1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
|
;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; $Id: grobner.lisp,v 1.6 2009-06-02 07:49:49 andrejv Exp $
;;; Copyright (C) 1999, 2002 Marek Rychlik <rychlik@u.arizona.edu>
;;;
;;; This program is free software; you can redistribute it and/or modify
;;; it under the terms of the GNU General Public License as published by
;;; the Free Software Foundation; either version 2 of the License, or
;;; (at your option) any later version.
;;;
;;; This program is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;;; GNU General Public License for more details.
;;;
;;; You should have received a copy of the GNU General Public License
;;; along with this program; if not, write to the Free Software
;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module cgb-maxima)
;; Macros for making lists with iterators - an exammple of GENSYM
;; GROBNER-MAKELIST-1 makes a list with one iterator, while GROBNER-MAKELIST accepts an
;; arbitrary number of iterators
;; Sample usage:
;; Without a step:
;; >(grobner-makelist-1 (* 2 i) i 0 10)
;; (0 2 4 6 8 10 12 14 16 18 20)
;; With a step of 3:
;; >(grobner-makelist-1 (* 2 i) i 0 10 3)
;; (0 6 12 18)
;; Generate sums of squares of numbers between 1 and 4:
;; >(grobner-makelist (+ (* i i) (* j j)) (i 1 4) (j 1 i))
;; (2 5 8 10 13 18 17 20 25 32)
;; >(grobner-makelist (list i j '---> (+ (* i i) (* j j))) (i 1 4) (j 1 i))
;; ((1 1 ---> 2) (2 1 ---> 5) (2 2 ---> 8) (3 1 ---> 10) (3 2 ---> 13)
;; (3 3 ---> 18) (4 1 ---> 17) (4 2 ---> 20) (4 3 ---> 25) (4 4 ---> 32))
;; Evaluate expression expr with variable set to lo, lo+1,... ,hi
;; and put the results in a list.
(defmacro grobner-makelist-1 (expr var lo hi &optional (step 1))
(let ((l (gensym)))
`(do ((,var ,lo (+ ,var ,step))
(,l nil (cons ,expr ,l)))
((> ,var ,hi) (reverse ,l))
(declare (fixnum ,var)))))
(defmacro grobner-makelist (expr (var lo hi &optional (step 1)) &rest more)
(if (endp more)
`(grobner-makelist-1 ,expr ,var ,lo ,hi ,step)
(let* ((l (gensym)))
`(do ((,var ,lo (+ ,var ,step))
(,l nil (nconc ,l `,(grobner-makelist ,expr ,@more))))
((> ,var ,hi) ,l)
(declare (fixnum ,var))))))
;;----------------------------------------------------------------
;; This package implements BASIC OPERATIONS ON MONOMIALS
;;----------------------------------------------------------------
;; DATA STRUCTURES: Monomials are represented as lists:
;;
;; monom: (n1 n2 ... nk) where ni are non-negative integers
;;
;; However, lists may be implemented as other sequence types,
;; so the flexibility to change the representation should be
;; maintained in the code to use general operations on sequences
;; whenever possible. The optimization for the actual representation
;; should be left to declarations and the compiler.
;;----------------------------------------------------------------
;; EXAMPLES: Suppose that variables are x and y. Then
;;
;; Monom x*y^2 ---> (1 2)
;;
;;----------------------------------------------------------------
(deftype exponent ()
"Type of exponent in a monomial."
'fixnum)
(deftype monom (&optional dim)
"Type of monomial."
`(simple-array exponent (,dim)))
(declaim (optimize (speed 3) (safety 1)))
(declaim (ftype (function (monom) fixnum) monom-dimension monom-sugar)
(ftype (function (monom &optional fixnum fixnum) fixnum) monom-total-degree)
(ftype (function (monom monom) monom) monom-div monom-mul monom-lcm monom-gcd)
(ftype (function (monom monom) (member t nil)) monom-divides-p monom-divisible-by-p monom-rel-prime-p)
(ftype (function (monom monom monom) (member t nil)) monom-divides-monom-lcm-p)
(ftype (function (monom monom monom monom) (member t nil)) monom-lcm-divides-monom-lcm-p)
(ftype (function (monom fixnum) (member t nil)) monom-depends-p)
;;(ftype (function (t monom &optional monom) monom) monom-map)
;;(ftype (function (monom monom) monom) monom-append)
)
(declaim (inline monom-mul monom-div
monom-total-degree monom-divides-p
monom-divisible-by-p monom-rel-prime monom-lcm))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Construction of monomials
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defmacro make-monom (dim &key (initial-contents nil initial-contents-supplied-p)
(initial-element 0 initial-element-supplied-p))
"Make a monomial with DIM variables. Additional argument
INITIAL-CONTENTS specifies the list of powers of the consecutive
variables. The alternative additional argument INITIAL-ELEMENT
specifies the common power for all variables."
;(declare (fixnum dim))
`(make-array ,dim
:element-type 'exponent
,@(when initial-contents-supplied-p `(:initial-contents ,initial-contents))
,@(when initial-element-supplied-p `(:initial-element ,initial-element))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Operations on monomials
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defmacro monom-elt (m index)
"Return the power in the monomial M of variable number INDEX."
`(elt ,m ,index))
(defun monom-dimension (m)
"Return the number of variables in the monomial M."
(length m))
(defun monom-total-degree (m &optional (start 0) (end (length m)))
"Return the todal degree of a monomoal M. Optinally, a range
of variables may be specified with arguments START and END."
