File: whats_new_3.4.0.rst

package info (click to toggle)
matplotlib 3.6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 76,280 kB
  • sloc: python: 133,763; cpp: 66,599; objc: 1,699; ansic: 1,367; javascript: 765; makefile: 153; sh: 48
file content (1039 lines) | stat: -rw-r--r-- 38,158 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
.. _whats-new-3-4-0:

=============================================
What's new in Matplotlib 3.4.0 (Mar 26, 2021)
=============================================

For a list of all of the issues and pull requests since the last revision, see
the :ref:`github-stats`.

.. contents:: Table of Contents
   :depth: 4

.. toctree::
   :maxdepth: 4

Figure and Axes creation / management
=====================================

New subfigure functionality
---------------------------

New `.figure.Figure.add_subfigure` and `.figure.Figure.subfigures`
functionalities allow creating virtual figures within figures. Similar nesting
was previously done with nested gridspecs (see
:doc:`/gallery/subplots_axes_and_figures/gridspec_nested`). However, this did
not allow localized figure artists (e.g., a colorbar or suptitle) that only
pertained to each subgridspec.

The new methods `.figure.Figure.add_subfigure` and `.figure.Figure.subfigures`
are meant to rhyme with `.figure.Figure.add_subplot` and
`.figure.Figure.subplots` and have most of the same arguments.

See :doc:`/gallery/subplots_axes_and_figures/subfigures` for further details.

.. note::

  The subfigure functionality is experimental API as of v3.4.

.. plot::

    def example_plot(ax, fontsize=12, hide_labels=False):
        pc = ax.pcolormesh(np.random.randn(30, 30))
        if not hide_labels:
            ax.set_xlabel('x-label', fontsize=fontsize)
            ax.set_ylabel('y-label', fontsize=fontsize)
            ax.set_title('Title', fontsize=fontsize)
        return pc

    np.random.seed(19680808)
    fig = plt.figure(constrained_layout=True, figsize=(10, 4))
    subfigs = fig.subfigures(1, 2, wspace=0.07)

    axsLeft = subfigs[0].subplots(1, 2, sharey=True)
    subfigs[0].set_facecolor('#eee')
    for ax in axsLeft:
        pc = example_plot(ax)
    subfigs[0].suptitle('Left plots', fontsize='x-large')
    subfigs[0].colorbar(pc, shrink=0.6, ax=axsLeft, location='bottom')

    axsRight = subfigs[1].subplots(3, 1, sharex=True)
    for nn, ax in enumerate(axsRight):
        pc = example_plot(ax, hide_labels=True)
        if nn == 2:
            ax.set_xlabel('xlabel')
        if nn == 1:
            ax.set_ylabel('ylabel')
    subfigs[1].colorbar(pc, shrink=0.6, ax=axsRight)
    subfigs[1].suptitle('Right plots', fontsize='x-large')

    fig.suptitle('Figure suptitle', fontsize='xx-large')

    plt.show()

Single-line string notation for ``subplot_mosaic``
--------------------------------------------------

`.Figure.subplot_mosaic` and `.pyplot.subplot_mosaic` now accept a single-line
string, using semicolons to delimit rows. Namely, ::

    plt.subplot_mosaic(
        """
        AB
        CC
        """)

may be written as the shorter:

.. plot::
    :include-source:

    plt.subplot_mosaic("AB;CC")

Changes to behavior of Axes creation methods (``gca``, ``add_axes``, ``add_subplot``)
-------------------------------------------------------------------------------------

The behavior of the functions to create new Axes (`.pyplot.axes`,
`.pyplot.subplot`, `.figure.Figure.add_axes`, `.figure.Figure.add_subplot`) has
changed. In the past, these functions would detect if you were attempting to
create Axes with the same keyword arguments as already-existing Axes in the
current Figure, and if so, they would return the existing Axes. Now,
`.pyplot.axes`, `.figure.Figure.add_axes`, and `.figure.Figure.add_subplot`
will always create new Axes. `.pyplot.subplot` will continue to reuse an
existing Axes with a matching subplot spec and equal *kwargs*.

Correspondingly, the behavior of the functions to get the current Axes
(`.pyplot.gca`, `.figure.Figure.gca`) has changed. In the past, these functions
accepted keyword arguments. If the keyword arguments matched an
already-existing Axes, then that Axes would be returned, otherwise new Axes
would be created with those keyword arguments. Now, the keyword arguments are
only considered if there are no Axes at all in the current figure. In a future
release, these functions will not accept keyword arguments at all.

