File: checkUnifiers.maude

package info (click to toggle)
maude 3.5.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 18,480 kB
  • sloc: cpp: 133,192; makefile: 2,180; yacc: 1,984; sh: 1,373; lex: 886
file content (162 lines) | stat: -rw-r--r-- 5,657 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
set show timing off .
set show advisories off .

***
***	Compute unifiers and variant unifiers (without equations
***	to minimize unifier set) and test them.
***

fmod CHECK is
  inc LEXICAL .
  inc META-LEVEL .

  sort Result ResultList .
  subsort Result < ResultList .
  op __ : ResultList ResultList -> ResultList [assoc id: ok] .
  op ok : -> Result .
  op badUnifier : Substitution -> Result [format (r o)].
  op unifierCount : Nat -> Result .
  op unifierCountIncomplete : Nat -> Result .

vars T T' : Term .
var N : Nat .
var S : Substitution .
var Q : Qid .
var M : Module .
vars SS ST : String .

  op check : Module String String -> ResultList .
  eq check(M, SS, ST) = check(M, convert(M, SS), convert(M, ST), 0)
     	      	      	check2(M, convert(M, SS), convert(M, ST), 0) .

  op convert : Module String -> Term .
  eq convert(M, SS) =  getTerm(metaParse(M, none, tokenize(SS), anyType)) .

  op check : Module Term Term Nat -> ResultList .
  eq check(M, T, T', N) =
    if (metaUnify(M, T =? T', '%, N) == noUnifier) then
      unifierCount(N)
    else
      if (metaUnify(M, T =? T', '%, N) == noUnifierIncomplete) then
        unifierCountIncomplete(N)
      else
        verify(M, T, T', metaUnify(M, T =? T', '%, N)) check(M, T, T', s N)
      fi
    fi .

  op check2 : Module Term Term Nat -> ResultList .
  eq check2(M, T, T', N) =
    if (metaVariantUnify(M, T =? T', empty, '%, none, N) == noUnifier) then
      unifierCount(N)
    else
      if (metaVariantUnify(M, T =? T', empty, '%, none, N) == noUnifierIncomplete) then
        unifierCountIncomplete(N)
      else
        verify(M, T, T', metaVariantUnify(M, T =? T', empty, '%, none, N)) check2(M, T, T', s N)
      fi
    fi .


  op verify : Module Term Term UnificationPair -> Result .
  eq verify(M, T, T', {S, Q}) =
    if (applySubstitution(M, T, S) == applySubstitution(M, T', S)) then
      ok
    else
      badUnifier(S)
    fi .
endfm

fmod A-UNIF is
  sorts List Elt .
  subsort Elt < List .
  op __ : List List -> List [assoc] .
  op f : List List -> List [assoc] .
  op g : List List -> List .
  op h : List List -> List [assoc comm] .
  op i : List -> List .
  op j : List List -> List [assoc comm id: 1] .
  op 1 : -> List .
  ops a b c d e : -> Elt .
  vars A B C D
       G H I J K L M N
       P Q R S T U V W X Y Z : List .
  vars E F : Elt .
endfm

red in CHECK : check(['A-UNIF], "A:List B:List", "X:List") .
red in CHECK : check(['A-UNIF], "A:List B:List", "X:List Y:List") .
red in CHECK : check(['A-UNIF], "A:List B:List C:List", "X:List Y:List") .
red in CHECK : check(['A-UNIF], "A:List B:List C:List", "X:List Y:List Z:List") .
red in CHECK : check(['A-UNIF], "A:List B:List C:List G:List", "X:List Y:List Z:List") .
red in CHECK : check(['A-UNIF], "A:List B:List C:List D:List G:List", "X:List Y:List Z:List") .

red in CHECK : check(['A-UNIF], "A:List B:List", "B:List C:List") .

