1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
|
/******************************************************************************/
/* */
/* SOLVER - THE NEXT GENERATION */
/* */
/* Copyright (C) 2000 : Eckhard Hennig, Ralf Sommer */
/* This library is free software; you can redistribute it and/or modify it */
/* under the terms of the GNU Library General Public License as published */
/* by the Free Software Foundation; either version 2 of the License, or (at */
/* your option) any later version. */
/* */
/* This library is distributed in the hope that it will be useful, but */
/* WITHOUT any WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS for A PARTICULAR PURPOSE. See the GNU */
/* Library General Public License for more details. */
/* */
/* You should have received a copy of the GNU Library General Public */
/* License along with this library; if not, write to the Free Software */
/* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/******************************************************************************/
/* Credits: This program is based on many ideas from Henning Trispel's work */
/* on the EASY-Solver in 1991. */
/* */
/******************************************************************************/
/* Author(s) : Eckhard Hennig, Ralf Sommer */
/* Project start: 19.01.1994 */
/* Completed : 16.07.1994 */
/* last change : 29.06.1995 */
/* Time : 09:26 */
/******************************************************************************/
/* Changes : ||||| ||||| ||||| ||| */
/******************************************************************************/
/* Modified by : Dan Stanger dan.stanger@ieee.org to work under maxima */
/******************************************************************************/
load( "solver/linsolve.mac" )$
load( "solver/slvrtbox.mac" )$
load( "solver/slvrmsgs.mac" )$
load( "solver/misc.mac" )$
put( 'SOLVER, 1, 'Version )$
SetVersion(
/* KEY = */ 'SOLVER,
'MODULE = "SOLVER",
'DESCRIPTION = "Symbolic solver for parametric systems of equations.",
'AUTHORS = "Eckhard Hennig, Ralf Sommer",
'DATE = "19.01.1994",
'LASTCHANGE = "29.06.1995",
'TIME = "09:26",
'PLAN = "Add a-priori transforms"
)$
/******************************************************************************/
/* last change: 29.06.1995 */
/* Time : 09:26 */
/* By : Eckhard Hennig */
/* Description: Option variable Solver_Valuate_All_Nonlin_Vars added. */
/* Bug in ValuationSolver removed: rhs variables of solutions */
/* were not added to the list of variables. */
/******************************************************************************/
/* last change: 28.05.1995 */
/* Time : 11:59 */
/* By : Eckhard Hennig */
/* Description: Solver break test added. */
/******************************************************************************/
/* last change: 18.05.1995 */
/* Time : 16:10 */
/* By : Eckhard Hennig */
/* Description: Name conflict with AI keyword PARAMS removed. */
/******************************************************************************/
/* last change: 30.01.1995 */
/* Time : 21.42 */
/* By : Eckhard Hennig */
/* Description: Removal of map( 'num, ... ) has revealed some side effects on */
/* the list of equations in ValuationSolver. Bug repaired by */
/* inserting two additional copylist calls. */
/* Arguments to both load commands above now written in lower- */
/* case letters to avoid problems with UNIX versions. */
/******************************************************************************/
/* last change: 24.01.1995 */
/* Time : 16.33 */
/* By : Eckhard Hennig */
/* Description: mapping 'num to expressions caused some invalid solutions, */
/* therefore removed. Version property added. */
/******************************************************************************/
/* last change: 19.01.1995 */
/* Time : 13.04 */
/* By : Eckhard Hennig, Ralf Sommer */
/* Description: Bug in ImmediateAssignments corrected, Function AppendImmed */
/* removed. */
/******************************************************************************/
/* last change: 19.01.1995 */
/* Time : 11.28 */
/* By : Eckhard Hennig, Ralf Sommer */
/* Description: SLVRTBOX and SLVRMSGS now autoloading. */
/******************************************************************************/
/* last change: 17.01.1995 */
/* Time : 20.15 */
/* By : Eckhard Hennig, Ralf Sommer */
/* Description: Option variables modified (underscores inserted according to */
/* R. Petti's suggestions) */
/* Function SetValuation added. */
/******************************************************************************/
/* last change: 25.10.1994 */
/* Time : 12.46 */
/* By : Eckhard Hennig */
/* Description: errorMsg renamed to ErrMsg. */
/******************************************************************************/
/* last change: 12.09.1994 */
/* Time : 11.50 */
/* By : Eckhard Hennig */
/* Description: errcatch wrapped around final fullratsimp. */
/******************************************************************************/
/* last change: 05.09.1994 */
/* Time : 15.59 */
/* By : Eckhard Hennig */
/* Description: mode_identity's inserted. */
/******************************************************************************/
/* last change: 05.09.1994 */
/* Time : 15.21 */
/* By : Eckhard Hennig */
/* Description: Number of linear equations is now correctly displayed. */
/* Bug in DumpToFile corrected. */
/* Numbers of solution sets are now printed by the postprocessor.*/
/******************************************************************************/
/* last change: 30.08.1994 */
/* Time : 13.45 */
/* By : Eckhard Hennig */
/* Description: Single inconsistent solution paths are no longer returned. */
/******************************************************************************/
/* last change: 29.08.1994 */
/* Time : 17.16 */
/* By : Eckhard Hennig */
/* Description: Slight modification of Immediate Assignment Solver. */
/* Valuation property for sqrt added. */
/* New option variable SolverDefaultValuation. */
/* Change in Valuation. Now making use of the above option var. */
/******************************************************************************/
/* last change: 26.08.1994 */
/* Time : 15.29 */
/* By : Eckhard Hennig */
/* Description: Bug in Linear Solver removed. */
/******************************************************************************/
/* last change: 25.08.1994 */
/* Time : 12.41 */
/* By : Eckhard Hennig */
/* Description: New option variable SolverRatSimpSols. */
/* Linear Solver now calls the consistency check. */
/* Capabilities of the transforms in ValuationSolver strongly */
/* enhanced. */
/******************************************************************************/
/* last change: 24.08.1994 */
/* Time : 23.14 */
/* By : Eckhard Hennig */
/* Description: Bug fixed in postprocessor: compound expressions are now cor- */
/* rectly evaluated. */
/* Linear Solver now checks for remaining equations & variables, */
/* and removes those "linear" eqs and vars which do not really */
/* belong to the "true" linear subsystem. */
/******************************************************************************/
/* last change: 11.08.1994 */
/* Time : 19.09 */
/* By : Eckhard Hennig */
/* Description: Variable SolverDelEq2VarPref replaced by function variable */
/* SolverDelEq. Heuristic algorithm for linear equation */
/* extraction improved. */
/******************************************************************************/
/* last change: 19.07.1994 */
/* Time : 18.01 */
/* By : Eckhard Hennig */
/* Description: Bug in post processor corrected. */
/******************************************************************************/
/******************************************************************************/
/* Global variables for Solver */
/******************************************************************************/
/******************************************************************************/
/* If Solver_Immed_Assign is true then the Solver searches the equations */
/* for immediate assignments of the form variable = constant and immediately */