``add_subplot``/``add_axes`` gained an *axes_class* parameter
-------------------------------------------------------------

In particular, ``mpl_toolkits`` Axes subclasses can now be idiomatically used
using, e.g., ``fig.add_subplot(axes_class=mpl_toolkits.axislines.Axes)``

Subplot and subplot2grid can now work with constrained layout
-------------------------------------------------------------

``constrained_layout`` depends on a single `.GridSpec` for each logical layout
on a figure. Previously, `.pyplot.subplot` and `.pyplot.subplot2grid` added a
new ``GridSpec`` each time they were called and were therefore incompatible
with ``constrained_layout``.

Now ``subplot`` attempts to reuse the ``GridSpec`` if the number of rows and
columns is the same as the top level GridSpec already in the figure, i.e.,
``plt.subplot(2, 1, 2)`` will use the same GridSpec as ``plt.subplot(2, 1, 1)``
and the ``constrained_layout=True`` option to `~.figure.Figure` will work.

In contrast, mixing *nrows* and *ncols* will *not* work with
``constrained_layout``: ``plt.subplot(2, 2, 1)`` followed by ``plt.subplots(2,
1, 2)`` will still produce two GridSpecs, and ``constrained_layout=True`` will
give bad results. In order to get the desired effect, the second call can
specify the cells the second Axes is meant to cover:  ``plt.subplots(2, 2, (2,
4))``, or the more Pythonic ``plt.subplot2grid((2, 2), (0, 1), rowspan=2)`` can
be used.


Plotting methods
================

``axline`` supports *transform* parameter
-----------------------------------------

`~.Axes.axline` now supports the *transform* parameter, which applies to the
points *xy1*, *xy2*. The *slope* (if given) is always in data coordinates.

For example, this can be used with ``ax.transAxes`` for drawing lines with a
fixed slope. In the following plot, the line appears through the same point on
both Axes, even though they show different data limits.

.. plot::
    :include-source:

    fig, axs = plt.subplots(1, 2)

    for i, ax in enumerate(axs):
        ax.axline((0.25, 0), slope=2, transform=ax.transAxes)
        ax.set(xlim=(i, i+5), ylim=(i, i+5))

New automatic labeling for bar charts
-------------------------------------

A new `.Axes.bar_label` method has been added for auto-labeling bar charts.

.. figure:: /gallery/lines_bars_and_markers/images/sphx_glr_bar_label_demo_001.png
   :target: ../../gallery/lines_bars_and_markers/bar_label_demo.html

   Example of the new automatic labeling.

A list of hatches can be specified to `~.axes.Axes.bar` and `~.axes.Axes.barh`
------------------------------------------------------------------------------

Similar to some other rectangle properties, it is now possible to hand a list
of hatch styles to `~.axes.Axes.bar` and `~.axes.Axes.barh` in order to create
bars with different hatch styles, e.g.

.. plot::

    fig, ax = plt.subplots()
    ax.bar([1, 2], [2, 3], hatch=['+', 'o'])
    plt.show()

Setting ``BarContainer`` orientation
------------------------------------

`.BarContainer` now accepts a new string argument *orientation*. It can be
either ``'vertical'`` or ``'horizontal'``, default is ``None``.

Contour plots now default to using ScalarFormatter
--------------------------------------------------

Pass ``fmt="%1.3f"`` to the contouring call to restore the old default label
format.

``Axes.errorbar`` cycles non-color properties correctly
-------------------------------------------------------

Formerly, `.Axes.errorbar` incorrectly skipped the Axes property cycle if a
color was explicitly specified, even if the property cycler was for other
properties (such as line style). Now, `.Axes.errorbar` will advance the Axes
property cycle as done for `.Axes.plot`, i.e., as long as all properties in the
cycler are not explicitly passed.

For example, the following will cycle through the line styles:

.. plot::
    :include-source:

    x = np.arange(0.1, 4, 0.5)
    y = np.exp(-x)
    offsets = [0, 1]

    plt.rcParams['axes.prop_cycle'] = plt.cycler('linestyle', ['-', '--'])

    fig, ax = plt.subplots()
    for offset in offsets:
        ax.errorbar(x, y + offset, xerr=0.1, yerr=0.3, fmt='tab:blue')

``errorbar`` *errorevery* parameter matches *markevery*
-------------------------------------------------------

Similar to the *markevery* parameter to `~.Axes.plot`, the *errorevery*
parameter of `~.Axes.errorbar` now accept slices and NumPy fancy indexes (which
must match the size of *x*).

