895})

In addition to changing the colors, an additional method to specify
colors was added.  Previously, the default colors were the single
character short-hand notations for red, green, blue, cyan, magenta,
yellow, and black.  This made them easy to type and usable in the
abbreviated style string in ``plot``, however the new default colors
are only specified via hex values.  To access these colors outside of
the property cycling the notation for colors ``'CN'``, where ``N``
takes values 0-9, was added to
denote the first 10 colors in :rc:`axes.prop_cycle`. See
:doc:`/tutorials/colors/colors` for more details.

To restore the old color cycle use

.. code::

   from cycler import cycler
   mpl.rcParams['axes.prop_cycle'] = cycler(color='bgrcmyk')

or set

.. code::

   axes.prop_cycle    : cycler('color', 'bgrcmyk')

in your :file:`matplotlibrc` file.


Colormap
--------

The new default colormap used by `matplotlib.cm.ScalarMappable` instances is
'viridis' (aka `option D <https://bids.github.io/colormap/>`__).

.. plot::

   import numpy as np
   import matplotlib.pyplot as plt

   N = M = 200
   X, Y = np.ogrid[0:20:N*1j, 0:20:M*1j]
   data = np.sin(np.pi * X*2 / 20) * np.cos(np.pi * Y*2 / 20)

   fig, (ax2, ax1) = plt.subplots(1, 2, figsize=(7, 3))
   im = ax1.imshow(data, extent=[0, 200, 0, 200])
   ax1.set_title("v2.0: 'viridis'")
   fig.colorbar(im, ax=ax1, shrink=0.8)

   im2 = ax2.imshow(data, extent=[0, 200, 0, 200], cmap='jet')
   fig.colorbar(im2, ax=ax2, shrink=0.8)
   ax2.set_title("classic: 'jet'")

   fig.tight_layout()

For an introduction to color theory and how 'viridis' was generated
watch Nathaniel Smith and Stéfan van der Walt's talk from SciPy2015.
See `here for many more details <https://bids.github.io/colormap/>`__
about the other alternatives and the tools used to create the color
map.  For details on all of the colormaps available in matplotlib see
:doc:`/tutorials/colors/colormaps`.

.. raw:: html

    <iframe width="560" height="315" src="https://www.youtube.com/embed/xAoljeRJ3lU" frameborder="0" allowfullscreen></iframe>


The previous default can be restored using

.. code::

   mpl.rcParams['image.cmap'] = 'jet'

or setting

.. code::

   image.cmap    : 'jet'

in your :file:`matplotlibrc` file; however this is strongly discouraged.

Interactive figures
-------------------

The default interactive figure background color has changed from grey
to white, which matches the default background color used when saving.

The previous defaults can be restored by ::

   mpl.rcParams['figure.facecolor'] = '0.75'

or by setting ::


    figure.facecolor : '0.75'

in your :file:`matplotlibrc` file.


Grid lines
----------

The default style of grid lines was changed from black dashed lines to thicker
solid light grey lines.

.. plot::

   import numpy as np
   import matplotlib.pyplot as plt

   fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3))

   ax1.grid(color='k', linewidth=.5, linestyle=':')
   ax1.set_title('classic')

   ax2.grid()
   ax2.set_title('v2.0')

The previous default can be restored by using::

   mpl.rcParams['grid.color'] = 'k'
   mpl.rcParams['grid.linestyle'] = ':'
   mpl.rcParams['grid.linewidth'] = 0.5

or by setting::

   grid.color       :   k       # grid color
   grid.linestyle   :   :       # dotted
   grid.linewidth   :   0.5     # in points

in your :file:`matplotlibrc` file.


Figure size, font size, and screen dpi
======================================

The default dpi used for on-screen display was changed from 80 dpi to
100 dpi, the same as the default dpi for saving files.  Due to this
change, the on-screen display is now more what-you-see-is-what-you-get
for saved files.  To keep the figure the same size in terms of pixels, in
order to maintain approximately the same size on the screen, the
default figure size was reduced from 8x6 inches to 6.4x4.8 inches.  As
a consequence of this the default font sizes used for the title, tick
labels, and axes labels were reduced to maintain their size relative
to the overall size of the figure.  By default the dpi of the saved
image is now the dpi of the `~matplotlib.figure.Figure` instance being
saved.

This will have consequences if you are trying to match text in a
figure directly with external text.


