File: whats_new_3.6.0.rst

package info (click to toggle)
matplotlib 3.6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 76,280 kB
  • sloc: python: 133,763; cpp: 66,599; objc: 1,699; ansic: 1,367; javascript: 765; makefile: 153; sh: 48
file content (872 lines) | stat: -rw-r--r-- 30,682 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
=============================================
What's new in Matplotlib 3.6.0 (Sep 15, 2022)
=============================================

For a list of all of the issues and pull requests since the last revision, see
the :ref:`github-stats`.

.. contents:: Table of Contents
   :depth: 4

.. toctree::
   :maxdepth: 4

Figure and Axes creation / management
=====================================

``subplots``, ``subplot_mosaic`` accept *height_ratios* and *width_ratios* arguments
------------------------------------------------------------------------------------

The relative width and height of columns and rows in `~.Figure.subplots` and
`~.Figure.subplot_mosaic` can be controlled by passing *height_ratios* and
*width_ratios* keyword arguments to the methods:

.. plot::
    :include-source: true

    fig = plt.figure()
    axs = fig.subplots(3, 1, sharex=True, height_ratios=[3, 1, 1])

Previously, this required passing the ratios in *gridspec_kw* arguments::

    fig = plt.figure()
    axs = fig.subplots(3, 1, sharex=True,
                       gridspec_kw=dict(height_ratios=[3, 1, 1]))

Constrained layout is no longer considered experimental
-------------------------------------------------------

The constrained layout engine and API is no longer considered experimental.
Arbitrary changes to behaviour and API are no longer permitted without a
deprecation period.

New ``layout_engine`` module
----------------------------

Matplotlib ships with ``tight_layout`` and ``constrained_layout`` layout
engines.  A new `.layout_engine` module is provided to allow downstream
libraries to write their own layout engines and `~.figure.Figure` objects can
now take a `.LayoutEngine` subclass as an argument to the *layout* parameter.

Compressed layout for fixed-aspect ratio Axes
---------------------------------------------

Simple arrangements of Axes with fixed aspect ratios can now be packed together
with ``fig, axs = plt.subplots(2, 3, layout='compressed')``.

With ``layout='tight'`` or ``'constrained'``, Axes with a fixed aspect ratio
can leave large gaps between each other:

.. plot::

    fig, axs = plt.subplots(2, 2, figsize=(5, 3),
                            sharex=True, sharey=True, layout="constrained")
    for ax in axs.flat:
        ax.imshow([[0, 1], [2, 3]])
    fig.suptitle("fixed-aspect plots, layout='constrained'")

Using the ``layout='compressed'`` layout reduces the space between the Axes,
and adds the extra space to the outer margins:

.. plot::

    fig, axs = plt.subplots(2, 2, figsize=(5, 3),
                            sharex=True, sharey=True, layout='compressed')
    for ax in axs.flat:
        ax.imshow([[0, 1], [2, 3]])
    fig.suptitle("fixed-aspect plots, layout='compressed'")

See :ref:`compressed_layout` for further details.

Layout engines may now be removed
---------------------------------

The layout engine on a Figure may now be removed by calling
`.Figure.set_layout_engine` with ``'none'``. This may be useful after computing
layout in order to reduce computations, e.g., for subsequent animation loops.

A different layout engine may be set afterwards, so long as it is compatible
with the previous layout engine.

``Axes.inset_axes`` flexibility
-------------------------------

`matplotlib.axes.Axes.inset_axes` now accepts the *projection*, *polar* and
*axes_class* keyword arguments, so that subclasses of `matplotlib.axes.Axes`
may be returned.

.. plot::
    :include-source: true

    fig, ax = plt.subplots()

    ax.plot([0, 2], [1, 2])

    polar_ax = ax.inset_axes([0.75, 0.25, 0.2, 0.2], projection='polar')
    polar_ax.plot([0, 2], [1, 2])

WebP is now a supported output format
-------------------------------------

Figures may now be saved in WebP format by using the ``.webp`` file extension,
or passing ``format='webp'`` to `~.Figure.savefig`. This relies on `Pillow
<https://pillow.readthedocs.io/en/latest/>`_ support for WebP.

