1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
|
.. _whats-new-3-4-0:
=============================================
What's new in Matplotlib 3.4.0 (Mar 26, 2021)
=============================================
For a list of all of the issues and pull requests since the last revision, see
the :ref:`github-stats`.
.. contents:: Table of Contents
:depth: 4
.. toctree::
:maxdepth: 4
Figure and Axes creation / management
=====================================
New subfigure functionality
---------------------------
New `.figure.Figure.add_subfigure` and `.figure.Figure.subfigures`
functionalities allow creating virtual figures within figures. Similar nesting
was previously done with nested gridspecs (see
:doc:`/gallery/subplots_axes_and_figures/gridspec_nested`). However, this did
not allow localized figure artists (e.g., a colorbar or suptitle) that only
pertained to each subgridspec.
The new methods `.figure.Figure.add_subfigure` and `.figure.Figure.subfigures`
are meant to rhyme with `.figure.Figure.add_subplot` and
`.figure.Figure.subplots` and have most of the same arguments.
See :doc:`/gallery/subplots_axes_and_figures/subfigures` for further details.
.. note::
The subfigure functionality is experimental API as of v3.4.
.. plot::
def example_plot(ax, fontsize=12, hide_labels=False):
pc = ax.pcolormesh(np.random.randn(30, 30))
if not hide_labels:
ax.set_xlabel('x-label', fontsize=fontsize)
ax.set_ylabel('y-label', fontsize=fontsize)
ax.set_title('Title', fontsize=fontsize)
return pc
np.random.seed(19680808)
fig = plt.figure(constrained_layout=True, figsize=(10, 4))
subfigs = fig.subfigures(1, 2, wspace=0.07)
axsLeft = subfigs[0].subplots(1, 2, sharey=True)
subfigs[0].set_facecolor('#eee')
for ax in axsLeft:
pc = example_plot(ax)
subfigs[0].suptitle('Left plots', fontsize='x-large')
subfigs[0].colorbar(pc, shrink=0.6, ax=axsLeft, location='bottom')
axsRight = subfigs[1].subplots(3, 1, sharex=True)
for nn, ax in enumerate(axsRight):
pc = example_plot(ax, hide_labels=True)
if nn == 2:
ax.set_xlabel('xlabel')
if nn == 1:
ax.set_ylabel('ylabel')
subfigs[1].colorbar(pc, shrink=0.6, ax=axsRight)
subfigs[1].suptitle('Right plots', fontsize='x-large')
fig.suptitle('Figure suptitle', fontsize='xx-large')
plt.show()
Single-line string notation for ``subplot_mosaic``
--------------------------------------------------
`.Figure.subplot_mosaic` and `.pyplot.subplot_mosaic` now accept a single-line
string, using semicolons to delimit rows. Namely, ::
plt.subplot_mosaic(
"""
AB
CC
""")
may be written as the shorter:
.. plot::
:include-source:
plt.subplot_mosaic("AB;CC")
Changes to behavior of Axes creation methods (``gca``, ``add_axes``, ``add_subplot``)
-------------------------------------------------------------------------------------
The behavior of the functions to create new Axes (`.pyplot.axes`,
`.pyplot.subplot`, `.figure.Figure.add_axes`, `.figure.Figure.add_subplot`) has
changed. In the past, these functions would detect if you were attempting to
create Axes with the same keyword arguments as already-existing Axes in the
current Figure, and if so, they would return the existing Axes. Now,
`.pyplot.axes`, `.figure.Figure.add_axes`, and `.figure.Figure.add_subplot`
will always create new Axes. `.pyplot.subplot` will continue to reuse an
existing Axes with a matching subplot spec and equal *kwargs*.
Correspondingly, the behavior of the functions to get the current Axes
(`.pyplot.gca`, `.figure.Figure.gca`) has changed. In the past, these functions
accepted keyword arguments. If the keyword arguments matched an
already-existing Axes, then that Axes would be returned, otherwise new Axes
would be created with those keyword arguments. Now, the keyword arguments are
only considered if there are no Axes at all in the current figure. In a future
release, these functions will not accept keyword arguments at all.
``add_subplot``/``add_axes`` gained an *axes_class* parameter
-------------------------------------------------------------
In particular, ``mpl_toolkits`` Axes subclasses can now be idiomatically used
using, e.g., ``fig.add_subplot(axes_class=mpl_toolkits.axislines.Axes)``
Subplot and subplot2grid can now work with constrained layout
-------------------------------------------------------------
``constrained_layout`` depends on a single `.GridSpec` for each logical layout
on a figure. Previously, `.pyplot.subplot` and `.pyplot.subplot2grid` added a
new ``GridSpec`` each time they were called and were therefore incompatible
with ``constrained_layout``.