The previous defaults can be restored by ::

   mpl.rcParams['figure.figsize'] = [8.0, 6.0]
   mpl.rcParams['figure.dpi'] = 80
   mpl.rcParams['savefig.dpi'] = 100

   mpl.rcParams['font.size'] = 12
   mpl.rcParams['legend.fontsize'] = 'large'
   mpl.rcParams['figure.titlesize'] = 'medium'

or by setting::

   figure.figsize   : [8.0, 6.0]
   figure.dpi       : 80
   savefig.dpi      : 100

   font.size        : 12.0
   legend.fontsize  : 'large'
   figure.titlesize : 'medium'

In your :file:`matplotlibrc` file.

In addition, the ``forward`` kwarg to
`~.Figure.set_size_inches` now defaults to `True` to improve
the interactive experience.  Backend canvases that adjust the size of
their bound `matplotlib.figure.Figure` must pass ``forward=False`` to
avoid circular behavior.  This default is not configurable.


Plotting functions
==================

``scatter``
-----------

The following changes were made to the default behavior of
`~matplotlib.axes.Axes.scatter`

- The default size of the elements in a scatter plot is now based on
  :rc:`lines.markersize` so it is consistent with ``plot(X,
  Y, 'o')``.  The old value was 20, and the new value is 36 (6^2).
- Scatter markers no longer have a black edge.
- If the color of the markers is not specified it will follow the
  property cycle, pulling from the 'patches' cycle on the ``Axes``.

.. plot::

   import numpy as np
   import matplotlib.pyplot as plt

   np.random.seed(2)

   fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3))

   x = np.arange(15)
   y = np.random.rand(15)
   y2 = np.random.rand(15)
   ax1.scatter(x, y, s=20, edgecolors='k', c='b', label='a')
   ax1.scatter(x, y2, s=20, edgecolors='k', c='b', label='b')
   ax1.legend()
   ax1.set_title('classic')

   ax2.scatter(x, y, label='a')
   ax2.scatter(x, y2, label='b')
   ax2.legend()
   ax2.set_title('v2.0')


The classic default behavior of `~matplotlib.axes.Axes.scatter` can
only be recovered through ``mpl.style.use('classic')``.  The marker size
can be recovered via ::

  mpl.rcParam['lines.markersize'] = np.sqrt(20)

however, this will also affect the default marker size of
`~matplotlib.axes.Axes.plot`.  To recover the classic behavior on
a per-call basis pass the following kwargs::

  classic_kwargs = {'s': 20, 'edgecolors': 'k', 'c': 'b'}

``plot``
--------

The following changes were made to the default behavior of
`~matplotlib.axes.Axes.plot`

- the default linewidth increased from 1 to 1.5
- the dash patterns associated with ``'--'``, ``':'``, and ``'-.'`` have
  changed
- the dash patterns now scale with line width


.. plot::

   import numpy as np
   import matplotlib.pyplot as plt
   import matplotlib as mpl
   from cycler import cycler

   fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3))

   N = 15

   x = np.arange(N)
   y = np.ones_like(x)

   sty_cycle = (cycler('ls', ['--' ,':', '-.']) *
                cycler('lw', [None, 1, 2, 5]))

   classic = {
       'lines.linewidth': 1.0,
       'lines.dashed_pattern' : [6, 6],
       'lines.dashdot_pattern' : [3, 5, 1, 5],
       'lines.dotted_pattern' : [1, 3],
       'lines.scale_dashes': False}

   v2 = {}
   #    {'lines.linewidth': 1.5,
   #     'lines.dashed_pattern' : [2.8, 1.2],
   #     'lines.dashdot_pattern' : [4.8, 1.2, 0.8, 1.2],
   #     'lines.dotted_pattern' : [1.1, 1.1],
   #     'lines.scale_dashes': True}

   def demo(ax, rcparams, title):
       ax.axis('off')
       ax.set_title(title)
       with mpl.rc_context(rc=rcparams):
           for j, sty in enumerate(sty_cycle):
               ax.plot(x, y + j, **sty)

   demo(ax1, classic, 'classic')
   demo(ax2, {}, 'v2.0')


The previous defaults can be restored by setting::

    mpl.rcParams['lines.linewidth'] = 1.0
    mpl.rcParams['lines.dashed_pattern'] = [6, 6]
    mpl.rcParams['lines.dashdot_pattern'] = [3, 5, 1, 5]
    mpl.rcParams['lines.dotted_pattern'] = [1, 3]
    mpl.rcParams['lines.scale_dashes'] = False

or by setting::

   lines.linewidth   : 1.0
   lines.dashed_pattern : 6, 6
   lines.dashdot_pattern : 3, 5, 1, 5
   lines.dotted_pattern : 1, 3
   lines.scale_dashes: False

in your :file:`matplotlibrc` file.

``errorbar``
------------

By default, caps on the ends of errorbars are not present.