Garbage collection is no longer run on figure close
---------------------------------------------------

Matplotlib has a large number of circular references (between Figure and
Manager, between Axes and Figure, Axes and Artist, Figure and Canvas, etc.) so
when the user drops their last reference to a Figure (and clears it from
pyplot's state), the objects will not immediately be deleted.

To account for this we have long (since before 2004) had a `gc.collect` (of the
lowest two generations only) in the closing code in order to promptly clean up
after ourselves. However this is both not doing what we want (as most of our
objects will actually survive) and due to clearing out the first generation
opened us up to having unbounded memory usage.

In cases with a very tight loop between creating the figure and destroying it
(e.g. ``plt.figure(); plt.close()``) the first generation will never grow large
enough for Python to consider running the collection on the higher generations.
This will lead to unbounded memory usage as the long-lived objects are never
re-considered to look for reference cycles and hence are never deleted.

We now no longer do any garbage collection when a figure is closed, and rely on
Python automatically deciding to run garbage collection periodically. If you
have strict memory requirements, you can call `gc.collect` yourself but this
may have performance impacts in a tight computation loop.

Plotting methods
================

Striped lines (experimental)
----------------------------

The new *gapcolor* parameter to `~.Axes.plot` enables the creation of striped
lines.

.. plot::
    :include-source: true

    x = np.linspace(1., 3., 10)
    y = x**3

    fig, ax = plt.subplots()
    ax.plot(x, y, linestyle='--', color='orange', gapcolor='blue',
            linewidth=3, label='a striped line')
    ax.legend()

Custom cap widths in box and whisker plots in ``bxp`` and ``boxplot``
---------------------------------------------------------------------

The new *capwidths* parameter to `~.Axes.bxp` and `~.Axes.boxplot` allows
controlling the widths of the caps in box and whisker plots.

.. plot::
    :include-source: true

    x = np.linspace(-7, 7, 140)
    x = np.hstack([-25, x, 25])
    capwidths = [0.01, 0.2]

    fig, ax = plt.subplots()
    ax.boxplot([x, x], notch=True, capwidths=capwidths)
    ax.set_title(f'{capwidths=}')

Easier labelling of bars in bar plot
------------------------------------

The *label* argument of `~.Axes.bar` and `~.Axes.barh` can now be passed a list
of labels for the bars. The list must be the same length as *x* and labels the
individual bars. Repeated labels are not de-duplicated and will cause repeated
label entries, so this is best used when bars also differ in style (e.g., by
passing a list to *color*, as below.)

.. plot::
    :include-source: true

    x = ["a", "b", "c"]
    y = [10, 20, 15]
    color = ['C0', 'C1', 'C2']

    fig, ax = plt.subplots()
    ax.bar(x, y, color=color, label=x)
    ax.legend()

New style format string for colorbar ticks
------------------------------------------

The *format* argument of `~.Figure.colorbar` (and other colorbar methods) now
accepts ``{}``-style format strings.

.. code-block:: python

    fig, ax = plt.subplots()
    im = ax.imshow(z)
    fig.colorbar(im, format='{x:.2e}')  # Instead of '%.2e'

Linestyles for negative contours may be set individually
--------------------------------------------------------

The line style of negative contours may be set by passing the
*negative_linestyles* argument to `.Axes.contour`. Previously, this style could
only be set globally via :rc:`contour.negative_linestyles`.

.. plot::
    :include-source: true

    delta = 0.025
    x = np.arange(-3.0, 3.0, delta)
    y = np.arange(-2.0, 2.0, delta)
    X, Y = np.meshgrid(x, y)
    Z1 = np.exp(-X**2 - Y**2)
    Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
    Z = (Z1 - Z2) * 2

    fig, axs = plt.subplots(1, 2)

    CS = axs[0].contour(X, Y, Z, 6, colors='k')
    axs[0].clabel(CS, fontsize=9, inline=True)
    axs[0].set_title('Default negative contours')

    CS = axs[1].contour(X, Y, Z, 6, colors='k', negative_linestyles='dotted')
    axs[1].clabel(CS, fontsize=9, inline=True)
    axs[1].set_title('Dotted negative contours')

Improved quad contour calculations via ContourPy
------------------------------------------------

The contouring functions `~.axes.Axes.contour` and `~.axes.Axes.contourf` have
a new keyword argument *algorithm* to control which algorithm is used to
calculate the contours. There is a choice of four algorithms to use, and the
default is to use ``algorithm='mpl2014'`` which is the same algorithm that
Matplotlib has been using since 2014.