Now ``subplot`` attempts to reuse the ``GridSpec`` if the number of rows and
columns is the same as the top level GridSpec already in the figure, i.e.,
``plt.subplot(2, 1, 2)`` will use the same GridSpec as ``plt.subplot(2, 1, 1)``
and the ``constrained_layout=True`` option to `~.figure.Figure` will work.
In contrast, mixing *nrows* and *ncols* will *not* work with
``constrained_layout``: ``plt.subplot(2, 2, 1)`` followed by ``plt.subplots(2,
1, 2)`` will still produce two GridSpecs, and ``constrained_layout=True`` will
give bad results. In order to get the desired effect, the second call can
specify the cells the second Axes is meant to cover: ``plt.subplots(2, 2, (2,
4))``, or the more Pythonic ``plt.subplot2grid((2, 2), (0, 1), rowspan=2)`` can
be used.
Plotting methods
================
``axline`` supports *transform* parameter
-----------------------------------------
`~.Axes.axline` now supports the *transform* parameter, which applies to the
points *xy1*, *xy2*. The *slope* (if given) is always in data coordinates.
For example, this can be used with ``ax.transAxes`` for drawing lines with a
fixed slope. In the following plot, the line appears through the same point on
both Axes, even though they show different data limits.
.. plot::
:include-source:
fig, axs = plt.subplots(1, 2)
for i, ax in enumerate(axs):
ax.axline((0.25, 0), slope=2, transform=ax.transAxes)
ax.set(xlim=(i, i+5), ylim=(i, i+5))
New automatic labeling for bar charts
-------------------------------------
A new `.Axes.bar_label` method has been added for auto-labeling bar charts.
.. figure:: /gallery/lines_bars_and_markers/images/sphx_glr_bar_label_demo_001.png
:target: ../../gallery/lines_bars_and_markers/bar_label_demo.html
Example of the new automatic labeling.
A list of hatches can be specified to `~.axes.Axes.bar` and `~.axes.Axes.barh`
------------------------------------------------------------------------------
Similar to some other rectangle properties, it is now possible to hand a list
of hatch styles to `~.axes.Axes.bar` and `~.axes.Axes.barh` in order to create
bars with different hatch styles, e.g.
.. plot::
fig, ax = plt.subplots()
ax.bar([1, 2], [2, 3], hatch=['+', 'o'])
plt.show()
Setting ``BarContainer`` orientation
------------------------------------
`.BarContainer` now accepts a new string argument *orientation*. It can be
either ``'vertical'`` or ``'horizontal'``, default is ``None``.
Contour plots now default to using ScalarFormatter
--------------------------------------------------
Pass ``fmt="%1.3f"`` to the contouring call to restore the old default label
format.
``Axes.errorbar`` cycles non-color properties correctly
-------------------------------------------------------
Formerly, `.Axes.errorbar` incorrectly skipped the Axes property cycle if a
color was explicitly specified, even if the property cycler was for other
properties (such as line style). Now, `.Axes.errorbar` will advance the Axes
property cycle as done for `.Axes.plot`, i.e., as long as all properties in the
cycler are not explicitly passed.
For example, the following will cycle through the line styles:
.. plot::
:include-source:
x = np.arange(0.1, 4, 0.5)
y = np.exp(-x)
offsets = [0, 1]
plt.rcParams['axes.prop_cycle'] = plt.cycler('linestyle', ['-', '--'])
fig, ax = plt.subplots()
for offset in offsets:
ax.errorbar(x, y + offset, xerr=0.1, yerr=0.3, fmt='tab:blue')
``errorbar`` *errorevery* parameter matches *markevery*
-------------------------------------------------------
Similar to the *markevery* parameter to `~.Axes.plot`, the *errorevery*
parameter of `~.Axes.errorbar` now accept slices and NumPy fancy indexes (which
must match the size of *x*).
.. plot::
x = np.linspace(0, 1, 15)
y = x * (1-x)
yerr = y/6
fig, ax = plt.subplots(2, constrained_layout=True)
ax[0].errorbar(x, y, yerr, capsize=2)
ax[0].set_title('errorevery unspecified')
ax[1].errorbar(x, y, yerr, capsize=2,
errorevery=[False, True, True, False, True] * 3)
ax[1].set_title('errorevery=[False, True, True, False, True] * 3')
``hexbin`` supports data reference for *C* parameter
----------------------------------------------------
As with the *x* and *y* parameters, `.Axes.hexbin` now supports passing the *C*
parameter using a data reference.