.. plot::

    x = np.linspace(0, 1, 15)
    y = x * (1-x)
    yerr = y/6

    fig, ax = plt.subplots(2, constrained_layout=True)
    ax[0].errorbar(x, y, yerr, capsize=2)
    ax[0].set_title('errorevery unspecified')

    ax[1].errorbar(x, y, yerr, capsize=2,
                   errorevery=[False, True, True, False, True] * 3)
    ax[1].set_title('errorevery=[False, True, True, False, True] * 3')

``hexbin`` supports data reference for *C* parameter
----------------------------------------------------

As with the *x* and *y* parameters, `.Axes.hexbin` now supports passing the *C*
parameter using a data reference.

.. plot::
    :include-source:

    data = {
        'a': np.random.rand(1000),
        'b': np.random.rand(1000),
        'c': np.random.rand(1000),
    }

    fig, ax = plt.subplots()
    ax.hexbin('a', 'b', C='c', data=data, gridsize=10)

Support callable for formatting of Sankey labels
------------------------------------------------

The `format` parameter of `matplotlib.sankey.Sankey` can now accept callables.

This allows the use of an arbitrary function to label flows, for example
allowing the mapping of numbers to emoji.

.. plot::

    from matplotlib.sankey import Sankey
    import math


    def display_in_cats(values, min_cats, max_cats):
        def display_in_cat_scale(value):
            max_value = max(values, key=abs)
            number_cats_to_show = \
                max(min_cats, math.floor(abs(value) / max_value * max_cats))
            return str(number_cats_to_show * '🐱')

        return display_in_cat_scale


    flows = [35, 15, 40, -20, -15, -5, -40, -10]
    orientations = [-1, 1, 0, 1, 1, 1, -1, -1]

    # Cats are good, we want a strictly positive number of them
    min_cats = 1
    # More than four cats might be too much for some people
    max_cats = 4

    cats_format = display_in_cats(flows, min_cats, max_cats)

    sankey = Sankey(flows=flows, orientations=orientations, format=cats_format,
                    offset=.1, head_angle=180, shoulder=0, scale=.010)

    diagrams = sankey.finish()

    diagrams[0].texts[2].set_text('')

    plt.title(f'Sankey flows measured in cats \n'
              f'🐱 = {max(flows, key=abs) / max_cats}')

    plt.show()

``Axes.spines`` access shortcuts
--------------------------------

``Axes.spines`` is now a dedicated container class `.Spines` for a set of
`.Spine`\s instead of an ``OrderedDict``. On top of dict-like access,
``Axes.spines`` now also supports some ``pandas.Series``-like features.

Accessing single elements by item or by attribute::

    ax.spines['top'].set_visible(False)
    ax.spines.top.set_visible(False)

Accessing a subset of items::

    ax.spines[['top', 'right']].set_visible(False)

Accessing all items simultaneously::

    ax.spines[:].set_visible(False)

New ``stairs`` method and ``StepPatch`` artist
----------------------------------------------

`.pyplot.stairs` and the underlying artist `~.matplotlib.patches.StepPatch`
provide a cleaner interface for plotting stepwise constant functions for the
common case that you know the step edges. This supersedes many use cases of
`.pyplot.step`, for instance when plotting the output of `numpy.histogram`.

For both the artist and the function, the x-like edges input is one element
longer than the y-like values input

.. plot::

    np.random.seed(0)
    h, edges = np.histogram(np.random.normal(5, 2, 5000),
                            bins=np.linspace(0,10,20))

    fig, ax = plt.subplots(constrained_layout=True)

    ax.stairs(h, edges)

    plt.show()

See :doc:`/gallery/lines_bars_and_markers/stairs_demo` for examples.

Added *orientation* parameter for stem plots
--------------------------------------------

By default, stem lines are vertical. They can be changed to horizontal using
the *orientation* parameter of `.Axes.stem` or `.pyplot.stem`:

.. plot::

    locs = np.linspace(0.1, 2 * np.pi, 25)
    heads = np.cos(locs)

    fig, ax = plt.subplots()
    ax.stem(locs, heads, orientation='horizontal')

Angles on Bracket arrow styles
------------------------------

Angles specified on the *Bracket* arrow styles (``]-[``, ``]-``, ``-[``, or
``|-|`` passed to *arrowstyle* parameter of `.FancyArrowPatch`) are now
applied. Previously, the *angleA* and *angleB* options were allowed, but did
nothing.

.. plot::

    import matplotlib.patches as mpatches

    fig, ax = plt.subplots()
    ax.set(xlim=(0, 1), ylim=(-1, 4))

    for i, stylename in enumerate((']-[', '|-|')):
        for j, angle in enumerate([-30, 60]):
            arrowstyle = f'{stylename},angleA={angle},angleB={-angle}'
            patch = mpatches.FancyArrowPatch((0.1, 2*i + j), (0.9, 2*i + j),
                                             arrowstyle=arrowstyle,
                                             mutation_scale=25)
            ax.text(0.5, 2*i + j, arrowstyle,
                    verticalalignment='bottom', horizontalalignment='center')
            ax.add_patch(patch)

``TickedStroke`` patheffect
---------------------------

The new `.TickedStroke` patheffect can be used to produce lines with a ticked
style. This can be used to, e.g., distinguish the valid and invalid sides of
the constraint boundaries in the solution space of optimizations.