.. plot::

   import matplotlib as mpl
   import matplotlib.pyplot as plt
   import numpy as np

   # example data
   x = np.arange(0.1, 4, 0.5)
   y = np.exp(-x)

   # example variable error bar values
   yerr = 0.1 + 0.2*np.sqrt(x)
   xerr = 0.1 + yerr

   def demo(ax, rc, title):
       with mpl.rc_context(rc=rc):
           ax.errorbar(x, y, xerr=0.2, yerr=0.4)
       ax.set_title(title)

   fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3), tight_layout=True)

   demo(ax1, {'errorbar.capsize': 3}, 'classic')
   demo(ax2, {}, 'v2.0')

This also changes the return value of
:meth:`~matplotlib.axes.Axes.errorbar` as the list of 'caplines' will
be empty by default.

The previous defaults can be restored by setting::

    mpl.rcParams['errorbar.capsize'] = 3

or by setting ::

   errorbar.capsize : 3

in your :file:`matplotlibrc` file.


``boxplot``
-----------

Previously, boxplots were composed of a mish-mash of styles that were, for
better for worse, inherited from Matlab. Most of the elements were blue,
but the medians were red. The fliers (outliers) were black plus-symbols
('+') and the whiskers were dashed lines, which created ambiguity if
the (solid and black) caps were not drawn.

For the new defaults, everything is black except for the median and mean
lines (if drawn), which are set to the first two elements of the current
color cycle. Also, the default flier markers are now hollow circles,
which maintain the ability of the plus-symbols to overlap without
obscuring data too much.

.. plot::

    import numpy as np
    import matplotlib.pyplot as plt

    data = np.random.lognormal(size=(37, 4))
    fig, (old, new) = plt.subplots(ncols=2, sharey=True)
    with plt.style.context('default'):
        new.boxplot(data, labels=['A', 'B', 'C', 'D'])
        new.set_title('v2.0')

    with plt.style.context('classic'):
        old.boxplot(data, labels=['A', 'B', 'C', 'D'])
        old.set_title('classic')

    new.set_yscale('log')
    old.set_yscale('log')

The previous defaults can be restored by setting::

    mpl.rcParams['boxplot.flierprops.color'] = 'k'
    mpl.rcParams['boxplot.flierprops.marker'] = '+'
    mpl.rcParams['boxplot.flierprops.markerfacecolor'] = 'none'
    mpl.rcParams['boxplot.flierprops.markeredgecolor'] = 'k'
    mpl.rcParams['boxplot.boxprops.color'] = 'b'
    mpl.rcParams['boxplot.whiskerprops.color'] = 'b'
    mpl.rcParams['boxplot.whiskerprops.linestyle'] = '--'
    mpl.rcParams['boxplot.medianprops.color'] = 'r'
    mpl.rcParams['boxplot.meanprops.color'] = 'r'
    mpl.rcParams['boxplot.meanprops.marker'] = '^'
    mpl.rcParams['boxplot.meanprops.markerfacecolor'] = 'r'
    mpl.rcParams['boxplot.meanprops.markeredgecolor'] = 'k'
    mpl.rcParams['boxplot.meanprops.markersize'] = 6
    mpl.rcParams['boxplot.meanprops.linestyle'] = '--'
    mpl.rcParams['boxplot.meanprops.linewidth'] = 1.0

or by setting::

    boxplot.flierprops.color:           'k'
    boxplot.flierprops.marker:          '+'
    boxplot.flierprops.markerfacecolor: 'none'
    boxplot.flierprops.markeredgecolor: 'k'
    boxplot.boxprops.color:             'b'
    boxplot.whiskerprops.color:         'b'
    boxplot.whiskerprops.linestyle:     '--'
    boxplot.medianprops.color:          'r'
    boxplot.meanprops.color:            'r'
    boxplot.meanprops.marker:           '^'
    boxplot.meanprops.markerfacecolor:  'r'
    boxplot.meanprops.markeredgecolor:  'k'
    boxplot.meanprops.markersize:        6
    boxplot.meanprops.linestyle:         '--'
    boxplot.meanprops.linewidth:         1.0

in your :file:`matplotlibrc` file.


``fill_between`` and ``fill_betweenx``
--------------------------------------

`~matplotlib.axes.Axes.fill_between` and
`~matplotlib.axes.Axes.fill_betweenx` both follow the patch color
cycle.