.. plot::
:include-source:
data = {
'a': np.random.rand(1000),
'b': np.random.rand(1000),
'c': np.random.rand(1000),
}
fig, ax = plt.subplots()
ax.hexbin('a', 'b', C='c', data=data, gridsize=10)
Support callable for formatting of Sankey labels
------------------------------------------------
The `format` parameter of `matplotlib.sankey.Sankey` can now accept callables.
This allows the use of an arbitrary function to label flows, for example
allowing the mapping of numbers to emoji.
.. plot::
from matplotlib.sankey import Sankey
import math
def display_in_cats(values, min_cats, max_cats):
def display_in_cat_scale(value):
max_value = max(values, key=abs)
number_cats_to_show = \
max(min_cats, math.floor(abs(value) / max_value * max_cats))
return str(number_cats_to_show * '🐱')
return display_in_cat_scale
flows = [35, 15, 40, -20, -15, -5, -40, -10]
orientations = [-1, 1, 0, 1, 1, 1, -1, -1]
# Cats are good, we want a strictly positive number of them
min_cats = 1
# More than four cats might be too much for some people
max_cats = 4
cats_format = display_in_cats(flows, min_cats, max_cats)
sankey = Sankey(flows=flows, orientations=orientations, format=cats_format,
offset=.1, head_angle=180, shoulder=0, scale=.010)
diagrams = sankey.finish()
diagrams[0].texts[2].set_text('')
plt.title(f'Sankey flows measured in cats \n'
f'🐱 = {max(flows, key=abs) / max_cats}')
plt.show()
``Axes.spines`` access shortcuts
--------------------------------
``Axes.spines`` is now a dedicated container class `.Spines` for a set of
`.Spine`\s instead of an ``OrderedDict``. On top of dict-like access,
``Axes.spines`` now also supports some ``pandas.Series``-like features.
Accessing single elements by item or by attribute::
ax.spines['top'].set_visible(False)
ax.spines.top.set_visible(False)
Accessing a subset of items::
ax.spines[['top', 'right']].set_visible(False)
Accessing all items simultaneously::
ax.spines[:].set_visible(False)
New ``stairs`` method and ``StepPatch`` artist
----------------------------------------------
`.pyplot.stairs` and the underlying artist `~.matplotlib.patches.StepPatch`
provide a cleaner interface for plotting stepwise constant functions for the
common case that you know the step edges. This supersedes many use cases of
`.pyplot.step`, for instance when plotting the output of `numpy.histogram`.
For both the artist and the function, the x-like edges input is one element
longer than the y-like values input
.. plot::
np.random.seed(0)
h, edges = np.histogram(np.random.normal(5, 2, 5000),
bins=np.linspace(0,10,20))
fig, ax = plt.subplots(constrained_layout=True)
ax.stairs(h, edges)
plt.show()
See :doc:`/gallery/lines_bars_and_markers/stairs_demo` for examples.
Added *orientation* parameter for stem plots
--------------------------------------------
By default, stem lines are vertical. They can be changed to horizontal using
the *orientation* parameter of `.Axes.stem` or `.pyplot.stem`:
.. plot::
locs = np.linspace(0.1, 2 * np.pi, 25)
heads = np.cos(locs)
fig, ax = plt.subplots()
ax.stem(locs, heads, orientation='horizontal')
Angles on Bracket arrow styles
------------------------------
Angles specified on the *Bracket* arrow styles (``]-[``, ``]-``, ``-[``, or
``|-|`` passed to *arrowstyle* parameter of `.FancyArrowPatch`) are now
applied. Previously, the *angleA* and *angleB* options were allowed, but did
nothing.
.. plot::
import matplotlib.patches as mpatches
fig, ax = plt.subplots()
ax.set(xlim=(0, 1), ylim=(-1, 4))
for i, stylename in enumerate((']-[', '|-|')):
for j, angle in enumerate([-30, 60]):
arrowstyle = f'{stylename},angleA={angle},angleB={-angle}'
patch = mpatches.FancyArrowPatch((0.1, 2*i + j), (0.9, 2*i + j),
arrowstyle=arrowstyle,
mutation_scale=25)
ax.text(0.5, 2*i + j, arrowstyle,
verticalalignment='bottom', horizontalalignment='center')
ax.add_patch(patch)
``TickedStroke`` patheffect
---------------------------
The new `.TickedStroke` patheffect can be used to produce lines with a ticked
style. This can be used to, e.g., distinguish the valid and invalid sides of
the constraint boundaries in the solution space of optimizations.