.. figure:: /gallery/misc/images/sphx_glr_tickedstroke_demo_002.png
   :target: ../../gallery/misc/tickedstroke_demo.html


Colors and colormaps
====================

Collection color specification and mapping
------------------------------------------

Reworking the handling of color mapping and the keyword arguments for
*facecolor* and *edgecolor* has resulted in three behavior changes:

1. Color mapping can be turned off by calling ``Collection.set_array(None)``.
   Previously, this would have no effect.
2. When a mappable array is set, with ``facecolor='none'`` and
   ``edgecolor='face'``, both the faces and the edges are left uncolored.
   Previously the edges would be color-mapped.
3. When a mappable array is set, with ``facecolor='none'`` and
   ``edgecolor='red'``, the edges are red. This addresses Issue #1302.
   Previously the edges would be color-mapped.

Transparency (alpha) can be set as an array in collections
----------------------------------------------------------

Previously, the alpha value controlling transparency in collections could be
specified only as a scalar applied to all elements in the collection. For
example, all the markers in a `~.Axes.scatter` plot, or all the quadrilaterals
in a `~.Axes.pcolormesh` plot, would have the same alpha value.

Now it is possible to supply alpha as an array with one value for each element
(marker, quadrilateral, etc.) in a collection.

.. plot::

    x = np.arange(5, dtype=float)
    y = np.arange(5, dtype=float)
    # z and zalpha for demo pcolormesh
    z = x[1:, np.newaxis] + y[np.newaxis, 1:]
    zalpha = np.ones_like(z)
    zalpha[::2, ::2] = 0.3  # alternate patches are partly transparent
    # s and salpha for demo scatter
    s = x
    salpha = np.linspace(0.1, 0.9, len(x))  # just a ramp

    fig, axs = plt.subplots(2, 2, constrained_layout=True)
    axs[0, 0].pcolormesh(x, y, z, alpha=zalpha)
    axs[0, 0].set_title("pcolormesh")
    axs[0, 1].scatter(x, y, c=s, alpha=salpha)
    axs[0, 1].set_title("color-mapped")
    axs[1, 0].scatter(x, y, c='k', alpha=salpha)
    axs[1, 0].set_title("c='k'")
    axs[1, 1].scatter(x, y, c=['r', 'g', 'b', 'c', 'm'], alpha=salpha)
    axs[1, 1].set_title("c=['r', 'g', 'b', 'c', 'm']")

pcolormesh has improved transparency handling by enabling snapping
------------------------------------------------------------------

Due to how the snapping keyword argument was getting passed to the Agg backend,
previous versions of Matplotlib would appear to show lines between the grid
edges of a mesh with transparency. This version now applies snapping by
default. To restore the old behavior (e.g., for test images), you may set
:rc:`pcolormesh.snap` to `False`.

.. plot::

    # Use old pcolormesh snapping values
    plt.rcParams['pcolormesh.snap'] = False
    fig, ax = plt.subplots()
    xx, yy = np.meshgrid(np.arange(10), np.arange(10))
    z = (xx + 1) * (yy + 1)
    mesh = ax.pcolormesh(xx, yy, z, shading='auto', alpha=0.5)
    fig.colorbar(mesh, orientation='vertical')
    ax.set_title('Before (pcolormesh.snap = False)')

Note that there are lines between the grid boundaries of the main plot which
are not the same transparency. The colorbar also shows these lines when a
transparency is added to the colormap because internally it uses pcolormesh to
draw the colorbar. With snapping on by default (below), the lines at the grid
boundaries disappear.

.. plot::

    fig, ax = plt.subplots()
    xx, yy = np.meshgrid(np.arange(10), np.arange(10))
    z = (xx + 1) * (yy + 1)
    mesh = ax.pcolormesh(xx, yy, z, shading='auto', alpha=0.5)
    fig.colorbar(mesh, orientation='vertical')
    ax.set_title('After (default: pcolormesh.snap = True)')

IPython representations for Colormap objects
--------------------------------------------

The `matplotlib.colors.Colormap` object now has image representations for
IPython / Jupyter backends. Cells returning a colormap on the last line will
display an image of the colormap.