(declare (type monom m) (fixnum start end))
(reduce #'+ m :start start :end end))
(defun monom-sugar (m &aux (start 0) (end (length m)))
"Return the sugar of a monomial M. Optinally, a range
of variables may be specified with arguments START and END."
(declare (type monom m) (fixnum start end))
(monom-total-degree m start end))
(defun monom-div (m1 m2 &aux (result (copy-seq m1)))
"Divide monomial M1 by monomial M2."
(declare (type monom m1 m2 result))
(map-into result #'- m1 m2))
(defun monom-mul (m1 m2 &aux (result (copy-seq m1)))
"Multiply monomial M1 by monomial M2."
(declare (type monom m1 m2 result))
(map-into result #'+ m1 m2))
(defun monom-divides-p (m1 m2)
"Returns T if monomial M1 divides monomial M2, NIL otherwise."
(declare (type monom m1 m2))
(every #'<= m1 m2))
(defun monom-divides-monom-lcm-p (m1 m2 m3)
"Returns T if monomial M1 divides MONOM-LCM(M2,M3), NIL otherwise."
(declare (type monom m1 m2 m3))
(every #'(lambda (x y z) (declare (type exponent x y z)) (<= x (max y z))) m1 m2 m3))
(defun monom-lcm-divides-monom-lcm-p (m1 m2 m3 m4)
"Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
(declare (type monom m1 m2 m3 m4))
(every #'(lambda (x y z w) (declare (type exponent x y z w)) (<= (max x y) (max z w))) m1 m2 m3 m4))
(defun monom-lcm-equal-monom-lcm-p (m1 m2 m3 m4)
"Returns T if monomial MONOM-LCM(M1,M2) equals MONOM-LCM(M3,M4), NIL otherwise."
(declare (type monom m1 m2 m3 m4))
(every #'(lambda (x y z w) (declare (type exponent x y z w)) (= (max x y) (max z w))) m1 m2 m3 m4))
(defun monom-divisible-by-p (m1 m2)
"Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
(declare (type monom m1 m2))
(every #'>= m1 m2))
(defun monom-rel-prime-p (m1 m2)
"Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
(declare (type monom m1 m2))
(every #'(lambda (x y) (declare (type exponent x y)) (zerop (min x y))) m1 m2))
(defun monom-equal-p (m1 m2)
"Returns T if two monomials M1 and M2 are equal."
(declare (type monom m1 m2))
(every #'= m1 m2))
(defun monom-lcm (m1 m2 &aux (result (copy-seq m1)))
"Returns least common multiple of monomials M1 and M2."
(declare (type monom m1 m2))
(map-into result #'max m1 m2))
(defun monom-gcd (m1 m2 &aux (result (copy-seq m1)))
"Returns greatest common divisor of monomials M1 and M2."
(declare (type monom m1 m2))
(map-into result #'min m1 m2))
(defun monom-depends-p (m k)
"Return T if the monomial M depends on variable number K."
(declare (type monom m) (fixnum k))
(plusp (elt m k)))
(defmacro monom-map (fun m &rest ml &aux (result `(copy-seq ,m)))
`(map-into ,result ,fun ,m ,@ml))
(defmacro monom-append (m1 m2)
`(concatenate 'monom ,m1 ,m2))
(defmacro monom-contract (k m)
`(subseq ,m ,k))
(defun monom-exponents (m)
(declare (type monom m))
(coerce m 'list))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Implementations of various admissible monomial orders
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; pure lexicographic
(defun lex> (p q &optional (start 0) (end (monom-dimension p)))
"Return T if P>Q with respect to lexicographic order, otherwise NIL.
The second returned value is T if P=Q, otherwise it is NIL."
(declare (type monom p q) (type fixnum start end))
(do ((i start (1+ i)))
((>= i end) (values nil t))
(declare (type fixnum i))
(cond
((> (monom-elt p i) (monom-elt q i))
(return-from lex> (values t nil)))
((< (monom-elt p i) (monom-elt q i))
(return-from lex> (values nil nil))))))
;; total degree order , ties broken by lexicographic
(defun grlex> (p q &optional (start 0) (end (monom-dimension p)))
"Return T if P>Q with respect to graded lexicographic order, otherwise NIL.
The second returned value is T if P=Q, otherwise it is NIL."
(declare (type monom p q) (type fixnum start end))
(let ((d1 (monom-total-degree p start end))
(d2 (monom-total-degree q start end)))
(cond
((> d1 d2) (values t nil))
((< d1 d2) (values nil nil))
(t
(lex> p q start end)))))
;; total degree, ties broken by reverse lexicographic
(defun grevlex> (p q &optional (start 0) (end (monom-dimension p)))
"Return T if P>Q with respect to graded reverse lexicographic order,
NIL otherwise. The second returned value is T if P=Q, otherwise it is NIL."
(declare (type monom p q) (type fixnum start end))
(let ((d1 (monom-total-degree p start end))
(d2 (monom-total-degree q start end)))
(cond
((> d1 d2) (values t nil))
((< d1 d2) (values nil nil))
(t
(revlex> p q start end)))))
;; reverse lexicographic
(defun revlex> (p q &optional (start 0) (end (monom-dimension p)))
"Return T if P>Q with respect to reverse lexicographic order, NIL
otherwise. The second returned value is T if P=Q, otherwise it is
NIL. This is not and admissible monomial order because some sets do
not have a minimal element. This order is useful in constructing other
orders."