.. figure:: /gallery/misc/images/sphx_glr_tickedstroke_demo_002.png
:target: ../../gallery/misc/tickedstroke_demo.html
Colors and colormaps
====================
Collection color specification and mapping
------------------------------------------
Reworking the handling of color mapping and the keyword arguments for
*facecolor* and *edgecolor* has resulted in three behavior changes:
1. Color mapping can be turned off by calling ``Collection.set_array(None)``.
Previously, this would have no effect.
2. When a mappable array is set, with ``facecolor='none'`` and
``edgecolor='face'``, both the faces and the edges are left uncolored.
Previously the edges would be color-mapped.
3. When a mappable array is set, with ``facecolor='none'`` and
``edgecolor='red'``, the edges are red. This addresses Issue #1302.
Previously the edges would be color-mapped.
Transparency (alpha) can be set as an array in collections
----------------------------------------------------------
Previously, the alpha value controlling transparency in collections could be
specified only as a scalar applied to all elements in the collection. For
example, all the markers in a `~.Axes.scatter` plot, or all the quadrilaterals
in a `~.Axes.pcolormesh` plot, would have the same alpha value.
Now it is possible to supply alpha as an array with one value for each element
(marker, quadrilateral, etc.) in a collection.
.. plot::
x = np.arange(5, dtype=float)
y = np.arange(5, dtype=float)
# z and zalpha for demo pcolormesh
z = x[1:, np.newaxis] + y[np.newaxis, 1:]
zalpha = np.ones_like(z)
zalpha[::2, ::2] = 0.3 # alternate patches are partly transparent
# s and salpha for demo scatter
s = x
salpha = np.linspace(0.1, 0.9, len(x)) # just a ramp
fig, axs = plt.subplots(2, 2, constrained_layout=True)
axs[0, 0].pcolormesh(x, y, z, alpha=zalpha)
axs[0, 0].set_title("pcolormesh")
axs[0, 1].scatter(x, y, c=s, alpha=salpha)
axs[0, 1].set_title("color-mapped")
axs[1, 0].scatter(x, y, c='k', alpha=salpha)
axs[1, 0].set_title("c='k'")
axs[1, 1].scatter(x, y, c=['r', 'g', 'b', 'c', 'm'], alpha=salpha)
axs[1, 1].set_title("c=['r', 'g', 'b', 'c', 'm']")
pcolormesh has improved transparency handling by enabling snapping
------------------------------------------------------------------
Due to how the snapping keyword argument was getting passed to the Agg backend,
previous versions of Matplotlib would appear to show lines between the grid
edges of a mesh with transparency. This version now applies snapping by
default. To restore the old behavior (e.g., for test images), you may set
:rc:`pcolormesh.snap` to `False`.
.. plot::
# Use old pcolormesh snapping values
plt.rcParams['pcolormesh.snap'] = False
fig, ax = plt.subplots()
xx, yy = np.meshgrid(np.arange(10), np.arange(10))
z = (xx + 1) * (yy + 1)
mesh = ax.pcolormesh(xx, yy, z, shading='auto', alpha=0.5)
fig.colorbar(mesh, orientation='vertical')
ax.set_title('Before (pcolormesh.snap = False)')
Note that there are lines between the grid boundaries of the main plot which
are not the same transparency. The colorbar also shows these lines when a
transparency is added to the colormap because internally it uses pcolormesh to
draw the colorbar. With snapping on by default (below), the lines at the grid
boundaries disappear.
.. plot::
fig, ax = plt.subplots()
xx, yy = np.meshgrid(np.arange(10), np.arange(10))
z = (xx + 1) * (yy + 1)
mesh = ax.pcolormesh(xx, yy, z, shading='auto', alpha=0.5)
fig.colorbar(mesh, orientation='vertical')
ax.set_title('After (default: pcolormesh.snap = True)')
IPython representations for Colormap objects
--------------------------------------------
The `matplotlib.colors.Colormap` object now has image representations for
IPython / Jupyter backends. Cells returning a colormap on the last line will
display an image of the colormap.