/* inserts these constraints into the remaining equations. */
/******************************************************************************/
define_variable( Solver_Immed_Assign, true, boolean )$
/******************************************************************************/
/* Solver_Repeat_Immed controls whether the search for immediate assignments */
/* is performed repeatedly until no more of them are found. */
/******************************************************************************/
define_variable( Solver_Repeat_Immed, true, boolean )$
/******************************************************************************/
/* Solver_Subst_Powers controls whether the Solver substitutes powers of a */
/* variable by new symbols in one of the following cases: */
/* 1. var^n appears raised to exactly one power n */
/* 2. for all var^m in the equations : m=n*k , k integer */
/******************************************************************************/
define_variable( Solver_Subst_Powers, false, boolean )$
/******************************************************************************/
/* Solver_Incons_Params controls whether the Solver terminates when a non- */
/* trivial equation containing only parameters is encountered. for example, */
/* if A and B are defined as parameters and the solution process yields */
/* A = B^2 then the Solver stops if Solver_Incons_Params is = 'BREAK. If set */
/* to 'ASK the Solver asks whether A - B^2 is zero and continues if it is. */
/* If set to 'IGNORE the Solver quietly assumes that the expression is zero */
/* if it does not directly contradict with any of the assumptions made before.*/
/******************************************************************************/
define_variable( Solver_Incons_Params, 'ASK, any_check )$
put(
'Solver_Incons_Params,
lambda( [ x ],
if not member( x, [ 'ASK, 'BREAK, 'IGNORE ] ) then
ErrorHandler("InvIncPar", x, 'Fatal )
),
'value_check
)$
/******************************************************************************/
/* Solver_Linear controls whether the Solver tries to find and solve blocks */
/* of linear equations before submitting the remaining equations to the */
/* heuristic valuation solver. This is useful if the equations to be solved */
/* are known to contain a large linear part. */
/******************************************************************************/
define_variable( Solver_Linear, true, boolean )$
/******************************************************************************/
/* If Solver_Repeat_Linear is true then the LinearSolver will be called */
/* repeatedly until no more linear equations are found. If false then */
/* LinearSolver will be called only once. */
/******************************************************************************/
define_variable( Solver_Repeat_Linear, true, boolean )$
/******************************************************************************/
/* If Solver_Find_All_Linear_Vars is true then LinearSolver will try to find */
/* linear equations with respect to all available variables and solve these */
/* equations simultaneously. If false then LinearSolver will only search for */
/* linear equations with respect to the variables passed over in the function */
/* call. */
/******************************************************************************/
define_variable( Solver_Find_All_Linear_Vars, true, boolean )$
/******************************************************************************/
/* Solver_Assumptions contains constraints on the parameters which should be */
/* checked by the user after the termination of Solver. These constraints */
/* result from the parameter consistency check the behavior of which is */
/* controlled by the setting of the option variable Solver_Incons_Params. */
/* Any numerical solution of the equations obtained by assigning numerical */
/* values to symbolic parameters should be checked for consistency with all */
/* expressions in Solver_Assumptions. */
/******************************************************************************/
define_variable( Solver_Assumptions, [], list )$
/******************************************************************************/
/* Solver_Del_Eq holds the name of a function which controls the behavior of */
/* the heuristic search algorithm which extract linear equations from the */
/* entire system of equations. */
/******************************************************************************/
define_variable( Solver_Del_Eq, 'MakeSquareLinearBlocks, any )$
/******************************************************************************/
/* If Solver_Valuate_All_Nonlin_Vars is true then the ValuationSolver will */
/* valuate the equations w.r.t. all remaining variables and not only w.r.t */
/* variables which are being searched for at the current step. */
/******************************************************************************/
define_variable( Solver_Valuate_All_Nonlin_Vars, false, boolean )$
/******************************************************************************/
/* Solver_Valuation_Strategy holds the name of the equation valuation */
/* strategy called by the valuation solver to determine the order by which */
/* the equations are to be solved. */
/******************************************************************************/
define_variable( Solver_Valuation_Strategy, 'MinVarPathsFirst, any_check )$
put(
'Solver_Valuation_Strategy,
lambda(
[ x ],
if not FunctionP( x ) then
ErrorHandler( "UndefStrat", x, 'Fatal )
),
'value_check
)$
/******************************************************************************/
/* Solver_Default_Valuation contains the default valuation for arithmetic */
/* operators. Whenever an operator is encountered for which no valuation has */
/* been defined by SetProp( <operator>, 'Valuation, <valuation> ) this value */
/* is taken for the formula complexity calculations. */
/******************************************************************************/
define_variable( Solver_Default_Valuation, 10, fixnum )$
/******************************************************************************/
/* Solver_Max_Len_Val_Order limits the length of the list of candidates for */
/* the solve calls in ValuationSolver. A low value will usually increase the */
/* efficiency of the valuation solver since, in general, the first or second */
/* attempt to solve an equation (hopefully) succeeds. */
/******************************************************************************/
define_variable( Solver_Max_Len_Val_Order, 5, fixnum )$
/******************************************************************************/
/* Solver_Transforms is a list containing the names of functions which can be */
/* applied to an equation after a failed solve call. These functions must */
/* take three arguments: the equation to be transformed, the variable to be */
/* solved for, and a list of (probably implicit) solutions the Solver has */
/* already found for the equation. */
/******************************************************************************/
define_variable( Solver_Transforms, [], list )$
/******************************************************************************/
/* If Solver_Postprocess is set to false no postprocessing of the results will*/
/* be done. Instead, the solutions are displayed in the internal hierarchical */
/* list format. Useful for debugging purposes. */
/******************************************************************************/
define_variable( Solver_Postprocess, true, boolean )$
/******************************************************************************/
/* Solver_Backsubst controls the output format of Solver. If Solver_Backsubst */
/* is true then the result will be displayed with fully evaluated right-hand */
/* sides for each variable. If the option variable is set to false then the */
/* right-hand sides of the solutions may still contain references to some */
/* of the other variables which have been solved for. */
/******************************************************************************/