.. plot::

   import matplotlib.pyplot as plt
   import numpy as np

   fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3))
   fig.subplots_adjust(wspace=0.3)
   th = np.linspace(0, 2*np.pi, 128)
   N = 5

   def demo(ax, extra_kwargs, title):
       ax.set_title(title)
       return [ax.fill_between(th, np.sin((j / N) * np.pi + th), alpha=.5, **extra_kwargs)
               for j in range(N)]

   demo(ax1, {'facecolor': 'C0'}, 'classic')
   demo(ax2, {}, 'v2.0')


If the facecolor is set via the ``facecolors`` or ``color`` keyword argument,
then the color is not cycled.

To restore the previous behavior, explicitly pass the keyword argument
``facecolors='C0'`` to the method call.


Patch edges and color
---------------------

Most artists drawn with a patch (``~matplotlib.axes.Axes.bar``,
``~matplotlib.axes.Axes.pie``, etc) no longer have a black edge by
default.  The default face color is now ``'C0'`` instead of ``'b'``.

.. plot::

   import matplotlib.pyplot as plt
   import numpy as np
   from matplotlib import rc_context
   import matplotlib.patches as mpatches

   fig, all_ax = plt.subplots(3, 2, figsize=(4, 6), tight_layout=True)

   def demo(ax_top, ax_mid, ax_bottom, rcparams, label):
       labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
       fracs = [15, 30, 45, 10]

       explode = (0, 0.05, 0, 0)

       ax_top.set_title(label)

       with rc_context(rc=rcparams):
           ax_top.pie(fracs, labels=labels)
           ax_top.set_aspect('equal')
           ax_mid.bar(range(len(fracs)), fracs, tick_label=labels)
           plt.setp(ax_mid.get_xticklabels(), rotation=-45)
           grid = np.mgrid[0.2:0.8:3j, 0.2:0.8:3j].reshape(2, -1).T

           ax_bottom.set_xlim(0, .75)
           ax_bottom.set_ylim(0, .75)
           ax_bottom.add_artist(mpatches.Rectangle(grid[1] - [0.025, 0.05],
                                                   0.05, 0.1))
           ax_bottom.add_artist(mpatches.RegularPolygon(grid[3], 5, 0.1))
           ax_bottom.add_artist(mpatches.Ellipse(grid[4], 0.2, 0.1))
           ax_bottom.add_artist(mpatches.Circle(grid[0], 0.1))
           ax_bottom.axis('off')

   demo(*all_ax[:, 0], rcparams={'patch.force_edgecolor': True,
                                 'patch.facecolor': 'b'}, label='classic')
   demo(*all_ax[:, 1], rcparams={}, label='v2.0')

The previous defaults can be restored by setting::

    mpl.rcParams['patch.force_edgecolor'] = True
    mpl.rcParams['patch.facecolor'] = 'b'

or by setting::

   patch.facecolor        : b
   patch.force_edgecolor  : True

in your :file:`matplotlibrc` file.

``hexbin``
----------

The default value of the *linecolor* keyword argument for `~.Axes.hexbin` has
changed from ``'none'`` to ``'face'``. If 'none' is now supplied, no line edges
are drawn around the hexagons.

.. _barbarh_align:

``bar`` and ``barh``
--------------------

The default value of the ``align`` kwarg for both
`~.Axes.bar` and `~.Axes.barh` is changed from
``'edge'`` to ``'center'``.


.. plot::

   import matplotlib.pyplot as plt
   import numpy as np

   fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(5, 5))

   def demo(bar_func, bar_kwargs):
       return bar_func([1, 2, 3], [1, 2, 3], tick_label=['a', 'b', 'c'],
                       **bar_kwargs)


   ax1.set_title("classic")
   ax2.set_title('v2.0')

   demo(ax1.bar, {'align': 'edge'})
   demo(ax2.bar, {})
   demo(ax3.barh, {'align': 'edge'})
   demo(ax4.barh, {})


To restore the previous behavior explicitly pass the keyword argument
``align='edge'`` to the method call.


Hatching
========


The color of the lines in the hatch is now determined by

- If an edge color is explicitly set, use that for the hatch color
- If the edge color is not explicitly set, use :rc:`hatch.color` which
  is looked up at artist creation time.

The width of the lines in a hatch pattern is now configurable by the
rcParams :rc:`hatch.linewidth`, which defaults to 1 point.  The old
behavior for the line width was different depending on backend:

- PDF: 0.1 pt
- SVG: 1.0 pt
- PS:  1 px
- Agg: 1 px

The old line width behavior can not be restored across all backends
simultaneously, but can be restored for a single backend by setting::

   mpl.rcParams['hatch.linewidth'] = 0.1  # previous pdf hatch linewidth
   mpl.rcParams['hatch.linewidth'] = 1.0  # previous svg hatch linewidth

The behavior of the PS and Agg backends was DPI dependent, thus::


   mpl.rcParams['figure.dpi'] = dpi
   mpl.rcParams['savefig.dpi'] = dpi  # or leave as default 'figure'
   mpl.rcParams['hatch.linewidth'] = 1.0 / dpi  # previous ps and Agg hatch linewidth


There is no direct API level control of the hatch color or linewidth.