.. only:: html
.. code-block::
In[1]: cmap = plt.get_cmap('viridis').with_extremes(bad='r', under='g', over='b')
In[2]: cmap
Out[2]:
.. raw:: html
<div style="vertical-align: middle;">
<strong>viridis</strong>
</div>
<div class="cmap">
<img alt="viridis colormap" title="viridis" style="border: 1px solid #555;" src="">
</div>
<div style="vertical-align: middle; max-width: 514px; display: flex; justify-content: space-between;">
<div style="float: left;">
<div title="#008000ff" style="display: inline-block; width: 1em; height: 1em; margin: 0; vertical-align: middle; border: 1px solid #555; background-color: #008000ff;"></div>
under
</div>
<div style="margin: 0 auto; display: inline-block;">
bad
<div title="#ff0000ff" style="display: inline-block; width: 1em; height: 1em; margin: 0; vertical-align: middle; border: 1px solid #555; background-color: #ff0000ff;"></div>
</div>
<div style="float: right;">
over
<div title="#0000ffff" style="display: inline-block; width: 1em; height: 1em; margin: 0; vertical-align: middle; border: 1px solid #555; background-color: #0000ffff;"></div>
</div>
``Colormap.set_extremes`` and ``Colormap.with_extremes``
--------------------------------------------------------
Because the `.Colormap.set_bad`, `.Colormap.set_under` and `.Colormap.set_over`
methods modify the colormap in place, the user must be careful to first make a
copy of the colormap if setting the extreme colors e.g. for a builtin colormap.
The new ``Colormap.with_extremes(bad=..., under=..., over=...)`` can be used to
first copy the colormap and set the extreme colors on that copy.
The new `.Colormap.set_extremes` method is provided for API symmetry with
`.Colormap.with_extremes`, but note that it suffers from the same issue as the
earlier individual setters.
Get under/over/bad colors of Colormap objects
---------------------------------------------
`matplotlib.colors.Colormap` now has methods `~.colors.Colormap.get_under`,
`~.colors.Colormap.get_over`, `~.colors.Colormap.get_bad` for the colors used
for out-of-range and masked values.
New ``cm.unregister_cmap`` function
-----------------------------------
`.cm.unregister_cmap` allows users to remove a colormap that they have
previously registered.
New ``CenteredNorm`` for symmetrical data around a center
---------------------------------------------------------
In cases where data is symmetrical around a center, for example, positive and
negative anomalies around a center zero, `~.matplotlib.colors.CenteredNorm` is
a new norm that automatically creates a symmetrical mapping around the center.
This norm is well suited to be combined with a divergent colormap which uses an
unsaturated color in its center.
.. plot::
from matplotlib.colors import CenteredNorm
np.random.seed(20201004)
data = np.random.normal(size=(3, 4), loc=1)
fig, ax = plt.subplots()
pc = ax.pcolormesh(data, cmap=plt.get_cmap('RdGy'), norm=CenteredNorm())
fig.colorbar(pc)
ax.set_title('data centered around zero')
# add text annotation
for irow, data_row in enumerate(data):
for icol, val in enumerate(data_row):
ax.text(icol + 0.5, irow + 0.5, f'{val:.2f}', color='C0',
size=16, va='center', ha='center')
plt.show()
If the center of symmetry is different from 0, it can be set with the *vcenter*
argument. To manually set the range of `~.matplotlib.colors.CenteredNorm`, use
the *halfrange* argument.
See :doc:`/tutorials/colors/colormapnorms` for an example and more details
about data normalization.
New ``FuncNorm`` for arbitrary normalizations
---------------------------------------------
The `.FuncNorm` allows for arbitrary normalization using functions for the
forward and inverse.
.. plot::
from matplotlib.colors import FuncNorm
def forward(x):
return x**2
def inverse(x):
return np.sqrt(x)
norm = FuncNorm((forward, inverse), vmin=0, vmax=3)
np.random.seed(20201004)
data = np.random.normal(size=(3, 4), loc=1)
fig, ax = plt.subplots()
pc = ax.pcolormesh(data, norm=norm)
fig.colorbar(pc)
ax.set_title('squared normalization')
# add text annotation
for irow, data_row in enumerate(data):
for icol, val in enumerate(data_row):
ax.text(icol + 0.5, irow + 0.5, f'{val:.2f}', color='C0',
size=16, va='center', ha='center')
plt.show()
See :doc:`/tutorials/colors/colormapnorms` for an example and more details
about data normalization.
GridSpec-based colorbars can now be positioned above or to the left of the main axes
------------------------------------------------------------------------------------
... by passing ``location="top"`` or ``location="left"`` to the ``colorbar()``
call.