define_variable( Solver_Backsubst, true, boolean )$
/******************************************************************************/
/* With Solver_Disp_All_Sols set to true all solutions will be displayed */
/* including those for the variables which have been solved for in the */
/* solution process but have not been explicitly asked for. */
/******************************************************************************/
define_variable( Solver_Disp_All_Sols, false, boolean )$
/******************************************************************************/
/* If Solver_RatSimp_Sols is true then the Solver Postprocessor will */
/* fullratsimp the solutions before returning them. */
/******************************************************************************/
define_variable( Solver_RatSimp_Sols, true, boolean )$
/******************************************************************************/
/* If Solver_Dump_To_File is true then the ValuationSolver writes the */
/* solutions and yet unsolved equations to a file after each iteration. This */
/* might help if the Solver crashes. */
/******************************************************************************/
define_variable( Solver_Dump_To_File, false, boolean )$
/******************************************************************************/
/* Solver_Dump_File contains the name of the file to which the dump is */
/* written. */
/******************************************************************************/
define_variable( Solver_Dump_File, "SOLVER.DMP", any )$
/******************************************************************************/
/* Solver_Break_Test holds the name of a function which is called immediately */
/* before attempting to solve an equation. This function then decides whether */
/* Solver should try to solve the equation or whether it should stop, e.g. */
/* because the problem has become too complex. The arguments passed to the */
/* Solver_Break_Test are 1. the equation, 2. the variable, 3. the valuation. */
/* The Solver stops if the Solver_Break_Test returns true, it continues if */
/* the return value is false. */
/******************************************************************************/
define_variable( Solver_Break_Test, 'SolverJustDoIt, any )$
/******************************************************************************/
/* Solver, main program */
/******************************************************************************/
Solver( Equations, [ SolverParams ] ) := (
mode_declare(
[ Equations, SolverParams ], list
),
block(
[
Variables, /* List of variables to be solved for */
UserVars, /* List of variables specified by user */
Parameters, /* List of symbols to be used as parameters */
Expressions, /* List of compound expressions to be solved for */
PowerSubst, /* List of substituted symbols for powers */
Solutions, /* List of solutions found by Solver */
RemainingEqs, /* List of remaining equations */
/* Assumptions made in linear solver should be local */
Solver_Assumptions : [],
Active
],
mode_declare(
[
Variables, UserVars, Parameters, Expressions, PowerSubst,
Solutions
], list,
Active, boolean
),
/* No assumptions to start with */ErrorHandlerSolver_Assumptions : [],
/* Initialize list of solutions */
Solutions : [],
/* Do all necessary preprocessing */
map(
lambda([x,y],x::y),
[
'Equations, 'SolverParams, 'Variables, 'Parameters,
'Expressions, 'PowerSubst, 'UserVars
],
SetupSolver( Equations, SolverParams )
),
if MsgLevel = 'DEBUG then
display(
Equations, SolverParams, Variables, Parameters, Expressions,
PowerSubst, UserVars, Solutions
),
block(
[],
/* Search for and apply immediate assignments */
Active : Solver_Immed_Assign,
while Active do (
map(
lambda([x,y],x::y),
[ 'Active, 'Solutions, 'Equations, 'Variables ],
ImmediateAssignments( Solutions, Equations, Variables, Parameters )
),
Active : Active and Solver_Repeat_Immed,
if MsgLevel = 'DEBUG then
display(
Equations, SolverParams, Variables, Parameters, Expressions,
PowerSubst, UserVars, Solutions
)
),
if Empty( Equations ) or Empty( Variables ) then
return( false ),
Equations : map(
lambda(
[ Eq ],
fullratsimp( lhs( Eq ) - rhs( Eq ) )
),
Equations
),
/* Find and solve linear equations */
Active : Solver_Linear,
while Active do (
map(
lambda([x,y],x::y),
[ 'Active, 'Solutions, 'Equations, 'Variables ],
LinearSolver( Solutions, Equations, Variables, Parameters )
),
Active : Active and Solver_Repeat_Linear,
if MsgLevel = 'DEBUG then
display(
Equations, SolverParams, Variables, Parameters, Expressions,
PowerSubst, UserVars, Solutions
)
),
if Empty( Equations ) or Empty( Variables ) then
return( false ),
if Solver_Valuate_All_Nonlin_Vars then
Variables : Union(
SetDifference( listofvars( Equations ), Parameters ),
Variables
),
/* apply valuation strategies to solve the nonlinear equations. */
map(
lambda([x,y],x::y),
[ 'Active, 'Solutions, 'Equations, 'Variables ],
ValuationSolver( Solutions, Equations, Variables, Parameters )
)
), /* END block */
/* Return the solutions and the unsolved equations */
if Solver_Postprocess then
return( PostProcess( Solutions, UserVars, Expressions, PowerSubst ) )
else
return( Solutions )
)
)$
/******************************************************************************/
/* TerminateSolver terminates the Solver. */
/******************************************************************************/
TerminateSolver() := error( ErrMsg["SolvrTerm"] )$
/******************************************************************************/
/* SetupSolver preprocesses the equations and optional parameters before */
/* submitting them to the Solver. The equations are checked if they are */
/* really equations, and all equations of the form NUMBER = NUMBER or */
/* f( PARAMETERS ) = g( PARAMETERS ) are checked for consistency and then */
/* dropped. */
/******************************************************************************/
SetupSolver( Equations, SolverParams ) := (
mode_declare(
[ Equations, SolverParams ], list
),
block(
[
i, AllVars, Var, SubstSym, Power,
Variables, Parameters, Expressions,
PowerSubst, UserVars
],
mode_declare(
i, fixnum,
[
AllVars, Power, Variables, Parameters, Expressions,
PowerSubst, UserVars
], list,
[ Var, SubstSym ], any
),
Expressions : [],
PowerSubst : [],
Parameters : [],
/* Make sure that Equations is a list. Abort if it is not. */
if not listp( Equations ) then
ErrorHandler( "EqsNotLst", Equations, 'Fatal ),
/* delete all entries from Equations which are not equations */
Equations : sublist( Equations, 'EquationP ),
/* Convert all floating-point numbers to rational numbers. If this was */
/* not done then rounding errors could fool the consistency check. */
Equations : map( 'rat, Equations ),
/* Process the optional arguments to Solver */
if not Empty( SolverParams ) then (
Variables : SolverParams[1],
/* Make sure that Variables is a list. Abort if it is not. */
if not listp( Variables ) then
ErrorHandler( "VarNotLst", Variables, 'Fatal ),
/* delete multiple occurrences of identical symbols */
Variables : Setify( Variables ),
PrintMsg( 'DETAIL, SolverMsg["VarsAre"], Variables ),
if length( SolverParams ) > 1 then (
Parameters : SolverParams[2],
/* Make sure that Parameters is a list. Abort if it is not. */
if not listp( Parameters ) then
ErrorHandler( "ParNotLst", Parameters, 'Fatal ),
/* delete multiple occurrences of identical symbols */
Parameters : Setify( Parameters ),
PrintMsg( 'DETAIL, SolverMsg["ParsAre"], Parameters )
)
),
/* Check if Variables and Parameters are disjoint sets of symbols */
if not DisjointP( Variables, Parameters ) then
ErrorHandler(
"VarParConfl", Intersection( Variables, Parameters ), 'Fatal
),
/* Make a list of all variables to be solved for. This list may contain */
/* more symbols than Variables when either no SolverParams have been */
/* given or when the user has specified only a subset of all existing */
/* symbols. */
AllVars : SetDifference( listofvars( Equations ), Parameters ),
/* solve for all available variables if Variables is empty. */
if Empty( Variables ) then
Variables : AllVars,
/* Check all those equations which contain only equations of the form */