(declare (type monom p q) (type fixnum start end))
(do ((i (1- end) (1- i)))
((< i start) (values nil t))
(declare (type fixnum i))
(cond
((< (monom-elt p i) (monom-elt q i))
(return-from revlex> (values t nil)))
((> (monom-elt p i) (monom-elt q i))
(return-from revlex> (values nil nil))))))
(defun invlex> (p q &optional (start 0) (end (monom-dimension p)))
"Return T if P>Q with respect to inverse lexicographic order, NIL otherwise
The second returned value is T if P=Q, otherwise it is NIL."
(declare (type monom p q) (type fixnum start end))
(do ((i (1- end) (1- i)))
((< i start) (values nil t))
(declare (type fixnum i))
(cond
((> (monom-elt p i) (monom-elt q i))
(return-from invlex> (values t nil)))
((< (monom-elt p i) (monom-elt q i))
(return-from invlex> (values nil nil))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Order making functions
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(declaim (type function *monomial-order* *primary-elimination-order* *secondary-elimination-order*))
(defvar *monomial-order* #'lex>
"Default order for monomial comparisons")
(defmacro monomial-order (x y)
`(funcall *monomial-order* ,x ,y))
(defun reverse-monomial-order (x y)
(monomial-order y x))
(defvar *primary-elimination-order* #'lex>)
(defvar *secondary-elimination-order* #'lex>)
(defvar *elimination-order* nil
"Default elimination order used in elimination-based functions.
If not NIL, it is assumed to be a proper elimination order. If NIL,
we will construct an elimination order using the values of
*PRIMARY-ELIMINATION-ORDER* and *SECONDARY-ELIMINATION-ORDER*.")
(defun elimination-order (k)
"Return a predicate which compares monomials according to the
K-th elimination order. Two variables *PRIMARY-ELIMINATION-ORDER*
and *SECONDARY-ELIMINATION-ORDER* control the behavior on the first K
and the remaining variables, respectively."
(declare (type fixnum k))
#'(lambda (p q &optional (start 0) (end (monom-dimension p)))
(declare (type monom p q) (type fixnum start end))
(multiple-value-bind (primary equal)
(funcall *primary-elimination-order* p q start k)
(if equal
(funcall *secondary-elimination-order* p q k end)
(values primary nil)))))
(defun elimination-order-1 (p q &optional (start 0) (end (monom-dimension p)))
"Equivalent to the function returned by the call to (ELIMINATION-ORDER 1)."
(declare (type monom p q) (type fixnum start end))
(cond
((> (monom-elt p start) (monom-elt q start)) (values t nil))
((< (monom-elt p start) (monom-elt q start)) (values nil nil))
(t (funcall *secondary-elimination-order* p q (1+ start) end))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Priority queue stuff
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(declaim (integer *priority-queue-allocation-size*))
(defparameter *priority-queue-allocation-size* 16)
(defun priority-queue-make-heap (&key (element-type 'fixnum))
(make-array *priority-queue-allocation-size* :element-type element-type :fill-pointer 1
:adjustable t))
(defstruct (priority-queue (:constructor priority-queue-construct))
(heap (priority-queue-make-heap))
test)
(defun make-priority-queue (&key (element-type 'fixnum)
(test #'<=)
(element-key #'identity))
(priority-queue-construct
:heap (priority-queue-make-heap :element-type element-type)
:test #'(lambda (x y) (funcall test (funcall element-key y) (funcall element-key x)))))
(defun priority-queue-insert (pq item)
(priority-queue-heap-insert (priority-queue-heap pq) item (priority-queue-test pq)))
(defun priority-queue-remove (pq)
(priority-queue-heap-remove (priority-queue-heap pq) (priority-queue-test pq)))
(defun priority-queue-empty-p (pq)
(priority-queue-heap-empty-p (priority-queue-heap pq)))
(defun priority-queue-size (pq)
(fill-pointer (priority-queue-heap pq)))
(defun priority-queue-upheap (a k
&optional
(test #'<=)
&aux (v (aref a k)))
(declare (fixnum k))
(assert (< 0 k (fill-pointer a)))
(loop
(let ((parent (ash k -1)))
(when (zerop parent) (return))
(unless (funcall test (aref a parent) v)
(return))
(setf (aref a k) (aref a parent)
k parent)))
(setf (aref a k) v)
a)
(defun priority-queue-heap-insert (a item &optional (test #'<=))
(vector-push-extend item a)
(priority-queue-upheap a (1- (fill-pointer a)) test))
(defun priority-queue-downheap (a k
&optional
(test #'<=)
&aux (v (aref a k)) (j 0) (n (fill-pointer a)))
(declare (fixnum k n j))
(loop
(unless (<= k (ash n -1))
(return))
(setf j (ash k 1))
(if (and (< j n) (not (funcall test (aref a (1+ j)) (aref a j))))
(incf j))
(when (funcall test (aref a j) v)
(return))
(setf (aref a k) (aref a j)
k j))
(setf (aref a k) v)
a)
(defun priority-queue-heap-remove (a &optional (test #'<=) &aux (v (aref a 1)))
(when (<= (fill-pointer a) 1) (error "Empty queue."))
(setf (aref a 1) (vector-pop a))
(priority-queue-downheap a 1 test)
(values v a))
(defun priority-queue-heap-empty-p (a)
(<= (fill-pointer a) 1))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Global switches
;; (Can be used in Maxima just fine)
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defmvar $poly_monomial_order '$lex
"This switch controls which monomial order is used in polynomial
and Grobner basis calculations. If not set, LEX will be used")
(defmvar $poly_coefficient_ring '$expression_ring
"This switch indicates the coefficient ring of the polynomials
that will be used in grobner calculations. If not set, Maxima's
general expression ring will be used. This variable may be set
to RING_OF_INTEGERS if desired.")