Titles, ticks, and labels
=========================
supxlabel and supylabel
-----------------------
It is possible to add x- and y-labels to a whole figure, analogous to
`.FigureBase.suptitle` using the new `.FigureBase.supxlabel` and
`.FigureBase.supylabel` methods.
.. plot::
np.random.seed(19680801)
fig, axs = plt.subplots(3, 2, figsize=(5, 5), constrained_layout=True,
sharex=True, sharey=True)
for nn, ax in enumerate(axs.flat):
ax.set_title(f'Channel {nn}')
ax.plot(np.cumsum(np.random.randn(50)))
fig.supxlabel('Time [s]')
fig.supylabel('Data [V]')
Shared-axes ``subplots`` tick label visibility is now correct for top or left labels
------------------------------------------------------------------------------------
When calling ``subplots(..., sharex=True, sharey=True)``, Matplotlib
automatically hides x tick labels for Axes not in the first column and y tick
labels for Axes not in the last row. This behavior is incorrect if rcParams
specify that Axes should be labeled on the top (``rcParams["xtick.labeltop"] =
True``) or on the right (``rcParams["ytick.labelright"] = True``).
Cases such as the following are now handled correctly (adjusting visibility as
needed on the first row and last column of Axes):
.. plot::
:include-source:
plt.rcParams["xtick.labelbottom"] = False
plt.rcParams["xtick.labeltop"] = True
plt.rcParams["ytick.labelleft"] = False
plt.rcParams["ytick.labelright"] = True
fig, axs = plt.subplots(2, 2, sharex=True, sharey=True)
An iterable object with labels can be passed to `.Axes.plot`
------------------------------------------------------------
When plotting multiple datasets by passing 2D data as *y* value to
`~.Axes.plot`, labels for the datasets can be passed as a list, the length
matching the number of columns in *y*.
.. plot::
:include-source:
x = [1, 2, 3]
y = [[1, 2],
[2, 5],
[4, 9]]
plt.plot(x, y, label=['low', 'high'])
plt.legend()
Fonts and Text
==============
Text transform can rotate text direction
----------------------------------------
The new `.Text` parameter ``transform_rotates_text`` now sets whether rotations
of the transform affect the text direction.
.. figure:: /gallery/text_labels_and_annotations/images/sphx_glr_text_rotation_relative_to_line_001.png
:target: ../../gallery/text_labels_and_annotations/text_rotation_relative_to_line.html
Example of the new *transform_rotates_text* parameter
``matplotlib.mathtext`` now supports *overset* and *underset* LaTeX symbols
---------------------------------------------------------------------------
`.mathtext` now supports *overset* and *underset*, called as
``\overset{annotation}{body}`` or ``\underset{annotation}{body}``, where
*annotation* is the text "above" or "below" the *body*.
.. plot::
math_expr = r"$ x \overset{f}{\rightarrow} y \underset{f}{\leftarrow} z $"
plt.text(0.4, 0.5, math_expr, usetex=False)
*math_fontfamily* parameter to change ``Text`` font family
----------------------------------------------------------
The new *math_fontfamily* parameter may be used to change the family of fonts
for each individual text element in a plot. If no parameter is set, the global
value :rc:`mathtext.fontset` will be used.
.. figure:: /gallery/text_labels_and_annotations/images/sphx_glr_mathtext_fontfamily_example_001.png
:target: ../../gallery/text_labels_and_annotations/mathtext_fontfamily_example.html
``TextArea``/``AnchoredText`` support *horizontalalignment*
-----------------------------------------------------------
The horizontal alignment of text in a `.TextArea` or `.AnchoredText` may now be
specified, which is mostly effective for multiline text:
.. plot::
from matplotlib.offsetbox import AnchoredText
fig, ax = plt.subplots()
text0 = AnchoredText("test\ntest long text", loc="center left",
pad=0.2, prop={"ha": "left"})
ax.add_artist(text0)
text1 = AnchoredText("test\ntest long text", loc="center",
pad=0.2, prop={"ha": "center"})
ax.add_artist(text1)
text2 = AnchoredText("test\ntest long text", loc="center right",
pad=0.2, prop={"ha": "right"})
ax.add_artist(text2)
PDF supports URLs on ``Text`` artists
-------------------------------------
URLs on `.text.Text` artists (i.e., from `.Artist.set_url`) will now be saved
in PDF files.
rcParams improvements
=====================
New rcParams for dates: set converter and whether to use interval_multiples
---------------------------------------------------------------------------
The new :rc:`date.converter` allows toggling between
`matplotlib.dates.DateConverter` and `matplotlib.dates.ConciseDateConverter`
using the strings 'auto' and 'concise' respectively.