/* NUMBER = NUMBER or which contain only parameters and none of the */
/* variables of interest for consistency. Remove consistent equations */
/* and store the assumptions made in the list Solver_Assumptions. */
Equations : ParamConsistency( Equations, Parameters ),
/* Abort if no equations are left after the above step. */
if Empty( Equations ) or Empty( Variables ) then (
PrintMsg( 'SHORT, SolverMsg["NoEqOrVar"] ),
return( [ [], SolverParams, Variables, Parameters, [], [], [] ] )
),
/* If there are compound expressions to be solved for then the solver */
/* tries to solve for the variables contained in them first. */
/* Subsequently the expressions are rebuilt from the solutions of */
/* these variables and the parameters. */
for i thru length( Variables ) do
/* Search the variable list for non-atomic expressions. */
if not atom( Var : Variables[i] ) then (
/* append expression to the expression list */
Expressions : endcons( Var, Expressions ),
/* Insert the variables in the expression into the list of variables */
/* but keep the parameters out. */
Variables[i] : SetDifference( listofvars( Var ), Parameters ),
PrintMsg( 'SHORT, SolverMsg["TrySolve4"], Variables[i] ),
PrintMsg( 'SHORT, SolverMsg["Solve4Exp"], Var )
),
/* Make a list of all the variables the user actually wants to know */
UserVars : sublist( Variables, 'atom ),
/* Flatten the list of variables and make it a set. */
Variables : Setify( Flatten( Variables ) ),
/* If Solver_Subst_Powers is true then substitute powers by new symbols */
if Solver_Subst_Powers then (
PrintMsg( 'SHORT, SolverMsg["SubstPwrs"] ),
for Var in AllVars do (
/* get all powers of Var in Equations. Convert negative powers to */
/* positive ones. */
Power : Setify( abs( ListOfPowers( Equations, Var ) ) ),
/* If there is more than one power of Var then substitute each */
/* var^m only if all m are integer multiples of the lowest */
/* power > 0. The check is done by examining the modulus of all */
/* powers with respect to the lowest power. */
if
not member( 'false, map( 'integerp, Power ) )
and
Power[1] # 1
then
if ( length( Power ) = 1 ) or
block(
[ Modulus : Power[1] ],
not member(
'false,
map( 'ZeroP, totaldisrep( rat( rest( Power ) ) ) )
)
)
then (
/* Make a new symbol for var^power */
SubstSym : concat( Var, "^", Power[1] ),
/* Store a reference to the original term in an assoc list */
PowerSubst : endcons( SubstSym = Var^Power[1], PowerSubst ),
/* Substitute the new symbol for the original term */
Equations : ratsubst( SubstSym, Var^Power[1], Equations ),
Variables : subst( SubstSym, Var, Variables ),
/* Notify user */
PrintMsg( 'DETAIL, SolverMsg["subst"], Var^Power )
)
) /* END for Var in AllVars */
), /* END if Solver_Subst_Powers */
return(
[
Equations, SolverParams, Variables, Parameters, Expressions,
PowerSubst, UserVars
]
)
)
)$
/******************************************************************************/
/* ParamConsistency checks equations of the form NUMBER = NUMBER and equa- */
/* tions which contain only parameters for consistency. If the system cannot */
/* determine whether a parametric expression is zero then the user is optio- */
/* nally asked to supply the required information. The assumptions made are */
/* stored in the list Solver_Assumptions. */
/******************************************************************************/
ParamConsistency( Eqs, Pars, [ Action ] ) := (
mode_declare(
[ Eqs, Pars ], list,
Action, any
),
block(
[ Eq, lhsminusrhs, i, consistent ],
mode_declare(
[ Eq, lhsminusrhs ], any,
i, fixnum,
consistent, boolean
),
PrintMsg( 'SHORT, SolverMsg["ConsChk"] ),
if Empty( Action ) then
Action : 'BREAK
else
Action : Action[1],
consistent : true,
for i thru length( Eqs ) do (
Eq : Eqs[i],
/* Does the equation contain only numbers or parameters? */
if Empty(
SetDifference( listofvars( Eq ), Pars )
)
then (
/* If so, check for consistency */
lhsminusrhs : expand( lhs( Eq ) - rhs( Eq ) ),
/* Test if difference of both rhs's is zero */
if lhsminusrhs # 0 then
if SolverAssumeZero( lhsminusrhs ) then
PrintMsg( 'SHORT, SolverMsg["Assum"], lhsminusrhs = 0 )
else
if Action = 'BREAK then (
/* Abort if difference is non-zero */
PrintMsg( 'SHORT, SolverMsg["Incons"], lhs( Eq ) = rhs( Eq ) ),
TerminateSolver()
)
else
return( consistent : false ),
/* Kill the now redundant equation */
if Action = 'BREAK then
Eqs[i] : []
) /* END if Empty */
), /* END for i */
if consistent then
PrintMsg( 'SHORT, SolverMsg["NoneFnd"] ),
if Action = 'BREAK then
return( delete( [], Eqs ) )
else
return( consistent )
)
)$
/******************************************************************************/
/* SolverAssumeZero checks whether Expression is (assumed to be) equal to */
/* zero. If it isn't, the function returns false or asks the user for his */
/* decision. New assumptions are appended to the list Solver_Assumptions. */
/******************************************************************************/
SolverAssumeZero( Expression ) := (
mode_declare(
Expression, any
),
block(
[ AssumptionExists, i ],
mode_declare(
i, fixnum,
AssumptionExists, boolean
),
/* Return false immediately if Expression is a number # 0 or if */
/* Solver_Incons_Params is set to 'BREAK. */
if
Empty( listofvars( Expression ) )
or ( Solver_Incons_Params = 'BREAK )
then
return( false ),
/* Do a simple check to find out whether assumption already exists: */
/* Zero is substituted for Expression in the stored assumption. If the */
/* result is zero then the assumption already exists. */
AssumptionExists : false,
for i thru length( Solver_Assumptions ) while not AssumptionExists do
if
fullratsimp(
ratsubst( 0, Expression, lhs( Solver_Assumptions[i] ) )
) = 0
then
AssumptionExists : true,
/* If the expression is not yet assumed to be equal to zero, ask the user */
/* to decide whether it is. */
if not AssumptionExists then
if
( Solver_Incons_Params = 'ASK )
and
( AskZeroNonzero( Expression ) # 'zero )
then
return( false )
else
/* If difference is equal to zero or assumed to be so then store */
/* the constraint in the global list Solver_Assumptions. So the user*/
/* has access to all assumptions made during the solution process */
/* and can check any numerical solutions for consistency with the */
/* assumptions. */
Solver_Assumptions : endcons( Expression = 0, Solver_Assumptions )
else
PrintMsg( 'DETAIL, SolverMsg["AssmFnd"], Expression = 0 ),
return( true )
)
)$
AskZeroNonzero( Expression ) :=
if equal( x, 0 ) = true then 'zero
else block(
[s : 'pnz],
while s#'zero and s#'nonzero do (
s : read( "Is", Expression, "zero or nonzero?" )
),
s
)$
/******************************************************************************/
/* ListOfPowers returns the list of powers # 0 of a variable in a set of */
/* equations. */
/******************************************************************************/
ListOfPowers( Eqs, Var ) := (
mode_declare(
Eqs, list,
Var, any
),
delete(
0,
apply(
'Union,
map(
lambda(
[ Eq ],
Powers( expand( lhs( Eq ) - rhs( Eq ) ), Var )
),
Eqs
)
)
)
)$
/******************************************************************************/
/* ImmediateAssignments directly applies all immediate assignments of the */
/* form var = rhs... before the actual Solver is called. */
/******************************************************************************/
ImmediateAssignments( Solutions, RemainingEqs, Variables, Parameters ) := (
mode_declare(
[ Solutions, RemainingEqs, Variables, Parameters ], list
),
block(
[ i, Vars, AssignmentMade, Left, Right ],
mode_declare(
i, fixnum,
Vars, list,
AssignmentMade, boolean,
[ Left, Right ], any
),
PrintMsg( 'SHORT, SolverMsg["SrchImmed"] ),
AssignmentMade : false,
for i thru length( RemainingEqs ) do block(
[],
Left : lhs( RemainingEqs[i] ),
Right : rhs( RemainingEqs[i] ),
/* Scan the equations for simple assignments of the form X = Expr or */
/* Expr = X and apply this assignment only if X is not a parameter and */
/* if Expr contains only numbers or parameters. */
/* Remark: Equations containing only parameters have already been remo- */
/* ved from the equation list in SetupSolver. */