(defmvar $poly_primary_elimination_order nil
"Name of the default order for eliminated variables in elimination-based functions.
If not set, LEX will be used.")
(defmvar $poly_secondary_elimination_order nil
"Name of the default order for kept variables in elimination-based functions.
If not set, LEX will be used.")
(defmvar $poly_elimination_order nil
"Name of the default elimination order used in elimination calculations.
If set, it overrides the settings in variables POLY_PRIMARY_ELIMINATION_ORDER
and SECONDARY_ELIMINATION_ORDER. The user must ensure that this is a true
elimination order valid for the number of eliminated variables.")
(defmvar $poly_return_term_list nil
"If set to T, all functions in this package will return each polynomial as a
list of terms in the current monomial order rather than a Maxima general expression.")
(defmvar $poly_grobner_debug nil
"If set to TRUE, produce debugging and tracing output.")
(defmvar $poly_grobner_algorithm '$buchberger
"The name of the algorithm used to find grobner bases.")
(defmvar $poly_top_reduction_only nil
"If not FALSE, use top reduction only whenever possible.
Top reduction means that division algorithm stops after the first reduction.")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Coefficient ring operations
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; These are ALL operations that are performed on the coefficients by
;; the package, and thus the coefficient ring can be changed by merely
;; redefining these operations.
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defstruct (ring)
(parse #'identity :type function)
(unit #'identity :type function)
(zerop #'identity :type function)
(add #'identity :type function)
(sub #'identity :type function)
(uminus #'identity :type function)
(mul #'identity :type function)
(div #'identity :type function)
(lcm #'identity :type function)
(ezgcd #'identity :type function)
(gcd #'identity :type function))
(declaim (type ring *ring-of-integers* *FieldOfRationals*))
(defparameter *ring-of-integers*
(make-ring
:parse #'identity
:unit #'(lambda () 1)
:zerop #'zerop
:add #'+
:sub #'-
:uminus #'-
:mul #'*
:div #'/
:lcm #'lcm
:ezgcd #'(lambda (x y &aux (c (gcd x y))) (values c (/ x c) (/ y c)))
:gcd #'gcd)
"The ring of integers.")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; This is how we perform operations on coefficients
;; using Maxima functions.
;;
;; Functions and macros dealing with internal representation structure
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defstruct (term
(:constructor make-term (monom coeff))
;;(:type list)
)
(monom (make-monom 0) :type monom)
(coeff nil))
(defun make-term-variable (ring nvars pos
&optional
(power 1)
(coeff (funcall (ring-unit ring)))
&aux
(monom (make-monom nvars :initial-element 0)))
(declare (fixnum nvars pos power))
(incf (monom-elt monom pos) power)
(make-term monom coeff))
(defun term-sugar (term)
(monom-sugar (term-monom term)))
(defun termlist-sugar (p &aux (sugar -1))
(declare (fixnum sugar))
(dolist (term p sugar)
(setf sugar (max sugar (term-sugar term)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Low-level polynomial arithmetic done on
;; lists of terms
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defmacro termlist-lt (p) `(car ,p))
(defun termlist-lm (p) (term-monom (termlist-lt p)))
(defun termlist-lc (p) (term-coeff (termlist-lt p)))
(define-modify-macro scalar-mul (c) coeff-mul)
(declaim (ftype (function (ring t t) t) scalar-times-termlist))
(defun scalar-times-termlist (ring c p)
"Multiply scalar C by a polynomial P. This function works
even if there are divisors of 0."
(mapcan
#'(lambda (term)
(let ((c1 (funcall (ring-mul ring) c (term-coeff term))))
(unless (funcall (ring-zerop ring) c1)
(list (make-term (term-monom term) c1)))))
p))
(declaim (ftype (function (ring term term) list) term-mul))
(defun term-mul (ring term1 term2)
"Returns (LIST TERM) wheter TERM is the product of the terms TERM1 TERM2,
or NIL when the product is 0. This definition takes care of divisors of 0
in the coefficient ring."