Previously Matplotlib shipped its own C++ code for calculating the contours of
quad grids. Now the external library `ContourPy
<https://github.com/contourpy/contourpy>`_ is used instead.

Other possible values of the *algorithm* keyword argument at this time are
``'mpl2005'``, ``'serial'`` and ``'threaded'``; see the `ContourPy
documentation <https://contourpy.readthedocs.io>`_ for further details.

.. note::

   Contour lines and polygons produced by ``algorithm='mpl2014'`` will be the
   same as those produced before this change to within floating-point
   tolerance. The exception is for duplicate points, i.e. contours containing
   adjacent (x, y) points that are identical; previously the duplicate points
   were removed, now they are kept. Contours affected by this will produce the
   same visual output, but there will be a greater number of points in the
   contours.

   The locations of contour labels obtained by using `~.axes.Axes.clabel` may
   also be different.

``errorbar`` supports *markerfacecoloralt*
------------------------------------------

The *markerfacecoloralt* parameter is now passed to the line plotter from
`.Axes.errorbar`. The documentation now accurately lists which properties are
passed to `.Line2D`, rather than claiming that all keyword arguments are passed
on.

.. plot::
    :include-source: true

    x = np.arange(0.1, 4, 0.5)
    y = np.exp(-x)

    fig, ax = plt.subplots()
    ax.errorbar(x, y, xerr=0.2, yerr=0.4,
                linestyle=':', color='darkgrey',
                marker='o', markersize=20, fillstyle='left',
                markerfacecolor='tab:blue', markerfacecoloralt='tab:orange',
                markeredgecolor='tab:brown', markeredgewidth=2)

``streamplot`` can disable streamline breaks
--------------------------------------------

It is now possible to specify that streamplots have continuous, unbroken
streamlines. Previously streamlines would end to limit the number of lines
within a single grid cell. See the difference between the plots below:

.. plot::

    w = 3
    Y, X = np.mgrid[-w:w:100j, -w:w:100j]
    U = -1 - X**2 + Y
    V = 1 + X - Y**2
    speed = np.sqrt(U**2 + V**2)

    fig, (ax0, ax1) = plt.subplots(1, 2, sharex=True)

    ax0.streamplot(X, Y, U, V, broken_streamlines=True)
    ax0.set_title('broken_streamlines=True')

    ax1.streamplot(X, Y, U, V, broken_streamlines=False)
    ax1.set_title('broken_streamlines=False')

New axis scale ``asinh`` (experimental)
---------------------------------------

The new ``asinh`` axis scale offers an alternative to ``symlog`` that smoothly
transitions between the quasi-linear and asymptotically logarithmic regions of
the scale. This is based on an arcsinh transformation that allows plotting both
positive and negative values that span many orders of magnitude.

.. plot::

    fig, (ax0, ax1) = plt.subplots(1, 2, sharex=True)
    x = np.linspace(-3, 6, 100)

    ax0.plot(x, x)
    ax0.set_yscale('symlog')
    ax0.grid()
    ax0.set_title('symlog')

    ax1.plot(x, x)
    ax1.set_yscale('asinh')
    ax1.grid()
    ax1.set_title(r'$sinh^{-1}$')

    for p in (-2, 2):
        for ax in (ax0, ax1):
            c = plt.Circle((p, p), radius=0.5, fill=False,
                           color='red', alpha=0.8, lw=3)
            ax.add_patch(c)

``stairs(..., fill=True)`` hides patch edge by setting linewidth
----------------------------------------------------------------

``stairs(..., fill=True)`` would previously hide Patch edges by setting
``edgecolor="none"``. Consequently, calling ``set_color()`` on the Patch later
would make the Patch appear larger.

Now, by using ``linewidth=0``, this apparent size change is prevented. Likewise
calling ``stairs(..., fill=True, linewidth=3)`` will behave more transparently.

Fix the dash offset of the Patch class
--------------------------------------

Formerly, when setting the line style on a `.Patch` object using a dash tuple,
the offset was ignored. Now the offset is applied to the Patch as expected and
it can be used as it is used with `.Line2D` objects.