if symbolp( Left ) then (
Vars : listofvars( Right ),
/* Check if lhs is an isolated variable and make sure that there are */
/* only parameters on the right-hand side. */
if freeof( Left, Right )
and Empty( SetDifference( Vars, Parameters ) )
then (
if assoc( Left, Solutions ) = false then (
PrintMsg(
'DETAIL,
SolverMsg["Assign"], totaldisrep( Left = Right )
),
if member( Left, map( lhs, Solutions ) ) then (
if assoc( Left, Solutions ) # Right then (
PrintMsg( 'SHORT, SolverMsg["Incons"], Left = Right ),
TerminateSolver()
)
)
else
Solutions : endcons( Left = Right, Solutions ),
RemainingEqs[i] : [],
AssignmentMade : true
),
/* This return prevents Macsyma from entering the next if statement */
/* which must only be executed when the current outer if statement */
/* has not been entered. */
return( 'DONE )
)
),
if symbolp( Right ) then (
Vars : listofvars( Left ),
if freeof( Right, Left )
and Empty( SetDifference( Vars, Parameters ) )
then (
if assoc( Right, Solutions ) = false then (
PrintMsg(
'DETAIL,
SolverMsg["Assign"], totaldisrep( Right = Left )
),
if member( Right, map( lhs, Solutions ) ) then (
if assoc( Right, Solutions ) # Left then (
PrintMsg( 'SHORT, SolverMsg["Incons"], Left = Right ),
TerminateSolver()
)
)
else
Solutions : endcons( Right = Left, Solutions ),
RemainingEqs[i] : [],
AssignmentMade : true
)
)
)
), /* END for i thru length */
if AssignmentMade then (
/* delete the used equations from the list */
RemainingEqs : delete( [], RemainingEqs ),
if not Empty( RemainingEqs ) then (
/* Remove all the variables from the working list which have been */
/* determined by an immediate assignment. */
Variables : SetDifference( Variables, map( 'lhs, Solutions ) ),
/* Evaluate the remaining equations with the constraints */
RemainingEqs : ev( RemainingEqs, Solutions ),
/* Do a parameter consistency check */
RemainingEqs : ParamConsistency( RemainingEqs, Parameters )
)
else
PrintMsg( 'SHORT, SolverMsg["NoEqTerm"] )
)
else
PrintMsg( 'SHORT, SolverMsg["NoImmed"] ),
/* END if AssignmentMade */
return( [ AssignmentMade, Solutions, RemainingEqs, Variables ] )
)
)$
/******************************************************************************/
/* LinearSolver extracts blocks of linear equations from an arbitrary system */
/* of equations by a heuristic searching strategy and solves the linear block */
/* if there is one. */
/******************************************************************************/
LinearSolver( Solutions, Equations, Variables, Parameters ) := (
mode_declare(
[ Solutions, Equations, Variables, Parameters ], list
),
block(
[
CoeffMatrix, ValuationMatrix, ActiveVars,
LinEqNos, LinVarNos, NewVars, LinSolVars,
LinearEqs, LinearVars, LinearSolutions,
i, j, me, mv, NumVars, NumEqs,
MaxValVar, MaxValEq,
EqValuation, VarValuation,
rhsExpressions,
linsolvewarn : false,
linsolve_params : false,
Solve_Inconsistent_Error : false,
EqWasLast : false
],
mode_declare(
[ CoeffMatrix, ValuationMatrix ], any,
[
LinEqNos, LinVarNos, ActiveVars, LinearEqs, LinearVars, LinSolVars,
EqValuation, VarValuation, LinearSolutions, NewVars, rhsExpressions
], list,
[ i, j, me, mv, NumVars, NumEqs, MaxValVar, MaxValEq ], fixnum
),
if Empty( Equations ) then (
if Empty( Variables ) then
PrintMsg( 'SHORT, SolverMsg["AllSolved"] )
else
PrintMsg( 'SHORT, SolverMsg["NoEqLeft"], Variables ),
return( [ false, Solutions, Equations, Variables ] )
)
else if Empty( Variables ) then (
PrintMsg( 'SHORT, SolverMsg["EqLeft"] ),
return( [ false, Solutions, Equations, Variables ] )
),
PrintMsg( 'SHORT, SolverMsg["SrchLinEq"] ),
/* Make a list of all remaining variables */
NewVars : listofvars( Equations ),
if Solver_Find_All_Linear_Vars then (
/* The following rather weird commands put the variables into the order */
/* [ variables to be currently solved for, other variables ]. If the */
/* current variables are linear variables then it is more likely that */
/* they will have explicit solutions if they are located in the left */
/* half of the system of equations. Otherwise the will more likely be */
/* used as parameters of the null space (if there is one). */
ActiveVars : append(
Intersection( Variables, NewVars ),
SetDifference( NewVars, append( Variables, Parameters ) )
),
LinearEqs : Equations,
Equations : []
)
else (
ActiveVars : Intersection( Variables, NewVars ),
LinearEqs : [],
for i thru length( Equations ) do
if
not Empty( Intersection( listofvars( Equations[i] ), ActiveVars ) )
then (
LinearEqs : endcons( Equations[i], LinearEqs ),
Equations[i] : []
),
Equations : delete( [], Equations )
),
PrintMsg( 'SHORT, SolverMsg["wrt"], ActiveVars ),
/* Set up the complete coefficient matrix w.r.t. all variables */
CoeffMatrix : ComplCoeffMatrix( LinearEqs, ActiveVars ),
/* The valuation matrix contains a 1 at each Position where a variable */
/* appears in a nonlinear form, and 0's otherwise. */
ValuationMatrix : matrixmap(
lambda(
[ x ],
if x = 'false then
1
else
0
),
CoeffMatrix
),
/* EqValuation contains the number of nonlinear variables for each eq. */
EqValuation : map(
lambda( [ Row ], apply( "+", Row ) ),
ListMatrix( ValuationMatrix )
),
/* VarValuation contains for all vars the number of equations in which */
/* var[i] appears in a nonlinear form. */
VarValuation : map(
lambda( [ Row ], apply( "+", Row ) ),
ListMatrix( transpose( ValuationMatrix ) )
),
LinEqNos : makelist( i, i, 1, NumEqs : length( EqValuation ) ),
LinVarNos : makelist( i, i, 1, NumVars : length( VarValuation ) ),
/* Remove nonlinear equations and/or variables until only a linear */
/* block remains, i.e. for all i, j VarValuation[i] = 0 and */
/* EqValuation[j] = 0. */
while
( apply( "+", VarValuation ) # 0 )
and
( apply( "+", EqValuation ) # 0 )
do (
/* Determine maximum equation valuation and number of corresponding */
/* equation. */
me : 0,
MaxValEq : -1,
for i thru NumEqs do
if EqValuation[i] > MaxValEq then (
me : i,
MaxValEq : mode_identity( fixnum, EqValuation[i] )
),
/* Determine maximum variable valuation and number of corresponding */
/* variable. */
mv : 0,
MaxValVar : -1,
for j thru NumVars do
if VarValuation[j] > MaxValVar then (
mv : j,
MaxValVar : mode_identity( fixnum, VarValuation[j] )
),
if apply( Solver_Del_Eq, [ MaxValEq, MaxValVar ] ) then (
i : me,
for j thru NumVars do (
VarValuation[j] : VarValuation[j] - ValuationMatrix[i, j],
ValuationMatrix[i, j] : 0
),
/* Mark equation as deleted */
EqValuation[i] : 0,
LinEqNos[i] : 0
)
else (
j : mv,
for i thru NumEqs do (
EqValuation[i] : EqValuation[i] - ValuationMatrix[i, j],
ValuationMatrix[i, j] : 0
),
/* Mark variable as deleted */
VarValuation[j] : 0,
LinVarNos[j] : 0
)
), /* END while */
/* Make list of linear equations */
LinEqNos : delete( 0, LinEqNos ),
/* Make list of linear variables */
LinVarNos : delete( 0, LinVarNos ),
if Empty( LinEqNos ) or Empty( LinVarNos ) then (
PrintMsg( 'SHORT, SolverMsg["NoLinEqs"] ),
return( [ false, Solutions, append( LinearEqs, Equations ), Variables ] )
),
/* Extract linear equations. append all nonlinear equations to Equations */
/* again. */
for i thru length( LinearEqs ) do
if not member( i, LinEqNos ) then (
Equations : endcons( LinearEqs[i], Equations ),
LinearEqs[i] : []
),
LinearEqs : delete( [], LinearEqs ),
/* Extract linear variables. Since the extraction of linear equations may */
/* also have removed linear variables (the coefficients are now 0) it is */
/* necessary to intersect the set of the linear variables with the set of */
/* those variables which actually appear in the linear equations. */
LinearVars : Intersection(
map( lambda( [ i ], ActiveVars[i] ), LinVarNos ),
listofvars( LinearEqs )
),
/* By analogy, the same applies to the linear equations. Thus, keep only */
/* those equations which still contain any of the linear variables. */
for i thru length( LinearEqs ) do
if DisjointP( listofvars( LinearEqs[i] ), LinearVars ) then (
Equations : endcons( LinearEqs[i], Equations ),
LinearEqs[i] : []
),
LinearEqs : delete( [], LinearEqs ),
/* Return if no linear equations are left */
if Empty( LinearVars ) or Empty( LinearEqs ) then (
PrintMsg( 'SHORT, SolverMsg["NoLinEqs"] ),