(let ((c (funcall (ring-mul ring) (term-coeff term1) (term-coeff term2))))
(unless (funcall (ring-zerop ring) c)
(list (make-term (monom-mul (term-monom term1) (term-monom term2)) c)))))
(declaim (ftype (function (ring term list) list) term-times-termlist))
(defun term-times-termlist (ring term f)
(declare (type ring ring))
(mapcan #'(lambda (term-f) (term-mul ring term term-f)) f))
(declaim (ftype (function (ring list term) list) termlist-times-term))
(defun termlist-times-term (ring f term)
(mapcan #'(lambda (term-f) (term-mul ring term-f term)) f))
(declaim (ftype (function (monom term) term) monom-times-term))
(defun monom-times-term (m term)
(make-term (monom-mul m (term-monom term)) (term-coeff term)))
(declaim (ftype (function (monom list) list) monom-times-termlist))
(defun monom-times-termlist (m f)
(cond
((null f) nil)
(t
(mapcar #'(lambda (x) (monom-times-term m x)) f))))
(declaim (ftype (function (ring list) list) termlist-uminus))
(defun termlist-uminus (ring f)
(mapcar #'(lambda (x)
(make-term (term-monom x) (funcall (ring-uminus ring) (term-coeff x))))
f))
(declaim (ftype (function (ring list list) list) termlist-add termlist-sub termlist-mul))
(defun termlist-add (ring p q)
(declare (type list p q))
(do (r)
((cond
((endp p)
(setf r (revappend r q)) t)
((endp q)
(setf r (revappend r p)) t)
(t
(multiple-value-bind
(lm-greater lm-equal)
(monomial-order (termlist-lm p) (termlist-lm q))
(cond
(lm-equal
(let ((s (funcall (ring-add ring) (termlist-lc p) (termlist-lc q))))
(unless (funcall (ring-zerop ring) s) ;check for cancellation
(setf r (cons (make-term (termlist-lm p) s) r)))
(setf p (cdr p) q (cdr q))))
(lm-greater
(setf r (cons (car p) r)
p (cdr p)))
(t (setf r (cons (car q) r)
q (cdr q)))))
nil))
r)))
(defun termlist-sub (ring p q)
(declare (type list p q))
(do (r)
((cond
((endp p)
(setf r (revappend r (termlist-uminus ring q)))
t)
((endp q)
(setf r (revappend r p))
t)
(t
(multiple-value-bind
(mgreater mequal)
(monomial-order (termlist-lm p) (termlist-lm q))
(cond
(mequal
(let ((s (funcall (ring-sub ring) (termlist-lc p) (termlist-lc q))))
(unless (funcall (ring-zerop ring) s) ;check for cancellation
(setf r (cons (make-term (termlist-lm p) s) r)))
(setf p (cdr p) q (cdr q))))
(mgreater
(setf r (cons (car p) r)
p (cdr p)))
(t (setf r (cons (make-term (termlist-lm q) (funcall (ring-uminus ring) (termlist-lc q))) r)
q (cdr q)))))
nil))
r)))
;; Multiplication of polynomials
;; Non-destructive version
(defun termlist-mul (ring p q)
(cond ((or (endp p) (endp q)) nil) ;p or q is 0 (represented by NIL)
;; If p=p0+p1 and q=q0+q1 then pq=p0q0+p0q1+p1q
((endp (cdr p))
(term-times-termlist ring (car p) q))
((endp (cdr q))
(termlist-times-term ring p (car q)))
(t
(let ((head (term-mul ring (termlist-lt p) (termlist-lt q)))
(tail (termlist-add ring (term-times-termlist ring (car p) (cdr q))
(termlist-mul ring (cdr p) q))))
(cond ((null head) tail)
((null tail) head)
(t (nconc head tail)))))))
(defun termlist-unit (ring dimension)
(declare (fixnum dimension))
(list (make-term (make-monom dimension :initial-element 0)
(funcall (ring-unit ring)))))
(defun termlist-expt (ring poly n &aux (dim (monom-dimension (termlist-lm poly))))
(declare (type fixnum n dim))
(cond
((minusp n) (error "termlist-expt: Negative exponent."))
((endp poly) (if (zerop n) (termlist-unit ring dim) nil))
(t
(do ((k 1 (ash k 1))
(q poly (termlist-mul ring q q)) ;keep squaring
(p (termlist-unit ring dim) (if (not (zerop (logand k n))) (termlist-mul ring p q) p)))
((> k n) p)
(declare (fixnum k))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Additional structure operations on a list of terms
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun termlist-contract (p &optional (k 1))
"Eliminate first K variables from a polynomial P."
(mapcar #'(lambda (term) (make-term (monom-contract k (term-monom term))
(term-coeff term)))
p))
(defun termlist-extend (p &optional (m (make-monom 1 :initial-element 0)))
"Extend every monomial in a polynomial P by inserting at the
beginning of every monomial the list of powers M."
(mapcar #'(lambda (term) (make-term (monom-append m (term-monom term))
(term-coeff term)))
p))
(defun termlist-add-variables (p n)
"Add N variables to a polynomial P by inserting zero powers
at the beginning of each monomial."
(declare (fixnum n))
(mapcar #'(lambda (term)
(make-term (monom-append (make-monom n :initial-element 0)
(term-monom term))
(term-coeff term)))
p))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Arithmetic on polynomials
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defstruct (poly
;;BOA constructor, by default constructs zero polynomial
(:constructor make-poly-from-termlist (termlist &optional (sugar (termlist-sugar termlist))))
(:constructor make-poly-zero (&aux (termlist nil) (sugar -1)))
;;Constructor of polynomials representing a variable
(:constructor make-variable (ring nvars pos &optional (power 1)