The new :rc:`date.interval_multiples` allows toggling between the dates locator
trying to pick ticks at set intervals (i.e., day 1 and 15 of the month), versus
evenly spaced ticks that start wherever the timeseries starts:
.. plot::
:include-source:
dates = np.arange('2001-01-10', '2001-05-23', dtype='datetime64[D]')
y = np.sin(dates.astype(float) / 10)
fig, axs = plt.subplots(nrows=2, constrained_layout=True)
plt.rcParams['date.converter'] = 'concise'
plt.rcParams['date.interval_multiples'] = True
axs[0].plot(dates, y)
plt.rcParams['date.converter'] = 'auto'
plt.rcParams['date.interval_multiples'] = False
axs[1].plot(dates, y)
Date formatters now respect *usetex* rcParam
--------------------------------------------
The `.AutoDateFormatter` and `.ConciseDateFormatter` now respect
:rc:`text.usetex`, and will thus use fonts consistent with TeX rendering of the
default (non-date) formatter. TeX rendering may also be enabled/disabled by
passing the *usetex* parameter when creating the formatter instance.
In the following plot, both the x-axis (dates) and y-axis (numbers) now use the
same (TeX) font:
.. plot::
from datetime import datetime, timedelta
from matplotlib.dates import ConciseDateFormatter
plt.rc('text', usetex=True)
t0 = datetime(1968, 8, 1)
ts = [t0 + i * timedelta(days=1) for i in range(10)]
fig, ax = plt.subplots()
ax.plot(ts, range(10))
ax.xaxis.set_major_formatter(ConciseDateFormatter(ax.xaxis.get_major_locator()))
ax.set_xlabel('Date')
ax.set_ylabel('Value')
Setting *image.cmap* to a ``Colormap``
--------------------------------------
It is now possible to set :rc:`image.cmap` to a `.Colormap` instance, such as a
colormap created with the new `~.Colormap.set_extremes` above. (This can only
be done from Python code, not from the :file:`matplotlibrc` file.)
Tick and tick label colors can be set independently using rcParams
------------------------------------------------------------------
Previously, :rc:`xtick.color` defined both the tick color and the label color.
The label color can now be set independently using :rc:`xtick.labelcolor`. It
defaults to ``'inherit'`` which will take the value from :rc:`xtick.color`. The
same holds for ``ytick.[label]color``. For instance, to set the ticks to light
grey and the tick labels to black, one can use the following code in a script::
import matplotlib as mpl
mpl.rcParams['xtick.labelcolor'] = 'lightgrey'
mpl.rcParams['xtick.color'] = 'black'
mpl.rcParams['ytick.labelcolor'] = 'lightgrey'
mpl.rcParams['ytick.color'] = 'black'
Or by adding the following lines to the :ref:`matplotlibrc
<customizing-with-matplotlibrc-files>` file, or a Matplotlib style file:
.. code-block:: none
xtick.labelcolor : lightgrey
xtick.color : black
ytick.labelcolor : lightgrey
ytick.color : black
3D Axes improvements
====================
Errorbar method in 3D Axes
--------------------------
The errorbar function `.Axes.errorbar` is ported into the 3D Axes framework in
its entirety, supporting features such as custom styling for error lines and
cap marks, control over errorbar spacing, upper and lower limit marks.
.. figure:: /gallery/mplot3d/images/sphx_glr_errorbar3d_001.png
:target: ../../gallery/mplot3d/errorbar3d.html
Stem plots in 3D Axes
---------------------
Stem plots are now supported on 3D Axes. Much like 2D stems,
`~.axes3d.Axes3D.stem3D` supports plotting the stems in various orientations:
.. plot::
theta = np.linspace(0, 2*np.pi)
x = np.cos(theta - np.pi/2)
y = np.sin(theta - np.pi/2)
z = theta
directions = ['z', 'x', 'y']
names = [r'$\theta$', r'$\cos\theta$', r'$\sin\theta$']
fig, axs = plt.subplots(1, 3, figsize=(8, 4),
constrained_layout=True,
subplot_kw={'projection': '3d'})
for ax, zdir, name in zip(axs, directions, names):
ax.stem(x, y, z, orientation=zdir)
ax.set_title(name)
fig.suptitle(r'A parametric circle: $(x, y) = (\cos\theta, \sin\theta)$')
See also the :doc:`/gallery/mplot3d/stem3d_demo` demo.