Hatching patterns are now rendered at a consistent density, regardless of DPI.
Formerly, high DPI figures would be more dense than the default, and low DPI
figures would be less dense.  This old behavior cannot be directly restored,
but the density may be increased by repeating the hatch specifier.


.. _default_changes_font:

Fonts
=====

Normal text
-----------

The default font has changed from "Bitstream Vera Sans" to "DejaVu
Sans".  DejaVu Sans has additional international and math characters,
but otherwise has the same appearance as Bitstream Vera Sans.
Latin, Greek, Cyrillic, Armenian, Georgian, Hebrew, and Arabic are
`all supported <https://dejavu-fonts.github.io/>`__
(but right-to-left rendering is still not handled by matplotlib).
In addition, DejaVu contains a sub-set of emoji symbols.

.. plot::

   from __future__ import unicode_literals

   import matplotlib.pyplot as plt

   fig, ax = plt.subplots()
   tick_labels = ['😃', '😎', '😴', '😲', '😻']
   bar_labels = ['א', 'α', '☣', '⌬', 'ℝ']
   y = [1, 4, 9, 16, 25]
   x = range(5)
   ax.bar(x, y, tick_label=tick_labels, align='center')
   ax.xaxis.set_tick_params(labelsize=20)
   for _x, _y, t in zip(x, y, bar_labels):
       ax.annotate(t, (_x, _y), fontsize=20, ha='center',
                   xytext=(0, -2), textcoords='offset pixels',
                   bbox={'facecolor': 'w'})

   ax.set_title('Диаграмма со смайликами')

See the `DejaVu Sans PDF sample for full coverage
<http://dejavu.sourceforge.net/samples/DejaVuSans.pdf>`__.

Math text
---------

The default math font when using the built-in math rendering engine
(mathtext) has changed from "Computer Modern" (i.e. LaTeX-like) to
"DejaVu Sans".  This change has no effect if the
TeX backend is used (i.e. ``text.usetex`` is ``True``).


.. plot::

   import matplotlib.pyplot as plt
   import matplotlib as mpl

   mpl.rcParams['mathtext.fontset'] = 'cm'
   mpl.rcParams['mathtext.rm'] = 'serif'

   fig, ax = plt.subplots(tight_layout=True, figsize=(3, 3))

   ax.plot(range(15), label=r'int: $15 \int_0^\infty dx$')
   ax.legend()
   ax.set_title('classic')


.. plot::

   import matplotlib.pyplot as plt
   import matplotlib as mpl

   fig, ax  = plt.subplots(tight_layout=True, figsize=(3, 3))

   ax.plot(range(15), label=r'int: $15 \int_0^\infty dx$')
   ax.legend()
   ax.set_title('v2.0')



To revert to the old behavior set the::

   mpl.rcParams['mathtext.fontset'] = 'cm'
   mpl.rcParams['mathtext.rm'] = 'serif'

or set::

  mathtext.fontset: cm
  mathtext.rm : serif


in your :file:`matplotlibrc` file.

This ``rcParam`` is consulted when the text is drawn, not when the
artist is created. Thus all mathtext on a given ``canvas`` will use the
same fontset.


Legends
=======

- By default, the number of points displayed in a legend is now 1.
- The default legend location is ``'best'``, so the legend will be
  automatically placed in a location to minimize overlap with data.
- The legend defaults now include rounded corners, a lighter
  boundary, and partially transparent boundary and background.

.. plot::

   import matplotlib as mpl
   import matplotlib.pyplot as plt
   import numpy as np

   def demo(ax, rcparams, title):
       np.random.seed(2)
       N = 25
       with mpl.rc_context(rc=rcparams):
           x = range(N)
           y = np.cumsum(np.random.randn(N) )
           # unpack the single Line2D artist
           ln, = ax.plot(x, y, marker='s',
                         linestyle='-', label='plot')
           ax.fill_between(x, y, 0, label='fill', alpha=.5, color=ln.get_color())
           ax.scatter(N*np.random.rand(N), np.random.rand(N), label='scatter')
           ax.set_title(title)
           ax.legend()

   fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3), tight_layout=True)

   classic_rc = {'legend.fancybox': False,
                 'legend.numpoints': 2,
                 'legend.scatterpoints': 3,
                 'legend.framealpha': None,
                 'legend.edgecolor': 'inherit',
                 'legend.loc': 'upper right',
                 'legend.fontsize': 'large'}

   demo(ax1, classic_rc, 'classic')
   demo(ax2, {}, 'v2.0')