&aux
(termlist (list
(make-term-variable ring nvars pos power)))
(sugar power)))
(:constructor poly-unit (ring dimension
&aux
(termlist (termlist-unit ring dimension))
(sugar 0))))
(termlist nil :type list)
(sugar -1 :type fixnum))
;; Leading term
(defmacro poly-lt (p) `(car (poly-termlist ,p)))
;; Second term
(defmacro poly-second-lt (p) `(cadar (poly-termlist ,p)))
;; Leading monomial
(defun poly-lm (p) (term-monom (poly-lt p)))
;; Second monomial
(defun poly-second-lm (p) (term-monom (poly-second-lt p)))
;; Leading coefficient
(defun poly-lc (p) (term-coeff (poly-lt p)))
;; Second coefficient
(defun poly-second-lc (p) (term-coeff (poly-second-lt p)))
;; Testing for a zero polynomial
(defun poly-zerop (p) (null (poly-termlist p)))
;; The number of terms
(defun poly-length (p) (length (poly-termlist p)))
(declaim (ftype (function (ring t poly) poly) scalar-times-poly))
(defun scalar-times-poly (ring c p)
(make-poly-from-termlist (scalar-times-termlist ring c (poly-termlist p)) (poly-sugar p)))
(declaim (ftype (function (monom poly) poly) monom-times-poly))
(defun monom-times-poly (m p)
(make-poly-from-termlist (monom-times-termlist m (poly-termlist p)) (+ (poly-sugar p) (monom-sugar m))))
(declaim (ftype (function (ring term poly) poly) term-times-poly))
(defun term-times-poly (ring term p)
(make-poly-from-termlist (term-times-termlist ring term (poly-termlist p)) (+ (poly-sugar p) (term-sugar term))))
(declaim (ftype (function (ring poly poly) poly) poly-add poly-sub poly-mul))
(defun poly-add (ring p q)
(make-poly-from-termlist (termlist-add ring (poly-termlist p) (poly-termlist q)) (max (poly-sugar p) (poly-sugar q))))
(defun poly-sub (ring p q)
(make-poly-from-termlist (termlist-sub ring (poly-termlist p) (poly-termlist q)) (max (poly-sugar p) (poly-sugar q))))
(declaim (ftype (function (ring poly) poly) poly-uminus))
(defun poly-uminus (ring p)
(make-poly-from-termlist (termlist-uminus ring (poly-termlist p)) (poly-sugar p)))
(defun poly-mul (ring p q)
(make-poly-from-termlist (termlist-mul ring (poly-termlist p) (poly-termlist q)) (+ (poly-sugar p) (poly-sugar q))))
(declaim (ftype (function (ring poly fixnum) poly) poly-expt))
(defun poly-expt (ring p n)
(make-poly-from-termlist (termlist-expt ring (poly-termlist p) n) (* n (poly-sugar p))))
(defun poly-append (&rest plist)
(make-poly-from-termlist (apply #'append (mapcar #'poly-termlist plist))
(apply #'max (mapcar #'poly-sugar plist))))
(declaim (ftype (function (poly) poly) poly-nreverse))
(defun poly-nreverse (p)
(setf (poly-termlist p) (nreverse (poly-termlist p)))
p)
(declaim (ftype (function (poly &optional fixnum) poly) poly-contract))
(defun poly-contract (p &optional (k 1))
(make-poly-from-termlist (termlist-contract (poly-termlist p) k)
(poly-sugar p)))
(declaim (ftype (function (poly &optional sequence)) poly-extend))
(defun poly-extend (p &optional (m (make-monom 1 :initial-element 0)))
(make-poly-from-termlist
(termlist-extend (poly-termlist p) m)
(+ (poly-sugar p) (monom-sugar m))))
(declaim (ftype (function (poly fixnum)) poly-add-variables))
(defun poly-add-variables (p k)
(setf (poly-termlist p) (termlist-add-variables (poly-termlist p) k))
p)
(defun poly-list-add-variables (plist k)
(mapcar #'(lambda (p) (poly-add-variables p k)) plist))
(defun poly-standard-extension (plist &aux (k (length plist)))
"Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
(declare (list plist) (fixnum k))
(labels ((incf-power (g i)
(dolist (x (poly-termlist g))
(incf (monom-elt (term-monom x) i)))
(incf (poly-sugar g))))
(setf plist (poly-list-add-variables plist k))
(dotimes (i k plist)
(incf-power (nth i plist) i))))
(defun saturation-extension (ring f plist &aux (k (length plist)) (d (monom-dimension (poly-lm (car plist)))))
"Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
(setf f (poly-list-add-variables f k)
plist (mapcar #'(lambda (x)
(setf (poly-termlist x) (nconc (poly-termlist x)
(list (make-term (make-monom d :initial-element 0)
(funcall (ring-uminus ring) (funcall (ring-unit ring)))))))
x)
(poly-standard-extension plist)))
(append f plist))
(defun polysaturation-extension (ring f plist &aux (k (length plist))
(d (+ k (length (poly-lm (car plist))))))
"Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]."
(setf f (poly-list-add-variables f k)
plist (apply #'poly-append (poly-standard-extension plist))
(cdr (last (poly-termlist plist))) (list (make-term (make-monom d :initial-element 0)
(funcall (ring-uminus ring) (funcall (ring-unit ring))))))
(append f (list plist)))
(defun saturation-extension-1 (ring f p) (polysaturation-extension ring f (list p)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Evaluation of polynomial (prefix) expressions
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun coerce-coeff (ring expr vars)
"Coerce an element of the coefficient ring to a constant polynomial."