red in CHECK : check(['A-UNIF], "a A:List a", "B:List a C:List") .
red in CHECK : check(['A-UNIF], "a A:List b", "B:List c C:List") .
red in CHECK : check(['A-UNIF], "a A:List a", "B:List a C:List a D:List") .
red in CHECK : check(['A-UNIF], "a A:List b", "B:List c C:List d D:List") .

red in CHECK : check(['A-UNIF], "h(A:List, B:List, B:List) C:List h(G:List, H:List)",
  "I:List h(J:List, i(K:List)) L:List") .
red in CHECK : check(['A-UNIF], "h(A:List, B:List) C:List h(G:List, H:List)",
  "I:List h(J:List, J:List) L:List h(M:List, M:List) N:List") .
red in CHECK : check(['A-UNIF], "A:List h(X:List, Y:List) B:List",
  "C:List h(U:List, V:List) D:List h(U:List, U:List) G:List") .

red in CHECK : check(['A-UNIF], "h(h(A:List, B:List, B:List) C:List h(G:List, H:List), X:List Y:List a Z:List)",
  "h(I:List h(J:List, i(K:List)) L:List, U:List b V:List W:List)") .

red in CHECK : check(['A-UNIF], "h(A:List, A:List)",
  "h(f(B:List, C:List), f(I:List, J:List))") .
red in CHECK : check(['A-UNIF], "h(A:List, A:List, A:List)",
  "h(f(B:List, C:List), f(I:List, J:List), f(X:List, Y:List))") .
red in CHECK : check(['A-UNIF], "h(f(a, b), f(a, b), f(a, b))",
  "h(f(B:List, C:List), f(I:List, J:List), f(X:List, Y:List))") .
red in CHECK : check(['A-UNIF], "A:List E:Elt B:List F:Elt C:List E:Elt D:List",
  "W:List F:Elt X:List E:Elt Y:List F:Elt Z:List") .
red in CHECK : check(['A-UNIF], "j(A:List, f(B:List, E:Elt, C:List), f(D:List, E:Elt, j(G:List, H:List), I:List))",
  "j(U:List, f(V:List, W:List), f(X:List, j(Y:List, Z:List), S:List))") .

fmod AC+C is
  sort Elt Set .
  subsort Elt < Set .
  ops a b c d e z : -> Elt .
  op f : Set Set -> Set [assoc comm] .
  op g : Set Set -> Set [comm] .
  vars U V W X Y Z : Set .
  vars A B C D E F : Elt .
endfm

red in CHECK : check(['AC+C], "f(g(X:Set, Y:Set), g(X:Set, Z:Set), U:Set)",
  "f(g(Y:Set, Z:Set), V:Set)") .

red in CHECK : check(['AC+C], "g(f(X:Set, Y:Set), f(X:Set, U:Set, Z:Set))",
"g(f(U:Set, V:Set), f(W:Set, A:Elt))") .

fmod NAT' is
  protecting BOOL .
  sorts Zero NzNat Nat .
  subsort Zero NzNat < Nat .
  op 0 : -> Zero .
  op s_ : Nat -> NzNat [iter] .
  op _*_ : NzNat NzNat -> NzNat [assoc comm id: s(0) prec 31] .
  op _*_ : Nat Nat -> Nat [ditto] .

  vars W X Y Z A B C D : Nat .
endfm

red in CHECK : check(['NAT'], "X:Nat", "s (X:Nat * Y:Nat)") .
red in CHECK : check(['NAT'], "X:Nat", "s X:Nat * Y:Nat") .
red in CHECK : check(['NAT'], "s X:Nat", "s X:Nat * Y:Nat") .
red in CHECK : check(['NAT'], "s X:Nat", "X:Nat * Y:Nat") .

fmod COMM is
  sort Foo .
  ops a b c d : -> Foo .
  op f : Foo Foo -> Foo [assoc comm id: c(a, b)] .
  op c : Foo Foo -> Foo [comm] .
  vars W X Y Z A B C D : Foo .
endfm

red in CHECK : check(['COMM], "X:Foo", "c(f(X:Foo, Y:Foo), Z:Foo)") .