Rectangle patch rotation point
------------------------------

The rotation point of the `~matplotlib.patches.Rectangle` can now be set to
'xy', 'center' or a 2-tuple of numbers using the *rotation_point* argument.

.. plot::

    fig, ax = plt.subplots()

    rect = plt.Rectangle((0, 0), 1, 1, facecolor='none', edgecolor='C0')
    ax.add_patch(rect)
    ax.annotate('Unrotated', (1, 0), color='C0',
                horizontalalignment='right', verticalalignment='top',
                xytext=(0, -3), textcoords='offset points')

    for rotation_point, color in zip(['xy', 'center', (0.75, 0.25)],
                                     ['C1', 'C2', 'C3']):
        ax.add_patch(
            plt.Rectangle((0, 0), 1, 1, facecolor='none', edgecolor=color,
                          angle=45, rotation_point=rotation_point))

        if rotation_point == 'center':
            point = 0.5, 0.5
        elif rotation_point == 'xy':
            point = 0, 0
        else:
            point = rotation_point
        ax.plot(point[:1], point[1:], color=color, marker='o')

        label = f'{rotation_point}'
        if label == 'xy':
            label += ' (default)'
        ax.annotate(label, point, color=color,
                    xytext=(3, 3), textcoords='offset points')

    ax.set_aspect(1)
    ax.set_title('rotation_point options')

Colors and colormaps
====================

Color sequence registry
-----------------------

The color sequence registry, `.ColorSequenceRegistry`, contains sequences
(i.e., simple lists) of colors that are known to Matplotlib by name. This will
not normally be used directly, but through the universal instance at
`matplotlib.color_sequences`.

Colormap method for creating a different lookup table size
----------------------------------------------------------

The new method `.Colormap.resampled` creates a new `.Colormap` instance
with the specified lookup table size. This is a replacement for manipulating
the lookup table size via ``get_cmap``.

Use::

    get_cmap(name).resampled(N)

instead of::

    get_cmap(name, lut=N)

Setting norms with strings
--------------------------

Norms can now be set (e.g. on images) using the string name of the
corresponding scale, e.g. ``imshow(array, norm="log")``.  Note that in that
case, it is permissible to also pass *vmin* and *vmax*, as a new Norm instance
will be created under the hood.

Titles, ticks, and labels
=========================

``plt.xticks`` and ``plt.yticks`` support *minor* keyword argument
------------------------------------------------------------------

It is now possible to set or get minor ticks using `.pyplot.xticks` and
`.pyplot.yticks` by setting ``minor=True``.

.. plot::
    :include-source: true

    plt.figure()
    plt.plot([1, 2, 3, 3.5], [2, 1, 0, -0.5])
    plt.xticks([1, 2, 3], ["One", "Zwei", "Trois"])
    plt.xticks([np.sqrt(2), 2.5, np.pi],
               [r"$\sqrt{2}$", r"$\frac{5}{2}$", r"$\pi$"], minor=True)

Legends
=======

Legend can control alignment of title and handles
-------------------------------------------------

`.Legend` now supports controlling the alignment of the title and handles via
the keyword argument *alignment*. You can also use `.Legend.set_alignment` to
control the alignment on existing Legends.

.. plot::
    :include-source: true

    fig, axs = plt.subplots(3, 1)
    for i, alignment in enumerate(['left', 'center', 'right']):
        axs[i].plot(range(10), label='test')
        axs[i].legend(title=f'{alignment=}', alignment=alignment)

*ncol* keyword argument to ``legend`` renamed to *ncols*
--------------------------------------------------------

The *ncol* keyword argument to `~.Axes.legend` for controlling the number of
columns is renamed to *ncols* for consistency with the *ncols* and *nrows*
keywords of `~.Figure.subplots` and `~.GridSpec`. *ncol* remains supported for
backwards compatibility, but is discouraged.

Markers
=======

``marker`` can now be set to the string "none"
----------------------------------------------

The string "none" means *no-marker*, consistent with other APIs which support
the lowercase version.  Using "none" is recommended over using "None", to avoid
confusion with the None object.