.. only:: html

    .. code-block::

        In[1]: cmap = plt.get_cmap('viridis').with_extremes(bad='r', under='g', over='b')

        In[2]: cmap
        Out[2]:

.. raw:: html

    <div style="vertical-align: middle;">
        <strong>viridis</strong>
    </div>
    <div class="cmap">
        <img alt="viridis colormap" title="viridis" style="border: 1px solid #555;" src="">
    </div>
    <div style="vertical-align: middle; max-width: 514px; display: flex; justify-content: space-between;">
        <div style="float: left;">
            <div title="#008000ff" style="display: inline-block; width: 1em; height: 1em; margin: 0; vertical-align: middle; border: 1px solid #555; background-color: #008000ff;"></div>
            under
        </div>
        <div style="margin: 0 auto; display: inline-block;">
            bad
            <div title="#ff0000ff" style="display: inline-block; width: 1em; height: 1em; margin: 0; vertical-align: middle; border: 1px solid #555; background-color: #ff0000ff;"></div>
        </div>
        <div style="float: right;">
            over
            <div title="#0000ffff" style="display: inline-block; width: 1em; height: 1em; margin: 0; vertical-align: middle; border: 1px solid #555; background-color: #0000ffff;"></div>
    </div>

``Colormap.set_extremes`` and ``Colormap.with_extremes``
--------------------------------------------------------

Because the `.Colormap.set_bad`, `.Colormap.set_under` and `.Colormap.set_over`
methods modify the colormap in place, the user must be careful to first make a
copy of the colormap if setting the extreme colors e.g. for a builtin colormap.

The new ``Colormap.with_extremes(bad=..., under=..., over=...)`` can be used to
first copy the colormap and set the extreme colors on that copy.

The new `.Colormap.set_extremes` method is provided for API symmetry with
`.Colormap.with_extremes`, but note that it suffers from the same issue as the
earlier individual setters.

Get under/over/bad colors of Colormap objects
---------------------------------------------

`matplotlib.colors.Colormap` now has methods `~.colors.Colormap.get_under`,
`~.colors.Colormap.get_over`, `~.colors.Colormap.get_bad` for the colors used
for out-of-range and masked values.

New ``cm.unregister_cmap`` function
-----------------------------------

`.cm.unregister_cmap` allows users to remove a colormap that they have
previously registered.

New ``CenteredNorm`` for symmetrical data around a center
---------------------------------------------------------

In cases where data is symmetrical around a center, for example, positive and
negative anomalies around a center zero, `~.matplotlib.colors.CenteredNorm` is
a new norm that automatically creates a symmetrical mapping around the center.
This norm is well suited to be combined with a divergent colormap which uses an
unsaturated color in its center.

.. plot::

    from matplotlib.colors import CenteredNorm

    np.random.seed(20201004)
    data = np.random.normal(size=(3, 4), loc=1)

    fig, ax = plt.subplots()
    pc = ax.pcolormesh(data, cmap=plt.get_cmap('RdGy'), norm=CenteredNorm())
    fig.colorbar(pc)
    ax.set_title('data centered around zero')

    # add text annotation
    for irow, data_row in enumerate(data):
        for icol, val in enumerate(data_row):
            ax.text(icol + 0.5, irow + 0.5, f'{val:.2f}', color='C0',
                    size=16, va='center', ha='center')
    plt.show()

If the center of symmetry is different from 0, it can be set with the *vcenter*
argument. To manually set the range of `~.matplotlib.colors.CenteredNorm`, use
the *halfrange* argument.

See :doc:`/tutorials/colors/colormapnorms` for an example and more details
about data normalization.

New ``FuncNorm`` for arbitrary normalizations
---------------------------------------------

The `.FuncNorm` allows for arbitrary normalization using functions for the
forward and inverse.

.. plot::

    from matplotlib.colors import FuncNorm

    def forward(x):
        return x**2
    def inverse(x):
        return np.sqrt(x)

    norm = FuncNorm((forward, inverse), vmin=0, vmax=3)

    np.random.seed(20201004)
    data = np.random.normal(size=(3, 4), loc=1)

    fig, ax = plt.subplots()
    pc = ax.pcolormesh(data, norm=norm)
    fig.colorbar(pc)
    ax.set_title('squared normalization')

    # add text annotation
    for irow, data_row in enumerate(data):
        for icol, val in enumerate(data_row):
            ax.text(icol + 0.5, irow + 0.5, f'{val:.2f}', color='C0',
                    size=16, va='center', ha='center')
    plt.show()

See :doc:`/tutorials/colors/colormapnorms` for an example and more details
about data normalization.

GridSpec-based colorbars can now be positioned above or to the left of the main axes
------------------------------------------------------------------------------------

... by passing ``location="top"`` or ``location="left"`` to the ``colorbar()``
call.