return( [ false, Solutions, append( LinearEqs, Equations ), Variables ] )
),
PrintMsg(
'SHORT,
SolverMsg["Found"], length( LinearEqs ), SolverMsg["LinEqs"],
length( LinearVars ), SolverMsg["LinVars"]
),
PrintMsg( 'SHORT, SolverMsg["VarsAre"], LinearVars ),
PrintMsg( 'DETAIL, SolverMsg["EqsAre"], LinearEqs ),
PrintMsg( 'SHORT, SolverMsg["SolvLinEq"] ),
rhsExpressions : [],
Solve_Inconsistent_Eqn_Nos : [ 0 ],
while not Empty( Solve_Inconsistent_Eqn_Nos ) do (
/* solve the linear equations */
LinearSolutions : LinsolveM( LinearEqs , LinearVars ),
/* Check for "inconsistent" equations. */
if not Empty( Solve_Inconsistent_Eqn_Nos ) then (
PrintMsg( 'DEBUG, SolverMsg["Incons"], Solve_Inconsistent_Eqn_Nos ),
/* Remove "inconsistent" equations */
for i in Solve_Inconsistent_Eqn_Nos do
LinearEqs[i] : [],
LinearEqs : delete( [], LinearEqs ),
/* append rhs = 0 to Solver_Assumptions if rhs contains only */
/* parameters. */
rhsExpressions : ParamConsistency(
Solve_Inconsistent_Terms, Parameters
)
)
),
/* append rhs's which have led to "inconsistencies" but still */
/* contain variables to the list of equations. */
Equations : append( Equations, rhsExpressions ),
PrintMsg( 'DETAIL, SolverMsg["Solutions"], LinearSolutions ),
/* Insert the solutions from linsolve into the remaining equations */
Equations : ParamConsistency(
fullratsimp( ev( Equations, LinearSolutions ) ),
Parameters
),
/* append the linear solutions to the list of solutions */
Solutions : append( Solutions, LinearSolutions ),
/* append all variables to the working list which appear on the rhs's of */
/* the linear solutions. delete all variables which have been solved for. */
/* Linear variables for which a solution has been obtained. */
LinSolVars : map( 'lhs, LinearSolutions ),
/* Linear variables which are free parameters of the null space. */
LinearVars : SetDifference( LinearVars, LinSolVars ),
/* append all those variables which are parameters of the null space of */
/* the linear equations and which do not appear in the remaining */
/* equations to the list of parameters. */
for Var in LinearVars do
if freeof( Var, Equations ) then (
PrintMsg( 'SHORT, SolverMsg["FreeVar2Par"], Var ),
Parameters : endcons( Var, Parameters ),
Variables : delete( Var, Variables )
),
NewVars : SetDifference(
listofvars( map( 'rhs, LinearSolutions ) ),
Parameters
),
Variables : Union(
SetDifference( Variables, LinSolVars ),
NewVars
),
return( [ true, Solutions, Equations, Variables ] )
)
)$
/******************************************************************************/
/* The following strategies decide whether the linear solver should delete a */
/* nonlinear equation or a nonlinear variable from the system while searching */
/* for linear subblocks of equations. */
/******************************************************************************/
define_variable( EqWasLast, false, boolean )$
MakeSquareLinearBlocks( ValEq, ValVar ) := (
mode_declare(
[ ValEq, ValVar ], fixnum
),
if ValEq = ValVar then
EqWasLast : not EqWasLast
else
if ValEq > ValVar then
EqWasLast : true
else
EqWasLast : false
)$
DelEqBeforeVar( ValEq, ValVar ) := (
mode_declare(
[ ValEq, ValVar ], fixnum
),
if ValEq >= ValVar then
true
else
false
)$
/******************************************************************************/
/* ComplCoeffMatrix returns a matrix whose row size is equal to the number of */
/* equations and whose column size is equal to the number of variables. The */
/* entry at Position [i,j] is RatCoeff( equation[i], variable[j] ) if */
/* equation[i] is linear w.r.t. variable[j] and 'false if equation[i] is */
/* nonlinear w.r.t. variable[j]. */
/******************************************************************************/
ComplCoeffMatrix( Eqs, ActiveVars ) := (
mode_declare(
[ Eqs, ActiveVars ], list
),
block(
apply(
'matrix,
/* for each equation do */
map(
lambda(
[ Eq ],
/* for each variable do */
map(
lambda(
[ Var ],
block(
[ rc ],
rc : LinCoeff( Eq, Var ),
/* Return the RatCoeff only if it contains none of the active */
/* variables or if the equation doesn't contain var at all. */
if
( ( rc # 0 ) and DisjointP( listofvars( rc ), ActiveVars ) )
or
freeof( Var, Eq )
then
rc
else
false
)
),
ActiveVars
) /* END lambda( [ Var ] ) */
), /* END lambda( [ Eq ] ) */
/* map target: Transform all equations into homogeneous form. */
map(
lambda(
[ Eq ],
fullratsimp( expand( lhs( Eq ) - rhs( Eq ) ) )
),
Eqs
)
) /* END map( lambda( [ Eq ] ) ) */
) /* END apply */
)
)$
/******************************************************************************/
/* LinCoeff returns the linear coefficient of Var within Eq if Var appears */
/* raised to the first power only. */
/******************************************************************************/
LinCoeff( Eq, Var ) := (
mode_declare(
[ Eq, Var ], any
),
block(
[ BCoeff ],
mode_declare(
BCoeff, list
),
if ListOfPowers( [ Eq ], Var ) = [ 1 ] then (
BCoeff : bothcoeff( Eq, Var ),
if freeof( Var, second( BCoeff ) ) then
return( first( BCoeff ) )
),
return( 0 )
)
)$
/******************************************************************************/
/* ValuationSolver */
/******************************************************************************/
ValuationSolver( Solutions, Equations, Variables, Parameters ) := (
mode_declare(
[ Solutions, Equations, Variables, Parameters ], list
),
block(
[
VarPaths, ValMatrix, Eq, Var, Trans, TempEq, TransEq,
SolveOrder, SolveInfo, Transform, Solution, SolCheck,
Status, Solved, Failed, UniqueSol, TryToSolve, CheckSol,
i, k
],
mode_declare(
[ VarPaths, ValMatrix, Eq, Var, Trans, TempEq, TransEq ], any,
[ SolveOrder, SolveInfo, Transform, Solution, SolCheck ], list,
[ Status, Solved, Failed, UniqueSol, TryToSolve, CheckSol ], boolean,
[ i, k ], fixnum
),
UniqueSol : true,
LOOP,
PrintMsg( 'SHORT, SolverMsg["Chk4RemEq"] ),
if Empty( Equations ) then (
if Empty( Variables ) then
PrintMsg( 'SHORT, SolverMsg["AllSolved"] )
else
PrintMsg( 'SHORT, SolverMsg["NoEqLeft"], Variables ),
Status : false
)
else if Empty( Variables ) then (
PrintMsg( 'SHORT, SolverMsg["EqLeft"] ),
Status : false
)
else (
PrintMsg(
'SHORT,
length( Equations ), SolverMsg["Eqs"],
length( Variables ), SolverMsg["Vars"]
),
PrintMsg( 'DETAIL, SolverMsg["VarsAre"], Variables ),
PrintMsg( 'DEBUG, SolverMsg["EqsAre"], Equations ),
/* Dump solutions and remaining equations to file if requested. */
if Solver_Dump_To_File then
DumpToFile( Solutions, Equations, Variables ),
if ( length( Variables ) = 1 ) and ( length( Equations ) = 1 ) then
SolveOrder : [ [ 1, 1, "(irrelevant)" ] ]
else (
PrintMsg( 'SHORT, SolverMsg["ValStrat"] ),
/* Set up the valuation matrices. */
VarPaths : OccurrenceMatrix( Equations, Variables ),
ValMatrix : ValuationMatrix( Equations, Variables ),
/* Determine an order by which the equations should be solved. */
SolveOrder : apply( Solver_Valuation_Strategy, [ VarPaths, ValMatrix ] )
),
Solved : false,
unless Solved or Empty( SolveOrder ) do (
SolveInfo : Pop( SolveOrder ),
if listp(SolveInfo[1]) then SolveInfo : first(SolveInfo),
k : mode_identity( fixnum, first( SolveInfo ) ),
Eq : part( Equations, k ),
Var : Variables[ second( SolveInfo ) ],
PrintMsg(
'SHORT,
SolverMsg["TrySolveEq"], k, SolverMsg["ForVar"], Var
),
PrintMsg( 'SHORT, SolverMsg["Valuation"], third( SolveInfo ) ),
PrintMsg( 'DETAIL, SolverMsg["EqIs"], Eq = 0 ),
TryToSolve : true,
CheckSol : true,
Transform : copylist( Solver_Transforms ),
/* Do the solver break test to check whether it is worth */
/* attempting to solve the equation at all. */
Failed : apply( Solver_Break_Test, [Eq, Var, third( SolveInfo )] ),
unless Solved or Failed do (
/* Try to solve the selected equation */
if TryToSolve then
Solution : solve( Eq, Var ),
/* Check if the equation was solved correctly */
if CheckSol then (
PrintMsg( 'SHORT, SolverMsg["CheckSol"] ),
SolCheck : SolutionOK( Solution, Var ),
PrintMsg( 'DETAIL, SolverMsg["Solutions"], Solution )
)
else
SolCheck : [ false ],
/* All solutions OK? */
if member( true, SolCheck ) then (
PrintMsg( 'SHORT, SolverMsg["SolOK"] ),
Solved : true
)
/* If not, apply transformations */
else (
if CheckSol then