Customization of ``MarkerStyle`` join and cap style
---------------------------------------------------

New `.MarkerStyle` parameters allow control of join style and cap style, and
for the user to supply a transformation to be applied to the marker (e.g. a
rotation).

.. plot::
    :include-source: true

    from matplotlib.markers import CapStyle, JoinStyle, MarkerStyle
    from matplotlib.transforms import Affine2D

    fig, axs = plt.subplots(3, 1, layout='constrained')
    for ax in axs:
        ax.axis('off')
        ax.set_xlim(-0.5, 2.5)

    axs[0].set_title('Cap styles', fontsize=14)
    for col, cap in enumerate(CapStyle):
        axs[0].plot(col, 0, markersize=32, markeredgewidth=8,
                    marker=MarkerStyle('1', capstyle=cap))
        # Show the marker edge for comparison with the cap.
        axs[0].plot(col, 0, markersize=32, markeredgewidth=1,
                    markerfacecolor='none', markeredgecolor='lightgrey',
                    marker=MarkerStyle('1'))
        axs[0].annotate(cap.name, (col, 0),
                        xytext=(20, -5), textcoords='offset points')

    axs[1].set_title('Join styles', fontsize=14)
    for col, join in enumerate(JoinStyle):
        axs[1].plot(col, 0, markersize=32, markeredgewidth=8,
                    marker=MarkerStyle('*', joinstyle=join))
        # Show the marker edge for comparison with the join.
        axs[1].plot(col, 0, markersize=32, markeredgewidth=1,
                    markerfacecolor='none', markeredgecolor='lightgrey',
                    marker=MarkerStyle('*'))
        axs[1].annotate(join.name, (col, 0),
                        xytext=(20, -5), textcoords='offset points')

    axs[2].set_title('Arbitrary transforms', fontsize=14)
    for col, (size, rot) in enumerate(zip([2, 5, 7], [0, 45, 90])):
        t = Affine2D().rotate_deg(rot).scale(size)
        axs[2].plot(col, 0, marker=MarkerStyle('*', transform=t))

Fonts and Text
==============

Font fallback
-------------

It is now possible to specify a list of fonts families and Matplotlib will try
them in order to locate a required glyph.

.. plot::
   :caption: Demonstration of mixed English and Chinese text with font fallback.
   :alt: The phrase "There are 几个汉字 in between!" rendered in various fonts.
   :include-source: True

   plt.rcParams["font.size"] = 20
   fig = plt.figure(figsize=(4.75, 1.85))

   text = "There are 几个汉字 in between!"
   fig.text(0.05, 0.85, text, family=["WenQuanYi Zen Hei"])
   fig.text(0.05, 0.65, text, family=["Noto Sans CJK JP"])
   fig.text(0.05, 0.45, text, family=["DejaVu Sans", "Noto Sans CJK JP"])
   fig.text(0.05, 0.25, text, family=["DejaVu Sans", "WenQuanYi Zen Hei"])

This currently works with the Agg (and all of the GUI embeddings), svg, pdf,
ps, and inline backends.

List of available font names
----------------------------

The list of available fonts are now easily accessible. To get a list of the
available font names in Matplotlib use:

.. code-block:: python

    from matplotlib import font_manager
    font_manager.get_font_names()

``math_to_image`` now has a *color* keyword argument
----------------------------------------------------

To easily support external libraries that rely on the MathText rendering of
Matplotlib to generate equation images, a *color* keyword argument was added to
`~matplotlib.mathtext.math_to_image`.

.. code-block:: python

    from matplotlib import mathtext
    mathtext.math_to_image('$x^2$', 'filename.png', color='Maroon')

Active URL area rotates with link text
--------------------------------------

When link text is rotated in a figure, the active URL area will now include the
rotated link area. Previously, the active area remained in the original,
non-rotated, position.

rcParams improvements
=====================

Allow setting figure label size and weight globally and separately from title
-----------------------------------------------------------------------------

For figure labels, ``Figure.supxlabel`` and ``Figure.supylabel``, the size and
weight can be set separately from the figure title using :rc:`figure.labelsize`
and :rc:`figure.labelweight`.