;; Modular arithmetic handler by rat
(make-poly-from-termlist (list (make-term (make-monom (length vars) :initial-element 0)
(funcall (ring-parse ring) expr)))
0))
(defun poly-eval (ring expr vars &optional (list-marker '[))
(labels ((p-eval (arg) (poly-eval ring arg vars))
(p-eval-list (args) (mapcar #'p-eval args))
(p-add (x y) (poly-add ring x y)))
(cond
((eql expr 0) (make-poly-zero))
((member expr vars :test #'equalp)
(let ((pos (position expr vars :test #'equalp)))
(make-variable ring (length vars) pos)))
((atom expr)
(coerce-coeff ring expr vars))
((eq (car expr) list-marker)
(cons list-marker (p-eval-list (cdr expr))))
(t
(case (car expr)
(+ (reduce #'p-add (p-eval-list (cdr expr))))
(- (case (length expr)
(1 (make-poly-zero))
(2 (poly-uminus ring (p-eval (cadr expr))))
(3 (poly-sub ring (p-eval (cadr expr)) (p-eval (caddr expr))))
(otherwise (poly-sub ring (p-eval (cadr expr))
(reduce #'p-add (p-eval-list (cddr expr)))))))
(*
(if (endp (cddr expr)) ;unary
(p-eval (cdr expr))
(reduce #'(lambda (p q) (poly-mul ring p q)) (p-eval-list (cdr expr)))))
(expt
(cond
((member (cadr expr) vars :test #'equalp)
;;Special handling of (expt var pow)
(let ((pos (position (cadr expr) vars :test #'equalp)))
(make-variable ring (length vars) pos (caddr expr))))
((not (and (integerp (caddr expr)) (plusp (caddr expr))))
;; Negative power means division in coefficient ring
;; Non-integer power means non-polynomial coefficient
(coerce-coeff ring expr vars))
(t (poly-expt ring (p-eval (cadr expr)) (caddr expr)))))
(otherwise
(coerce-coeff ring expr vars)))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Global optimization/debugging options
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;All inline functions of this module
;; inlining is disabled on sbcl - sbcl 1.2.7 fails to load if enabled
#-sbcl
(declaim (inline free-of-vars make-pair-queue pair-queue-insert
pair-queue-remove pair-queue-empty-p
pair-queue-remove pair-queue-size criterion-1
criterion-2 grobner reduced-grobner sugar-pair-key
sugar-order normal-form normal-form-step grobner-op spoly
equal-test-p
))
;;Optimization options
(declaim (optimize (speed 3) (safety 1)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Debugging/tracing
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defmacro debug-cgb (&rest args)
`(when $poly_grobner_debug (format *terminal-io* ,@args)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; An implementation of Grobner basis
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun spoly (ring f g)
"It yields the S-polynomial of polynomials F and G."
(declare (type poly f g))
(let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
(mf (monom-div lcm (poly-lm f)))
(mg (monom-div lcm (poly-lm g))))
(declare (type monom mf mg))
(multiple-value-bind (c cf cg)
(funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
(declare (ignore c))
(poly-sub
ring
(scalar-times-poly ring cg (monom-times-poly mf f))
(scalar-times-poly ring cf (monom-times-poly mg g))))))
(defun poly-primitive-part (ring p)
"Divide polynomial P with integer coefficients by gcd of its
coefficients and return the result."
(declare (type poly p))
(if (poly-zerop p)
(values p 1)
(let ((c (poly-content ring p)))
(values (make-poly-from-termlist (mapcar
#'(lambda (x)
(make-term (term-monom x)
(funcall (ring-div ring) (term-coeff x) c)))
(poly-termlist p))
(poly-sugar p))
c))))
(defun poly-content (ring p)
"Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
to compute the greatest common divisor."
(declare (type poly p))
(reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; An implementation of the division algorithm
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(declaim (ftype (function (ring t t monom poly poly) poly) grobner-op))
(defun grobner-op (ring c1 c2 m f g)
"Returns C2*F-C1*M*G, where F and G are polynomials M is a monomial.
Assume that the leading terms will cancel."
#+grobner-check(funcall (ring-zerop ring)
(funcall (ring-sub ring)
(funcall (ring-mul ring) c2 (poly-lc f))
(funcall (ring-mul ring) c1 (poly-lc g))))
#+grobner-check(monom-equal-p (poly-lm f) (monom-mul m (poly-lm g)))
(poly-sub ring
(scalar-times-poly ring c2 f)
(scalar-times-poly ring c1 (monom-times-poly m g))))
(defun poly-pseudo-divide (ring f fl)
"Pseudo-divide a polynomial F by the list of polynomials FL. Return
multiple values. The first value is a list of quotients A. The second
value is the remainder R. The third argument is a scalar coefficient
C, such that C*F can be divided by FL within the ring of coefficients,
which is not necessarily a field. Finally, the fourth value is an
integer count of the number of reductions performed. The resulting
objects satisfy the equation: C*F= sum A[i]*FL[i] + R."
(declare (type poly f) (list fl))
(do ((r (make-poly-zero))
(c (funcall (ring-unit ring)))
(a (make-list (length fl) :initial-element (make-poly-zero)))
(division-count 0)
(p f))
((poly-zerop p)
(debug-cgb "~&~3T~d reduction~:p" division-count)
(when (poly-zerop r) (debug-cgb " ---> 0"))
(values (mapcar #'poly-nreverse a) (poly-nreverse r) c division-count))
(declare (fixnum division-count))
(do ((fl fl (rest fl)) ;scan list of divisors
(b a (rest b)))
((cond
((endp fl) ;no division occurred
(push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
(setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
(pop (poly-termlist p)) ;remove lt(p) from p
t)
((monom-divides-p (poly-lm (car fl)) (poly-lm p)) ;division occurred
(incf division-count)
(multiple-value-bind (gcd c1 c2)
(funcall (ring-ezgcd ring) (poly-lc (car fl)) (poly-lc p))
(declare (ignore gcd))
(let ((m (monom-div (poly-lm p) (poly-lm (car fl)))))
;; Multiply the equation c*f=sum ai*fi+r+p by c1.
(mapl #'(lambda (x)
(setf (car x) (scalar-times-poly ring c1 (car x))))
a)
(setf r (scalar-times-poly ring c1 r)
c (funcall (ring-mul ring) c c1)
p (grobner-op ring c2 c1 m p (car fl)))
(push (make-term m c2) (poly-termlist (car b))))
t)))))))
(defun poly-exact-divide (ring f g)
"Divide a polynomial F by another polynomial G. Assume that exact division
with no remainder is possible. Returns the quotient."
(declare (type poly f g))
(multiple-value-bind (quot rem coeff division-count)
(poly-pseudo-divide ring f (list g))
(declare (ignore division-count coeff)
(list quot)
(type poly rem)
(type fixnum division-count))
(unless (poly-zerop rem) (error "Exact division failed."))