Titles, ticks, and labels
=========================

supxlabel and supylabel
-----------------------

It is possible to add x- and y-labels to a whole figure, analogous to
`.FigureBase.suptitle` using the new `.FigureBase.supxlabel` and
`.FigureBase.supylabel` methods.

.. plot::

    np.random.seed(19680801)
    fig, axs = plt.subplots(3, 2, figsize=(5, 5), constrained_layout=True,
                            sharex=True, sharey=True)

    for nn, ax in enumerate(axs.flat):
        ax.set_title(f'Channel {nn}')
        ax.plot(np.cumsum(np.random.randn(50)))

    fig.supxlabel('Time [s]')
    fig.supylabel('Data [V]')

Shared-axes ``subplots`` tick label visibility is now correct for top or left labels
------------------------------------------------------------------------------------

When calling ``subplots(..., sharex=True, sharey=True)``, Matplotlib
automatically hides x tick labels for Axes not in the first column and y tick
labels for Axes not in the last row. This behavior is incorrect if rcParams
specify that Axes should be labeled on the top (``rcParams["xtick.labeltop"] =
True``) or on the right (``rcParams["ytick.labelright"] = True``).

Cases such as the following are now handled correctly (adjusting visibility as
needed on the first row and last column of Axes):

.. plot::
    :include-source:

    plt.rcParams["xtick.labelbottom"] = False
    plt.rcParams["xtick.labeltop"] = True
    plt.rcParams["ytick.labelleft"] = False
    plt.rcParams["ytick.labelright"] = True

    fig, axs = plt.subplots(2, 2, sharex=True, sharey=True)

An iterable object with labels can be passed to `.Axes.plot`
------------------------------------------------------------

When plotting multiple datasets by passing 2D data as *y* value to
`~.Axes.plot`, labels for the datasets can be passed as a list, the length
matching the number of columns in *y*.

.. plot::
    :include-source:

    x = [1, 2, 3]

    y = [[1, 2],
         [2, 5],
         [4, 9]]

    plt.plot(x, y, label=['low', 'high'])
    plt.legend()


Fonts and Text
==============

Text transform can rotate text direction
----------------------------------------

The new `.Text` parameter ``transform_rotates_text`` now sets whether rotations
of the transform affect the text direction.

.. figure:: /gallery/text_labels_and_annotations/images/sphx_glr_text_rotation_relative_to_line_001.png
   :target: ../../gallery/text_labels_and_annotations/text_rotation_relative_to_line.html

   Example of the new *transform_rotates_text* parameter

``matplotlib.mathtext`` now supports *overset* and *underset* LaTeX symbols
---------------------------------------------------------------------------

`.mathtext` now supports *overset* and *underset*, called as
``\overset{annotation}{body}`` or ``\underset{annotation}{body}``, where
*annotation* is the text "above" or "below" the *body*.

.. plot::

    math_expr = r"$ x \overset{f}{\rightarrow} y \underset{f}{\leftarrow} z $"
    plt.text(0.4, 0.5, math_expr, usetex=False)

*math_fontfamily* parameter to change ``Text`` font family
----------------------------------------------------------

The new *math_fontfamily* parameter may be used to change the family of fonts
for each individual text element in a plot. If no parameter is set, the global
value :rc:`mathtext.fontset` will be used.

.. figure:: /gallery/text_labels_and_annotations/images/sphx_glr_mathtext_fontfamily_example_001.png
   :target: ../../gallery/text_labels_and_annotations/mathtext_fontfamily_example.html

``TextArea``/``AnchoredText`` support *horizontalalignment*
-----------------------------------------------------------

The horizontal alignment of text in a `.TextArea` or `.AnchoredText` may now be
specified, which is mostly effective for multiline text:

.. plot::

    from matplotlib.offsetbox import AnchoredText

    fig, ax = plt.subplots()

    text0 = AnchoredText("test\ntest long text", loc="center left",
                         pad=0.2, prop={"ha": "left"})
    ax.add_artist(text0)

    text1 = AnchoredText("test\ntest long text", loc="center",
                         pad=0.2, prop={"ha": "center"})
    ax.add_artist(text1)

    text2 = AnchoredText("test\ntest long text", loc="center right",
                         pad=0.2, prop={"ha": "right"})
    ax.add_artist(text2)

PDF supports URLs on ``Text`` artists
-------------------------------------

URLs on `.text.Text` artists (i.e., from `.Artist.set_url`) will now be saved
in PDF files.


rcParams improvements
=====================

New rcParams for dates: set converter and whether to use interval_multiples
---------------------------------------------------------------------------

The new :rc:`date.converter` allows toggling between
`matplotlib.dates.DateConverter` and `matplotlib.dates.ConciseDateConverter`
using the strings 'auto' and 'concise' respectively.