.. plot::
    :include-source: true

    # Original (previously combined with below) rcParams:
    plt.rcParams['figure.titlesize'] = 64
    plt.rcParams['figure.titleweight'] = 'bold'

    # New rcParams:
    plt.rcParams['figure.labelsize'] = 32
    plt.rcParams['figure.labelweight'] = 'bold'

    fig, axs = plt.subplots(2, 2, layout='constrained')
    for ax in axs.flat:
        ax.set(xlabel='xlabel', ylabel='ylabel')

    fig.suptitle('suptitle')
    fig.supxlabel('supxlabel')
    fig.supylabel('supylabel')

Note that if you have changed :rc:`figure.titlesize` or
:rc:`figure.titleweight`, you must now also change the introduced parameters
for a result consistent with past behaviour.

Mathtext parsing can be disabled globally
-----------------------------------------

The :rc:`text.parse_math` setting may be used to disable parsing of mathtext in
all `.Text` objects (most notably from the `.Axes.text` method).

Double-quoted strings in matplotlibrc
-------------------------------------

You can now use double-quotes around strings. This allows using the '#'
character in strings. Without quotes, '#' is interpreted as start of a comment.
In particular, you can now define hex-colors:

.. code-block:: none

   grid.color: "#b0b0b0"

3D Axes improvements
====================

Standardized views for primary plane viewing angles
---------------------------------------------------

When viewing a 3D plot in one of the primary view planes (i.e., perpendicular
to the XY, XZ, or YZ planes), the Axis will be displayed in a standard
location. For further information on 3D views, see
:ref:`toolkit_mplot3d-view-angles` and :doc:`/gallery/mplot3d/view_planes_3d`.

Custom focal length for 3D camera
---------------------------------

The 3D Axes can now better mimic real-world cameras by specifying the focal
length of the virtual camera. The default focal length of 1 corresponds to a
Field of View (FOV) of 90°, and is backwards-compatible with existing 3D plots.
An increased focal length between 1 and infinity "flattens" the image, while a
decreased focal length between 1 and 0 exaggerates the perspective and gives
the image more apparent depth.

The focal length can be calculated from a desired FOV via the equation:

.. mathmpl::

    focal\_length = 1/\tan(FOV/2)

.. plot::
    :include-source: true

    from mpl_toolkits.mplot3d import axes3d

    X, Y, Z = axes3d.get_test_data(0.05)

    fig, axs = plt.subplots(1, 3, figsize=(7, 4),
                            subplot_kw={'projection': '3d'})

    for ax, focal_length in zip(axs, [0.2, 1, np.inf]):
        ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
        ax.set_proj_type('persp', focal_length=focal_length)
        ax.set_title(f"{focal_length=}")

3D plots gained a 3rd "roll" viewing angle
------------------------------------------

3D plots can now be viewed from any orientation with the addition of a 3rd roll
angle, which rotates the plot about the viewing axis. Interactive rotation
using the mouse still only controls elevation and azimuth, meaning that this
feature is relevant to users who create more complex camera angles
programmatically. The default roll angle of 0 is backwards-compatible with
existing 3D plots.

.. plot::
    :include-source: true

    from mpl_toolkits.mplot3d import axes3d

    X, Y, Z = axes3d.get_test_data(0.05)

    fig, ax = plt.subplots(subplot_kw={'projection': '3d'})

    ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
    ax.view_init(elev=0, azim=0, roll=30)
    ax.set_title('elev=0, azim=0, roll=30')

Equal aspect ratio for 3D plots
-------------------------------

Users can set the aspect ratio for the X, Y, Z axes of a 3D plot to be 'equal',
'equalxy', 'equalxz', or 'equalyz' rather than the default of 'auto'.

.. plot::
    :include-source: true

    from itertools import combinations, product

    aspects = [
        ['auto', 'equal', '.'],
        ['equalxy', 'equalyz', 'equalxz'],
    ]
    fig, axs = plt.subplot_mosaic(aspects, figsize=(7, 6),
                                  subplot_kw={'projection': '3d'})

    # Draw rectangular cuboid with side lengths [1, 1, 5]
    r = [0, 1]
    scale = np.array([1, 1, 5])
    pts = combinations(np.array(list(product(r, r, r))), 2)
    for start, end in pts:
        if np.sum(np.abs(start - end)) == r[1] - r[0]:
            for ax in axs.values():
                ax.plot3D(*zip(start*scale, end*scale), color='C0')