3D Collection properties are now modifiable
-------------------------------------------
Previously, properties of a 3D Collection that were used for 3D effects (e.g.,
colors were modified to produce depth shading) could not be changed after it
was created.
Now it is possible to modify all properties of 3D Collections at any time.
Panning in 3D Axes
------------------
Click and drag with the middle mouse button to pan 3D Axes.
Interactive tool improvements
=============================
New ``RangeSlider`` widget
--------------------------
`.widgets.RangeSlider` allows for creating a slider that defines
a range rather than a single value.
.. plot::
fig, ax = plt.subplots(2, 1, figsize=(5, 1))
fig.subplots_adjust(left=0.2, right=0.8)
from matplotlib.widgets import Slider, RangeSlider
Slider(ax[0], 'Slider', 0, 1)
RangeSlider(ax[1], 'RangeSlider', 0, 1)
Sliders can now snap to arbitrary values
----------------------------------------
The `~matplotlib.widgets.Slider` UI widget now accepts arrays for *valstep*.
This generalizes the previous behavior by allowing the slider to snap to
arbitrary values.
Pausing and Resuming Animations
-------------------------------
The `.animation.Animation.pause` and `.animation.Animation.resume` methods
allow you to pause and resume animations. These methods can be used as
callbacks for event listeners on UI elements so that your plots can have some
playback control UI.
Sphinx extensions
=================
``plot_directive`` *caption* option
-----------------------------------
Captions were previously supported when using the ``plot_directive`` directive
with an external source file by specifying content::
.. plot:: path/to/plot.py
This is the caption for the plot.
The ``:caption:`` option allows specifying the caption for both external::
.. plot:: path/to/plot.py
:caption: This is the caption for the plot.
and inline plots::
.. plot::
:caption: This is a caption for the plot.
plt.plot([1, 2, 3])
Backend-specific improvements
=============================
Consecutive rasterized draws now merged
---------------------------------------
Elements of a vector output can be individually set to rasterized, using the
*rasterized* keyword argument, or `~.artist.Artist.set_rasterized()`. This can
be useful to reduce file sizes. For figures with multiple raster elements they
are now automatically merged into a smaller number of bitmaps where this will
not effect the visual output. For cases with many elements this can result in
significantly smaller file sizes.
To ensure this happens do not place vector elements between raster ones.
To inhibit this merging set ``Figure.suppressComposite`` to True.
Support raw/rgba frame format in ``FFMpegFileWriter``
-----------------------------------------------------
When using `.FFMpegFileWriter`, the *frame_format* may now be set to ``"raw"``
or ``"rgba"``, which may be slightly faster than an image format, as no
encoding/decoding need take place between Matplotlib and FFmpeg.
nbAgg/WebAgg support middle-click and double-click
--------------------------------------------------
Double click events are now supported by the nbAgg and WebAgg backends.
Formerly, WebAgg would report middle-click events as right clicks, but now
reports the correct button type.
nbAgg support binary communication
----------------------------------
If the web browser and notebook support binary websockets, nbAgg will now use
them for slightly improved transfer of figure display.
Indexed color for PNG images in PDF files when possible
-------------------------------------------------------
When PNG images have 256 colors or fewer, they are converted to indexed color
before saving them in a PDF. This can result in a significant reduction in file
size in some cases. This is particularly true for raster data that uses a
colormap but no interpolation, such as Healpy mollview plots. Currently, this
is only done for RGB images.
Improved font subsettings in PDF/PS
-----------------------------------
Font subsetting in PDF and PostScript has been re-written from the embedded
``ttconv`` C code to Python. Some composite characters and outlines may have
changed slightly. This fixes ttc subsetting in PDF, and adds support for
subsetting of type 3 OTF fonts, resulting in smaller files (much smaller when
using CJK fonts), and avoids running into issues with type 42 embedding and
certain PDF readers such as Acrobat Reader.
Kerning added to strings in PDFs
--------------------------------
As with text produced in the Agg backend (see :ref:`the previous what's new
entry <whats-new-3-2-0-kerning>` for examples), PDFs now include kerning in
text strings.
Fully-fractional HiDPI in QtAgg
-------------------------------
Fully-fractional HiDPI (that is, HiDPI ratios that are not whole integers) was
added in Qt 5.14, and is now supported by the QtAgg backend when using this
version of Qt or newer.
wxAgg supports fullscreen toggle
--------------------------------
The wxAgg backend supports toggling fullscreen using the :kbd:`f` shortcut, or
the manager function `.FigureManagerBase.full_screen_toggle`.
|