The previous defaults can be restored by setting::

   mpl.rcParams['legend.fancybox'] = False
   mpl.rcParams['legend.loc'] = 'upper right'
   mpl.rcParams['legend.numpoints'] = 2
   mpl.rcParams['legend.fontsize'] = 'large'
   mpl.rcParams['legend.framealpha'] = None
   mpl.rcParams['legend.scatterpoints'] = 3
   mpl.rcParams['legend.edgecolor'] = 'inherit'


or by setting::

   legend.fancybox      : False
   legend.loc           : upper right
   legend.numpoints     : 2      # the number of points in the legend line
   legend.fontsize      : large
   legend.framealpha    : None    # opacity of legend frame
   legend.scatterpoints : 3 # number of scatter points
   legend.edgecolor     : inherit   # legend edge color ('inherit'
                                    # means it uses axes.edgecolor)

in your :file:`matplotlibrc` file.

Image
=====

Interpolation
-------------

The default interpolation method for `~matplotlib.axes.Axes.imshow` is
now ``'nearest'`` and by default it resamples the data (both up and down
sampling) before colormapping.


.. plot::

   import matplotlib.pyplot as plt
   import matplotlib as mpl
   import numpy as np


   def demo(ax, rcparams, title):
       np.random.seed(2)
       A = np.random.rand(5, 5)

       with mpl.rc_context(rc=rcparams):
           ax.imshow(A)
           ax.set_title(title)

   fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3), tight_layout=True)

   classic_rcparams = {'image.interpolation': 'bilinear',
                       'image.resample': False}

   demo(ax1, classic_rcparams, 'classic')
   demo(ax2, {}, 'v2.0')


To restore the previous behavior set::

   mpl.rcParams['image.interpolation'] = 'bilinear'
   mpl.rcParams['image.resample'] = False

or set::

  image.interpolation  : bilinear  # see help(imshow) for options
  image.resample  : False

in your :file:`matplotlibrc` file.

Colormapping pipeline
---------------------

Previously, the input data was normalized, then colormapped, and then
resampled to the resolution required for the screen.  This meant that
the final resampling was being done in color space.  Because the color
maps are not generally linear in RGB space, colors not in the colormap
may appear in the final image.  This bug was addressed by an almost
complete overhaul of the image handling code.

The input data is now normalized, then resampled to the correct
resolution (in normalized dataspace), and then colormapped to
RGB space.  This ensures that only colors from the colormap appear
in the final image. (If your viewer subsequently resamples the image,
the artifact may reappear.)

The previous behavior cannot be restored.


Shading
-------

- The default shading mode for light source shading, in
  ``matplotlib.colors.LightSource.shade``, is now ``overlay``.
  Formerly, it was ``hsv``.


Plot layout
===========

Auto limits
-----------

The previous auto-scaling behavior was to find 'nice' round numbers
as view limits that enclosed the data limits, but this could produce
bad plots if the data happened to fall on a vertical or
horizontal line near the chosen 'round number' limit.  The new default
sets the view limits to 5% wider than the data range.

.. plot::

   import matplotlib as mpl
   import matplotlib.pyplot as plt
   import numpy

   data = np.zeros(1000)
   data[0] = 1

   fig = plt.figure(figsize=(6, 3))

   def demo(fig, rc, title, j):
       with mpl.rc_context(rc=rc):
           ax = fig.add_subplot(1, 2, j)
           ax.plot(data)
           ax.set_title(title)

   demo(fig, {'axes.autolimit_mode': 'round_numbers',
              'axes.xmargin': 0,
              'axes.ymargin': 0}, 'classic', 1)
   demo(fig, {}, 'v2.0', 2)

The size of the padding in the x and y directions is controlled by the
``'axes.xmargin'`` and ``'axes.ymargin'`` rcParams respectively. Whether
the view limits should be 'round numbers' is controlled by
:rc:`axes.autolimit_mode`.  In the original ``'round_number'`` mode,
the view limits coincide with ticks.

The previous default can be restored by using::

   mpl.rcParams['axes.autolimit_mode'] = 'round_numbers'
   mpl.rcParams['axes.xmargin'] = 0
   mpl.rcParams['axes.ymargin'] = 0

or setting::

   axes.autolimit_mode: round_numbers
   axes.xmargin: 0
   axes.ymargin: 0

in your :file:`matplotlibrc` file.