    # Set the aspect ratios
    for aspect, ax in axs.items():
        ax.set_box_aspect((3, 4, 5))
        ax.set_aspect(aspect)
        ax.set_title(f'set_aspect({aspect!r})')

Interactive tool improvements
=============================

Rotation, aspect ratio correction and add/remove state
------------------------------------------------------

The `.RectangleSelector` and `.EllipseSelector` can now be rotated
interactively between -45° and 45°. The range limits are currently dictated by
the implementation. The rotation is enabled or disabled by striking the *r* key
('r' is the default key mapped to 'rotate' in *state_modifier_keys*) or by
calling ``selector.add_state('rotate')``.

The aspect ratio of the axes can now be taken into account when using the
"square" state. This is enabled by specifying ``use_data_coordinates='True'``
when the selector is initialized.

In addition to changing selector state interactively using the modifier keys
defined in *state_modifier_keys*, the selector state can now be changed
programmatically using the *add_state* and *remove_state* methods.

.. code-block:: python

    from matplotlib.widgets import RectangleSelector

    values = np.arange(0, 100)

    fig = plt.figure()
    ax = fig.add_subplot()
    ax.plot(values, values)

    selector = RectangleSelector(ax, print, interactive=True,
                                 drag_from_anywhere=True,
                                 use_data_coordinates=True)
    selector.add_state('rotate')  # alternatively press 'r' key
    # rotate the selector interactively

    selector.remove_state('rotate')  # alternatively press 'r' key

    selector.add_state('square')

``MultiCursor`` now supports Axes split over multiple figures
-------------------------------------------------------------

Previously, `.MultiCursor` only worked if all target Axes belonged to the same
figure.

As a consequence of this change, the first argument to the `.MultiCursor`
constructor has become unused (it was previously the joint canvas of all Axes,
but the canvases are now directly inferred from the list of Axes).

``PolygonSelector`` bounding boxes
----------------------------------

`.PolygonSelector` now has a *draw_bounding_box* argument, which when set to
`True` will draw a bounding box around the polygon once it is complete. The
bounding box can be resized and moved, allowing the points of the polygon to be
easily resized.

Setting ``PolygonSelector`` vertices
------------------------------------

The vertices of `.PolygonSelector` can now be set programmatically by using the
`.PolygonSelector.verts` property. Setting the vertices this way will reset the
selector, and create a new complete selector with the supplied vertices.

``SpanSelector`` widget can now be snapped to specified values
--------------------------------------------------------------

The `.SpanSelector` widget can now be snapped to values specified by the
*snap_values* argument.

More toolbar icons are styled for dark themes
---------------------------------------------

On the macOS and Tk backends, toolbar icons will now be inverted when using a
dark theme.

Platform-specific changes
=========================

Wx backend uses standard toolbar
--------------------------------

Instead of a custom sizer, the toolbar is set on Wx windows as a standard
toolbar.

Improvements to macosx backend
------------------------------

Modifier keys handled more consistently
.......................................

The macosx backend now handles modifier keys in a manner more consistent with
other backends. See the table in :ref:`event-connections` for further
information.

``savefig.directory`` rcParam support
.....................................

The macosx backend will now obey the :rc:`savefig.directory` setting. If set to
a non-empty string, then the save dialog will default to this directory, and
preserve subsequent save directories as they are changed.

``figure.raise_window`` rcParam support
.......................................

The macosx backend will now obey the :rc:`figure.raise_window` setting. If set
to False, figure windows will not be raised to the top on update.

Full-screen toggle support
..........................

As supported on other backends, the macosx backend now supports toggling
fullscreen view. By default, this view can be toggled by pressing the :kbd:`f`
key.

Improved animation and blitting support
.......................................

The macosx backend has been improved to fix blitting, animation frames with new
artists, and to reduce unnecessary draw calls.

macOS application icon applied on Qt backend
--------------------------------------------

When using the Qt-based backends on macOS, the application icon will now be
set, as is done on other backends/platforms.

New minimum macOS version
-------------------------

The macosx backend now requires macOS >= 10.12.

Windows on ARM support
----------------------

Preliminary support for Windows on arm64 target has been added. This support
requires FreeType 2.11 or above.

No binary wheels are available yet but it may be built from source.