The new :rc:`date.interval_multiples` allows toggling between the dates locator
trying to pick ticks at set intervals (i.e., day 1 and 15 of the month), versus
evenly spaced ticks that start wherever the timeseries starts:

.. plot::
    :include-source:

    dates = np.arange('2001-01-10', '2001-05-23', dtype='datetime64[D]')
    y = np.sin(dates.astype(float) / 10)
    fig, axs = plt.subplots(nrows=2, constrained_layout=True)

    plt.rcParams['date.converter'] = 'concise'
    plt.rcParams['date.interval_multiples'] = True
    axs[0].plot(dates, y)

    plt.rcParams['date.converter'] = 'auto'
    plt.rcParams['date.interval_multiples'] = False
    axs[1].plot(dates, y)

Date formatters now respect *usetex* rcParam
--------------------------------------------

The `.AutoDateFormatter` and `.ConciseDateFormatter` now respect
:rc:`text.usetex`, and will thus use fonts consistent with TeX rendering of the
default (non-date) formatter. TeX rendering may also be enabled/disabled by
passing the *usetex* parameter when creating the formatter instance.

In the following plot, both the x-axis (dates) and y-axis (numbers) now use the
same (TeX) font:

.. plot::

    from datetime import datetime, timedelta
    from matplotlib.dates import ConciseDateFormatter

    plt.rc('text', usetex=True)

    t0 = datetime(1968, 8, 1)
    ts = [t0 + i * timedelta(days=1) for i in range(10)]

    fig, ax = plt.subplots()
    ax.plot(ts, range(10))
    ax.xaxis.set_major_formatter(ConciseDateFormatter(ax.xaxis.get_major_locator()))
    ax.set_xlabel('Date')
    ax.set_ylabel('Value')

Setting *image.cmap* to a ``Colormap``
--------------------------------------

It is now possible to set :rc:`image.cmap` to a `.Colormap` instance, such as a
colormap created with the new `~.Colormap.set_extremes` above. (This can only
be done from Python code, not from the :file:`matplotlibrc` file.)

Tick and tick label colors can be set independently using rcParams
------------------------------------------------------------------

Previously, :rc:`xtick.color` defined both the tick color and the label color.
The label color can now be set independently using :rc:`xtick.labelcolor`. It
defaults to ``'inherit'`` which will take the value from :rc:`xtick.color`. The
same holds for ``ytick.[label]color``. For instance, to set the ticks to light
grey and the tick labels to black, one can use the following code in a script::

    import matplotlib as mpl

    mpl.rcParams['xtick.labelcolor'] = 'lightgrey'
    mpl.rcParams['xtick.color'] = 'black'
    mpl.rcParams['ytick.labelcolor'] = 'lightgrey'
    mpl.rcParams['ytick.color'] = 'black'

Or by adding the following lines to the :ref:`matplotlibrc
<customizing-with-matplotlibrc-files>` file, or a Matplotlib style file:

.. code-block:: none

   xtick.labelcolor : lightgrey
   xtick.color      : black
   ytick.labelcolor : lightgrey
   ytick.color      : black


3D Axes improvements
====================

Errorbar method in 3D Axes
--------------------------

The errorbar function `.Axes.errorbar` is ported into the 3D Axes framework in
its entirety, supporting features such as custom styling for error lines and
cap marks, control over errorbar spacing, upper and lower limit marks.

.. figure:: /gallery/mplot3d/images/sphx_glr_errorbar3d_001.png
   :target: ../../gallery/mplot3d/errorbar3d.html

Stem plots in 3D Axes
---------------------

Stem plots are now supported on 3D Axes. Much like 2D stems,
`~.axes3d.Axes3D.stem3D` supports plotting the stems in various orientations:

.. plot::

    theta = np.linspace(0, 2*np.pi)
    x = np.cos(theta - np.pi/2)
    y = np.sin(theta - np.pi/2)
    z = theta
    directions = ['z', 'x', 'y']
    names = [r'$\theta$', r'$\cos\theta$', r'$\sin\theta$']

    fig, axs = plt.subplots(1, 3, figsize=(8, 4),
                            constrained_layout=True,
                            subplot_kw={'projection': '3d'})
    for ax, zdir, name in zip(axs, directions, names):
        ax.stem(x, y, z, orientation=zdir)
        ax.set_title(name)
    fig.suptitle(r'A parametric circle: $(x, y) = (\cos\theta, \sin\theta)$')

See also the :doc:`/gallery/mplot3d/stem3d_demo` demo.