PrintMsg( 'SHORT, SolverMsg["SolNotOK"] ),
/* Give up if no transformations are left */
if Empty( Transform ) then (
PrintMsg( 'SHORT, SolverMsg["GiveUp"] ),
Failed : true
)
else (
/* Retrieve one transformation function */
Trans : Pop( Transform ),
PrintMsg( 'SHORT, SolverMsg["AppTrans"], Trans ),
/* and apply it to the equation, the variable, and the solution */
TransEq : apply( Trans, [ Eq, Var, Solution ] ),
/* The transformation should return an equation as its function */
/* value. However, if no reasonable transformation of the */
/* equation was possible then the SOLVE function should not be */
/* tried again. Hence, to signal a failure, the transformation */
/* must return an empty list, which will instruct the Solver to */
/* try the next transformation instead. In addition, the */
/* transformation may itself take care of solving the equation. */
/* It must then return a list of solutions: */
/* [ var = solution_1, var = solution_2, ... ] */
/* Did the transformation fail? */
if TransEq = [] then (
PrintMsg( 'SHORT, SolverMsg["TransFail"] ),
/* Instruct the Solver to try the next transformation */
TryToSolve : false,
CheckSol : false
)
/* Did it solve the equation by itself? */
else if listp( TransEq ) then (
PrintMsg( 'SHORT, SolverMsg["TransSolv"] ),
Solution : TransEq,
/* Instruct the Solver not to call SOLVE again */
TryToSolve : false,
CheckSol : true
)
/* Transformation thinks it has succeeded, so try again */
else (
Eq : TransEq,
PrintMsg( 'DETAIL, SolverMsg["ResTrans"], Eq = 0 ),
PrintMsg( 'SHORT, SolverMsg["RetryTrans"] ),
TryToSolve : true,
CheckSol : true
)
) /* END if Empty( Transform ) else */
) /* if member( true, SolCheck ) else */
) /* END unless Solved or Failed */
), /* END unless Solved or Empty( SolveOrder ) */
if Solved then (
if length( Solution ) > 1 then
PrintMsg( 'SHORT, SolverMsg["NotUnique"] ),
if member( false, SolCheck ) then
PrintMsg( 'SHORT, SolverMsg["SolsLost"] ),
/* Remove solved equation from list of equations. Store it in TempEq */
/* so it can be appended to Equations again if the consistency check */
/* fails. */
TempEq : part( Equations, k ),
Equations : delete( [], Set_Element( Equations, k, [] ) ),
/* Check solutions for consistency with remaining equations. */
for i thru length( Solution ) do (
if part( SolCheck, i ) then (
PrintMsg(
'DETAIL, SolverMsg["Solution"], i, SolverMsg["ForVar"], Var
),
if not ParamConsistency(
fullratsimp( ev( Equations, part( Solution, i ) ) ),
Parameters,
'CONTINUE
) then (
PrintMsg( 'SHORT, SolverMsg["Contradict"], part( Solution, i ) ),
Set_Element( Solution, i, 'INCONSISTENT_PATH )
)
)
else (
PrintMsg( 'DETAIL, SolverMsg["Dropped"], part( Solution, i ) ),
Set_Element( Solution, i, [] )
)
),
/* delete all implicit or empty solutions */
Solution : delete( [], Solution ),
if Empty( Solution ) then (
PrintMsg( 'SHORT, SolverMsg["NoValidSol"], Var ),
Equations : endcons( TempEq, Equations ),
Solved : false
)
/* Check if there are any consistent solutions */
else if not member(
true,
map(
lambda(
[x],
if x = 'INCONSISTENT_PATH then
false
else
true
),
Solution
)
)
then (
PrintMsg( 'SHORT, SolverMsg["NoConsSol"], Var ),
Solutions : endcons( 'INCONSISTENT_PATH, Solutions ),
Solved : false
)
/* append consistent solutions to the solution list */
else (
PrintMsg( 'DETAIL, SolverMsg["ConsSol"], Var, ":", Solution ),
Variables : delete( Var, Variables ),
/* If the solution is unique or if there's only one consistent */
/* solution then ... */
if length( Solution ) = 1 then (
/* ... store it, insert it into the remaining equations, and */
/* add its rhs variables to the list of unknowns. */
Solutions : append( Solutions, Solution ),
Equations : copylist(
fullratsimp( ev( Equations, Solution ) )
),
Variables : Union(
Variables,
SetDifference(
listofvars( rhs( first( Solution ) ) ),
Parameters
)
)
)
else /* length( Solution ) > 1, call ValuationSolver recursively */
block(
[ MultipleSolutions, RSolutions, RVars, REqs, Sol, Stat ],
mode_declare(
[ MultipleSolutions, RSolutions, RVars, REqs ], list,
Sol, any,
Stat, boolean
),
MultipleSolutions : [],
for Sol in Solution do (
map(
lambda([x,y], x::y),
[ 'Stat, 'RSolutions, 'REqs, 'RVars ],
ValuationSolver(
[ Sol ],
copylist( fullratsimp( ev( Equations, Sol ) ) ),
Union(
Variables,
SetDifference( listofvars( rhs( Sol ) ), Parameters )
),
Parameters
)
),
MultipleSolutions : endcons( RSolutions, MultipleSolutions )
), /* END for Sol */
Solutions : endcons( MultipleSolutions, Solutions ),
UniqueSol : false
) /* END block */
) /* END if Empty( Solution ) */
)
else (
/* append remaining equations to the solutions if no further */
/* solutions could be determined. */
for e in Equations do (
if is( equal( e, 0 ) ) # 'unknown then (
PrintMsg( SHORT, "Inconsistent equation", e = 0),
TerminateSolver()
)
),
Solutions : endcons( [ Equations ], Solutions )
), /* END if Solved */
Status : Solved
),
if Status and UniqueSol then
go( LOOP )
else
return( [ Status, Solutions, Equations, Variables ] )
)
)$
/******************************************************************************/
/* SolutionOK checks whether the result of a call to the solve function is */
/* indeed a solution of the form var = expression_free_of_var. */
/******************************************************************************/
SolutionOK( Solution, Var ) := (
mode_declare(
[ Solution, Var ], any
),
if listp( Solution ) then
/* List of solutions must not be empty. */
if Empty( Solution ) then
[ false ]
else
/* Check if the lhs of each solution is equal to var and make sure */
/* that var does not appear on the rhs's. */
map(
lambda(
[ Sol ],
( lhs( Sol ) = Var ) and freeof( Var, rhs( Sol ) )
),
Solution
)
else
[ false ]
)$
/******************************************************************************/
/* ValuationMatrix generates a matrix of valuations with respect to each */
/* equation and each variable. */
/******************************************************************************/
ValuationMatrix( Equations, Variables ) := (
mode_declare(
[ Equations, Variables ], list
),
genmatrix(
lambda( [ i, j ], Valuation( Equations[i], Variables[j] ) ),
length( Equations ), length( Variables )
)
)$
/******************************************************************************/
/* Operator valuation factors for expression valuation. */
/******************************************************************************/
SetProp( 'sin, 'Valuation, 10 )$
SetProp( 'cos, 'Valuation, 10 )$
SetProp( 'tan, 'Valuation, 10 )$
SetProp( 'asin, 'Valuation, 12 )$
SetProp( 'acos, 'Valuation, 12 )$
SetProp( 'atan, 'Valuation, 12 )$
SetProp( 'sinh, 'Valuation, 12 )$
SetProp( 'cosh, 'Valuation, 12 )$
SetProp( 'tanh, 'Valuation, 12 )$
SetProp( 'asinh, 'Valuation, 12 )$
SetProp( 'acosh, 'Valuation, 12 )$
SetProp( 'atanh, 'Valuation, 12 )$
SetProp( "+", 'Valuation, 1 )$
SetProp( "-", 'Valuation, 1 )$
SetProp( "*", 'Valuation, 4 )$
SetProp( "/", 'Valuation, 4 )$
SetProp( "^", 'Valuation, 10 )$
SetProp( 'sqrt, 'Valuation, 10 )$
SetProp( 'exp, 'Valuation, 10 )$
SetProp( 'log, 'Valuation, 10 )$
/******************************************************************************/
/* With SetValuation, the operator valuation factors can be redefined. */
/******************************************************************************/
SetValuation( Operator, Valuation ) :=
SetProp( Operator, 'Valuation, Valuation )$
/******************************************************************************/
/* Valuation measures the complexity of an expression with respect to Var by */
/* weighting the operator tree representation of Expr. */
/******************************************************************************/
Valuation( Expr, Var ) := (
mode_declare(
[ Expr, Var ], any
),
block(
[ OpFactor ],
mode_declare(
OpFactor, fixnum
),
/* Return zero if Expr does not contain Var. */
if freeof( Var, Expr ) then
return( 0 )
else
/* Return 1 if Expr is an atom, i.e. Expr = Var. */
if atom( Expr ) then
return( 1 )
/* If Expr is an algebraic expression then retrieve the valuation */
/* factor associated with the operator of Expr and recursively apply */