Z-order
-------

- Ticks and grids are now plotted above solid elements such as
  filled contours, but below lines.  To return to the previous
  behavior of plotting ticks and grids above lines, set
  ``rcParams['axes.axisbelow'] = False``.


Ticks
-----

Direction
~~~~~~~~~

To reduce the collision of tick marks with data, the default ticks now
point outward by default.  In addition, ticks are now drawn only on
the bottom and left spines to prevent a porcupine appearance, and for
a cleaner separation between subplots.


.. plot::

   import matplotlib as mpl
   import matplotlib.pyplot as plt
   import numpy as np

   th = np.linspace(0, 2*np.pi, 128)
   y = np.sin(th)

   def demo(fig, rcparams, title, j):
       np.random.seed(2)
       with mpl.rc_context(rc=rcparams):

           ax = fig.add_subplot(2, 2, j)
           ax.hist(np.random.beta(0.5, 0.5, 10000), 25, density=True)
           ax.set_xlim([0, 1])
           ax.set_title(title)

           ax = fig.add_subplot(2, 2, j + 2)
           ax.imshow(np.random.rand(5, 5))

   classic = {'xtick.direction': 'in',
              'ytick.direction': 'in',
              'xtick.top': True,
              'ytick.right': True}

   fig = plt.figure(figsize=(6, 6), tight_layout=True)

   demo(fig, classic, 'classic', 1)
   demo(fig, {}, 'v2.0', 2)


To restore the previous behavior set::

   mpl.rcParams['xtick.direction'] = 'in'
   mpl.rcParams['ytick.direction'] = 'in'
   mpl.rcParams['xtick.top'] = True
   mpl.rcParams['ytick.right'] = True

or set::

   xtick.top: True
   xtick.direction: in

   ytick.right: True
   ytick.direction: in

in your :file:`matplotlibrc` file.



Number of ticks
~~~~~~~~~~~~~~~

The default `~matplotlib.ticker.Locator` used for the x and y axis is
`~matplotlib.ticker.AutoLocator` which tries to find, up to some
maximum number, 'nicely' spaced ticks.  The locator now includes
an algorithm to estimate the maximum number of ticks that will leave
room for the tick labels.  By default it also ensures that there are at least
two ticks visible.

.. plot::

   import matplotlib.pyplot as plt
   import numpy as np

   from matplotlib.ticker import AutoLocator

   fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(4, 3), tight_layout=True)
   ax1.set_xlim(0, .1)
   ax2.set_xlim(0, .1)

   ax1.xaxis.get_major_locator().set_params(nbins=9, steps=[1, 2, 5, 10])
   ax1.set_title('classic')
   ax2.set_title('v2.0')

There is no way, other than using ``mpl.style.use('classic')``, to restore the
previous behavior as the default.  On an axis-by-axis basis you may either
control the existing locator via: ::

  ax.xaxis.get_major_locator().set_params(nbins=9, steps=[1, 2, 5, 10])

or create a new `~matplotlib.ticker.MaxNLocator`::

  import matplotlib.ticker as mticker
  ax.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10])

The algorithm used by `~matplotlib.ticker.MaxNLocator` has been
improved, and this may change the choice of tick locations in some
cases.  This also affects `~matplotlib.ticker.AutoLocator`, which
uses ``MaxNLocator`` internally.

For a log-scaled axis the default locator is the
`~matplotlib.ticker.LogLocator`.  Previously the maximum number
of ticks was set to 15, and could not be changed. Now there is a
*numticks* kwarg for setting the maximum to any integer value,
to the string 'auto', or to its default value of None which is
equivalent to 'auto'.  With the 'auto' setting the maximum number
will be no larger than 9, and will be reduced depending on the
length of the axis in units of the tick font size.  As in the
case of the AutoLocator, the heuristic algorithm reduces the
incidence of overlapping tick labels but does not prevent it.


Tick label formatting
---------------------

``LogFormatter`` labeling of minor ticks
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Minor ticks on a log axis are now labeled when the axis view limits
span a range less than or equal to the interval between two major
ticks.  See `~matplotlib.ticker.LogFormatter` for details. The
minor tick labeling is turned off when using ``mpl.style.use('classic')``,
but cannot be controlled independently via `.rcParams`.