3D Collection properties are now modifiable
-------------------------------------------

Previously, properties of a 3D Collection that were used for 3D effects (e.g.,
colors were modified to produce depth shading) could not be changed after it
was created.

Now it is possible to modify all properties of 3D Collections at any time.

Panning in 3D Axes
------------------

Click and drag with the middle mouse button to pan 3D Axes.


Interactive tool improvements
=============================

New ``RangeSlider`` widget
--------------------------

`.widgets.RangeSlider` allows for creating a slider that defines
a range rather than a single value.

.. plot::

    fig, ax = plt.subplots(2, 1, figsize=(5, 1))
    fig.subplots_adjust(left=0.2, right=0.8)

    from matplotlib.widgets import Slider, RangeSlider
    Slider(ax[0], 'Slider', 0, 1)
    RangeSlider(ax[1], 'RangeSlider', 0, 1)

Sliders can now snap to arbitrary values
----------------------------------------

The `~matplotlib.widgets.Slider` UI widget now accepts arrays for *valstep*.
This generalizes the previous behavior by allowing the slider to snap to
arbitrary values.

Pausing and Resuming Animations
-------------------------------

The `.animation.Animation.pause` and `.animation.Animation.resume` methods
allow you to pause and resume animations. These methods can be used as
callbacks for event listeners on UI elements so that your plots can have some
playback control UI.


Sphinx extensions
=================

``plot_directive`` *caption* option
-----------------------------------

Captions were previously supported when using the ``plot_directive`` directive
with an external source file by specifying content::

    .. plot:: path/to/plot.py

        This is the caption for the plot.

The ``:caption:`` option allows specifying the caption for both external::

    .. plot:: path/to/plot.py
        :caption: This is the caption for the plot.

and inline plots::

    .. plot::
        :caption: This is a caption for the plot.

        plt.plot([1, 2, 3])


Backend-specific improvements
=============================

Consecutive rasterized draws now merged
---------------------------------------

Elements of a vector output can be individually set to rasterized, using the
*rasterized* keyword argument, or `~.artist.Artist.set_rasterized()`. This can
be useful to reduce file sizes. For figures with multiple raster elements they
are now automatically merged into a smaller number of bitmaps where this will
not effect the visual output. For cases with many elements this can result in
significantly smaller file sizes.

To ensure this happens do not place vector elements between raster ones.

To inhibit this merging set ``Figure.suppressComposite`` to True.

Support raw/rgba frame format in ``FFMpegFileWriter``
-----------------------------------------------------

When using `.FFMpegFileWriter`, the  *frame_format* may now be set to ``"raw"``
or ``"rgba"``, which may be slightly faster than an image format, as no
encoding/decoding need take place between Matplotlib and FFmpeg.

nbAgg/WebAgg support middle-click and double-click
--------------------------------------------------

Double click events are now supported by the nbAgg and WebAgg backends.
Formerly, WebAgg would report middle-click events as right clicks, but now
reports the correct button type.

nbAgg support binary communication
----------------------------------

If the web browser and notebook support binary websockets, nbAgg will now use
them for slightly improved transfer of figure display.

Indexed color for PNG images in PDF files when possible
-------------------------------------------------------

When PNG images have 256 colors or fewer, they are converted to indexed color
before saving them in a PDF. This can result in a significant reduction in file
size in some cases. This is particularly true for raster data that uses a
colormap but no interpolation, such as Healpy mollview plots. Currently, this
is only done for RGB images.

Improved font subsettings in PDF/PS
-----------------------------------

Font subsetting in PDF and PostScript has been re-written from the embedded
``ttconv`` C code to Python. Some composite characters and outlines may have
changed slightly. This fixes ttc subsetting in PDF, and adds support for
subsetting of type 3 OTF fonts, resulting in smaller files (much smaller when
using CJK fonts), and avoids running into issues with type 42 embedding and
certain PDF readers such as Acrobat Reader.

Kerning added to strings in PDFs
--------------------------------

As with text produced in the Agg backend (see :ref:`the previous what's new
entry <whats-new-3-2-0-kerning>` for examples), PDFs now include kerning in
text strings.

Fully-fractional HiDPI in QtAgg
-------------------------------

Fully-fractional HiDPI (that is, HiDPI ratios that are not whole integers) was
added in Qt 5.14, and is now supported by the QtAgg backend when using this
version of Qt or newer.

wxAgg supports fullscreen toggle
--------------------------------

The wxAgg backend supports toggling fullscreen using the :kbd:`f` shortcut, or
the manager function `.FigureManagerBase.full_screen_toggle`.