/* the valuation function to each subexpression of Expr. */
else (
if (
OpFactor : mode_identity( fixnum, get( op( Expr ), 'Valuation ) )
) = false
then
OpFactor : Solver_Default_Valuation,
return(
OpFactor * apply(
"+",
map(
lambda( [ SubExpr ], Valuation( SubExpr, Var ) ),
substpart( "[", Expr, 0 )
)
)
)
) /* END if atom */
)
)$
/******************************************************************************/
/* OccurrenceMatrix sets up a matrix in which the number of occurrences of */
/* each variable in each equation is counted. */
/******************************************************************************/
OccurrenceMatrix( Equations, Variables ) := (
mode_declare(
[ Equations, Variables ], list
),
genmatrix(
lambda( [ i, j ], Occurences( Equations[i], Variables[j] ) ),
length( Equations ), length( Variables )
)
)$
/******************************************************************************/
/* Occurences counts the number of occurences of Var in Expr, i.e. the number */
/* of paths to distinct occurrences of the atom Var in the internal tree */
/* representation of Expr. */
/******************************************************************************/
Occurences( Expr, Var ) := (
mode_declare(
[ Expr, Var ], any
),
if atom( Expr ) then
if Expr = Var then
1
else
0
else
apply(
"+",
map(
lambda( [ SubExpr], Occurences( SubExpr, Var ) ),
substpart( "[", Expr, 0)
)
)
)$
/******************************************************************************/
/* MinVarPathsFirst tries to find variables which can be easily isolated. */
/* These are variables which appear only once in an entire expression tree */
/* (= 1 in OccurrenceMatrix). */
/******************************************************************************/
MinVarPathsFirst( OccMat, ValMat ) := (
mode_declare(
[ OccMat, ValMat ], any
),
block(
[
SolveOrder, SolveOrder1, SumVarPaths,
i, j, v, ne, nv
],
mode_declare(
[ SolverOrder, SolveOrder1, SumVarPaths ], list,
[ i, j, v, ne, nv, Function( RowSize, ColSize, Position ) ], fixnum
),
SolveOrder : [],
ne : RowSize( OccMat ),
nv : ColSize( OccMat ),
SumVarPaths : map(
lambda( [ Row ], apply( "+", Row ) ),
ListMatrix( OccMat )
),
/* Search for equations which contain only one variable in one path. */
for i thru length( SumVarPaths ) do
if SumVarPaths[i] = 1 then (
SolveOrder : endcons(
[ i, j : Position( 1, OccMat[i] ), ValMat[i, j] ],
SolveOrder
),
/* Mark eq/var Position as used. */
OccMat[i, j] : 0,
ValMat[i, j] : 0
),
/* Sort SolveOrder by least valuation. */
if not Empty( SolveOrder ) then
SolveOrder : SortSolveOrder( SolveOrder ),
/* Find all variables with only one path in the expression tree. */
SolveOrder1 : [],
for i thru ne do
for j thru nv do
if OccMat[i, j] = 1 then (
SolveOrder1 : endcons( [ i, j, ValMat[i, j] ], SolveOrder1 ),
OccMat[i, j] : 0,
ValMat[i, j] : 0
),
/* Sort variables by least valuation. */
if not Empty( SolveOrder1 ) then
SolveOrder : append(
SolveOrder,
SortSolveOrder( SolveOrder1 )
),
/* append additional candidates if necessary. */
if length( SolveOrder ) < Solver_Max_Len_Val_Order then (
SolveOrder1 : [],
for i thru ne do
for j thru nv do
if ( v : mode_identity( fixnum, ValMat[i, j] ) ) # 0 then
SolveOrder1 : endcons( [ i, j, v ], SolveOrder1 ),
SolveOrder : append(
SolveOrder,
SortSolveOrder( SolveOrder1 )
),
/* Return only as many candidates as given by Solver_Max_Len_Val_Order */
if ( i : length( SolveOrder ) ) > Solver_Max_Len_Val_Order then
SolveOrder : rest(
SolveOrder, Solver_Max_Len_Val_Order - i
)
),
return( SolveOrder )
)
)$
/******************************************************************************/
/* PostProcess does all the postprocessing needed to display the results. */
/* This includes expansion of the solution list hierarchies, backsubsitution, */
/* and extraction of the variables which the user explicitly asked for. */
/******************************************************************************/
PostProcess( Solutions, UserVars, Expressions, PowerSubst ) := (
mode_declare(
[ Solutions, UserVars, Expressions, PowerSubst ], list
),
block(
[
SolSet, UsrSolSet, UserSolutions, UnsolvedEqs, InternalSols,
Var, TempVar, EvalVar,
i
],
mode_declare(
[ SolSet, UsrSolSet, UserSolutions, UnsolvedEqs, InternalSols ], list,
[ Var, TempVar, EvalVar ], any,
i, fixnum
),
PrintMsg( 'SHORT, SolverMsg["PostPr"] ),
/* first of all, Flatten the solution list hierarchy and drop all */
/* inconsistent solution paths. */
Solutions : sublist(
ExpandSolutionHierarchy( Solutions ),
lambda( [Set], last( Set ) # 'INCONSISTENT_PATH )
),
/* Return an empty list if no consistent solution paths are left. */
if Empty( Solutions ) then
return( [] ),
/* Do the backsubstitutions. */
if not Empty( Solutions ) then (
UserSolutions : [],
i : 0,
for SolSet in Solutions do (
i : i + 1,
PrintMsg( 'SHORT, SolverMsg["SolSet"], i ),
UsrSolSet : [],
/* Extract the unsolved equations */
UnsolvedEqs : sublist( SolSet, lambda( [x], not EquationP( x ) ) ),
/* and the solutions. */
SolSet : sublist( SolSet, 'EquationP ),
/* If no complete backsubstitution is requested then variables on the */
/* right-hand sides of the solutions will only be substituted if they */
/* do not belong to the variables specified in the command line. */
if not Solver_Backsubst then
InternalSols : sublist(
SolSet,
lambda( [x], not member( lhs( x ), UserVars ) )
),
/* Evaluate all variables and expressions with the solutions. */
for Var in append( UserVars, Expressions ) do (
EvalVar : if member( Var, map(lhs, SolSet) ) or not atom( Var ) then
/* There may be errors when indeterminate expressions are */
/* encountered. */
errcatch(
if Solver_Backsubst then
ev( Var, SolSet, infeval )
else (
TempVar : ev( Var, SolSet ),
ev( TempVar, InternalSols, infeval )
)
)
else
[],
if EvalVar # [] then
UsrSolSet : endcons( Var = EvalVar[1], UsrSolSet )
else
PrintMsg( 'SHORT, SolverMsg["NoSol"], Var )
),
/* append the unsolved equations. */
if not Empty( UnsolvedEqs ) then
UsrSolSet : endcons( UnsolvedEqs, UsrSolSet ),
if Solver_RatSimp_Sols then
UsrSolSet : errcatch( fullratsimp( UsrSolSet ) )
else
UsrSolSet : [UsrSolSet],
if UsrSolSet = [] then
PrintMsg( 'SHORT, SolverMsg["SolSetDrp"] )
else
UserSolutions : endcons( UsrSolSet[1], UserSolutions )
), /* END for SolSet */
if Solver_Dump_To_File then
DumpToFile( UserSolutions, [], [] )
), /* END if not Empty( Solutions ) */
return( UserSolutions )
) /* END block */
)$
/******************************************************************************/
/* ExpandSolutionHierarchy transforms the hierarchically structured list of */
/* solutions into a list of flat lists of solutions. */
/******************************************************************************/
ExpandSolutionHierarchy( Solutions ) := (
mode_declare(
Solutions, list
),
block(
[ FlatSolutions ],
mode_declare(
FlatSolutions, list
),
if length( Solutions ) = 0 then return ( [] )
/* listp = true indicates an additional recursion level */
else if listp( last( Solutions ) ) then (
FlatSolutions : rest( Solutions, -1 ),
return(
map(
lambda( [ x ], append( FlatSolutions, x ) ),
apply(
'append,
map( 'ExpandSolutionHierarchy, last( Solutions ) )
)
)
)
)
else
return( [ Solutions ] )
)
)$
/******************************************************************************/
/* DumpToFile dumps the current set of solutions, equations and variables to */
/* the file <Solver_Dump_File>. */
/******************************************************************************/
DumpToFile( Sols, Eqs, Vars ) := (
mode_declare(
[ Sols, Eqs, Vars ], list
),
block(
[ Solutions, Equations, Variables ],
PrintMsg( 'SHORT, SolverMsg["Dump"], Solver_Dump_File ),
apply(
'StringOut,
[
Solver_Dump_File,
'Solutions = Sols,
'Equations = Eqs,
'Variables = Vars
]
)
)
)$
tma():=trace(
TerminateSolver,
SetupSolver,
ParamConsistency,
SolverAssumeZero,
ListOfPowers,
ImmediateAssignments,
LinearSolver,
MakeSquareLinearBlocks,
DelEqBeforeVar,
ComplCoeffMatrix,
LinCoeff,
ValuationSolver,
SolutionOK,
ValuationMatrix,
SetValuation,
Valuation,
OccurrenceMatrix,
Occurences,
MinVarPathsFirst,
PostProcess,
ExpandSolutionHierarchy,
DumpToFile)$
|