.. plot::

   import numpy as np
   import matplotlib.pyplot as plt

   np.random.seed(2)

   fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(6, 3))
   fig.subplots_adjust(wspace=0.35, left=0.09, right=0.95)

   x = np.linspace(0.9, 1.7, 10)
   y = 10 ** x[np.random.randint(0, 10, 10)]

   ax2.semilogy(x, y)
   ax2.set_title('v2.0')

   with plt.style.context('classic'):
       ax1.semilogy(x, y)
       ax1.set_xlim(ax2.get_xlim())
       ax1.set_ylim(ax2.get_ylim())
       ax1.set_title('classic')


``ScalarFormatter`` tick label formatting with offsets
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

With the default :rc:`axes.formatter.useoffset`,
an offset will be used when it will save 4 or more digits.  This can
be controlled with the new :rc:`axes.formatter.offset_threshold`.
To restore the previous behavior of using an offset to save 2 or more
digits, use ``rcParams['axes.formatter.offset_threshold'] = 2``.

.. plot::

   import numpy as np
   import matplotlib.pyplot as plt

   np.random.seed(5)

   fig = plt.figure(figsize=(6, 3))
   fig.subplots_adjust(bottom=0.15, wspace=0.3, left=0.09, right=0.95)

   x = np.linspace(2000, 2008, 9)
   y = np.random.randn(9) + 50000

   with plt.rc_context(rc={'axes.formatter.offset_threshold' : 2}):
       ax1 = fig.add_subplot(1, 2, 1)
       ax1.plot(x, y)
       ax1.set_title('classic')

   ax2 = fig.add_subplot(1, 2, 2)
   ax2.plot(x, y)
   ax2.set_title('v2.0')


``AutoDateFormatter`` format strings
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The default date formats are now all based on ISO format, i.e., with
the slowest-moving value first.  The date formatters are
configurable through the ``date.autoformatter.*`` rcParams.


+--------------------------------------+--------------------------------------+-------------------+-------------------+
| Threshold (tick interval >= than)    | rcParam                              | classic           | v2.0              |
+======================================+======================================+===================+===================+
| 365 days                             | ``'date.autoformatter.year'``        | ``'%Y'``          | ``'%Y'``          |
+--------------------------------------+--------------------------------------+-------------------+-------------------+
| 30 days                              | ``'date.autoformatter.month'``       | ``'%b %Y'``       | ``'%Y-%m'``       |
+--------------------------------------+--------------------------------------+-------------------+-------------------+
| 1 day                                | ``'date.autoformatter.day'``         | ``'%b %d %Y'``    | ``'%Y-%m-%d'``    |
+--------------------------------------+--------------------------------------+-------------------+-------------------+
| 1 hour                               | ``'date.autoformatter.hour'``        | ``'%H:%M:%S'``    | ``'%H:%M'``       |
+--------------------------------------+--------------------------------------+-------------------+-------------------+
| 1 minute                             | ``'date.autoformatter.minute'``      | ``'%H:%M:%S.%f'`` | ``'%H:%M:%S'``    |
+--------------------------------------+--------------------------------------+-------------------+-------------------+
| 1 second                             | ``'date.autoformatter.second'``      | ``'%H:%M:%S.%f'`` | ``'%H:%M:%S'``    |
+--------------------------------------+--------------------------------------+-------------------+-------------------+
| 1  microsecond                       | ``'date.autoformatter.microsecond'`` | ``'%H:%M:%S.%f'`` | ``'%H:%M:%S.%f'`` |
+--------------------------------------+--------------------------------------+-------------------+-------------------+



Python's ``%x`` and ``%X`` date formats may be of particular interest
to format dates based on the current locale.

The previous default can be restored by::

   mpl.rcParams['date.autoformatter.year'] = '%Y'
   mpl.rcParams['date.autoformatter.month'] = '%b %Y'
   mpl.rcParams['date.autoformatter.day'] = '%b %d %Y'
   mpl.rcParams['date.autoformatter.hour'] = '%H:%M:%S'
   mpl.rcParams['date.autoformatter.minute'] = '%H:%M:%S.%f'
   mpl.rcParams['date.autoformatter.second'] = '%H:%M:%S.%f'
   mpl.rcParams['date.autoformatter.microsecond'] = '%H:%M:%S.%f'


or setting ::

   date.autoformatter.year   : %Y
   date.autoformatter.month  : %b %Y
   date.autoformatter.day    : %b %d %Y
   date.autoformatter.hour   : %H:%M:%S
   date.autoformatter.minute : %H:%M:%S.%f
   date.autoformatter.second : %H:%M:%S.%f
   date.autoformatter.microsecond : %H:%M:%S.%f

in your :file:`matplotlibrc` file.

mplot3d
=======

- mplot3d now obeys some style-related rcParams, rather than using
  hard-coded defaults.  These include:

  - xtick.major.width
  - ytick.major.width
  - xtick.color
  - ytick.color
  - axes.linewidth
  - axes.edgecolor
  - grid.color
  - grid.linewidth
  - grid.linestyle