(car quot)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; An implementation of the normal form
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(declaim (ftype (function (ring t poly poly t fixnum)
(values poly poly t fixnum))
normal-form-step))
(defun normal-form-step (ring fl p r c division-count
&aux (g (find (poly-lm p) fl
:test #'monom-divisible-by-p
:key #'poly-lm)))
(cond
(g ;division possible
(incf division-count)
(multiple-value-bind (gcd cg cp)
(funcall (ring-ezgcd ring) (poly-lc g) (poly-lc p))
(declare (ignore gcd))
(let ((m (monom-div (poly-lm p) (poly-lm g))))
;; Multiply the equation c*f=sum ai*fi+r+p by cg.
(setf r (scalar-times-poly ring cg r)
c (funcall (ring-mul ring) c cg)
p (grobner-op ring cp cg m p g))))
(debug-cgb "/"))
(t ;no division possible
(push (poly-lt p) (poly-termlist r)) ;move lt(p) to remainder
(setf (poly-sugar r) (max (poly-sugar r) (term-sugar (poly-lt p))))
(pop (poly-termlist p)) ;remove lt(p) from p
(debug-cgb "+")))
(values p r c division-count))
(declaim (ftype (function (ring poly t &optional t) (values poly t fixnum)) normal-form))
;; Merge it sometime with poly-pseudo-divide
(defun normal-form (ring f fl &optional (top-reduction-only $poly_top_reduction_only))
;; Loop invariant: c*f0=sum ai*fi+r+f, where f0 is the initial value of f
#+grobner-check(when (null fl) (warn "normal-form: empty divisor list."))
(do ((r (make-poly-zero))
(c (funcall (ring-unit ring)))
(division-count 0))
((or (poly-zerop f)
;;(endp fl)
(and top-reduction-only (not (poly-zerop r))))
(progn
(debug-cgb "~&~3T~d reduction~:p" division-count)
(when (poly-zerop r)
(debug-cgb " ---> 0")))
(setf (poly-termlist f) (nreconc (poly-termlist r) (poly-termlist f)))
(values f c division-count))
(declare (fixnum division-count)
(type poly r))
(multiple-value-setq (f r c division-count)
(normal-form-step ring fl f r c division-count))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; These are provided mostly for debugging purposes To enable
;; verification of grobner bases with BUCHBERGER-CRITERION, do
;; (pushnew :grobner-check *features*) and compile/load this file.
;; With this feature, the calculations will slow down CONSIDERABLY.
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun buchberger-criterion (ring g)
"Returns T if G is a Grobner basis, by using the Buchberger
criterion: for every two polynomials h1 and h2 in G the S-polynomial
S(h1,h2) reduces to 0 modulo G."
(every
#'poly-zerop
(grobner-makelist (normal-form ring (spoly ring (elt g i) (elt g j)) g nil)
(i 0 (- (length g) 2))
(j (1+ i) (1- (length g))))))
(defun grobner-test (ring g f)
"Test whether G is a Grobner basis and F is contained in G. Return T
upon success and NIL otherwise."
(debug-cgb "~&GROBNER CHECK: ")
(let (($poly_grobner_debug nil)
(stat1 (buchberger-criterion ring g))
(stat2
(every #'poly-zerop
(grobner-makelist (normal-form ring (copy-tree (elt f i)) g nil)
(i 0 (1- (length f)))))))
(unless stat1 (error "~&Buchberger criterion failed."))
(unless stat2
(error "~&Original polys not in ideal spanned by Grobner.")))
(debug-cgb "~&GROBNER CHECK END")
t)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Pair queue implementation
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun sugar-pair-key (p q &aux (lcm (monom-lcm (poly-lm p) (poly-lm q)))
(d (monom-sugar lcm)))
"Returns list (S LCM-TOTAL-DEGREE) where S is the sugar of the S-polynomial of
polynomials P and Q, and LCM-TOTAL-DEGREE is the degree of is LCM(LM(P),LM(Q))."
(declare (type poly p q) (type monom lcm) (type fixnum d))
(cons (max
(+ (- d (monom-sugar (poly-lm p))) (poly-sugar p))
(+ (- d (monom-sugar (poly-lm q))) (poly-sugar q)))
lcm))
(defstruct (pair
(:constructor make-pair (first second
&aux
(sugar (car (sugar-pair-key first second)))
(division-data nil))))
(first nil :type poly)
(second nil :type poly)
(sugar 0 :type fixnum)
(division-data nil :type list))
;;(defun pair-sugar (pair &aux (p (pair-first pair)) (q (pair-second pair)))
;; (car (sugar-pair-key p q)))
(defun sugar-order (x y)
"Pair order based on sugar, ties broken by normal strategy."
(declare (type cons x y))
(or (< (car x) (car y))
(and (= (car x) (car y))
(< (monom-total-degree (cdr x))
(monom-total-degree (cdr y))))))
(defvar *pair-key-function* #'sugar-pair-key
"Function that, given two polynomials as argument, computed the key
in the pair queue.")
(defvar *pair-order* #'sugar-order
"Function that orders the keys of pairs.")
(defun make-pair-queue ()
"Constructs a priority queue for critical pairs."
(make-priority-queue
:element-type 'pair
:element-key #'(lambda (pair) (funcall *pair-key-function* (pair-first pair) (pair-second pair)))
:test *pair-order*))
(defun pair-queue-initialize (pq f start
&aux
(s (1- (length f)))
(b (nconc (grobner-makelist (make-pair (elt f i) (elt f j))
(i 0 (1- start)) (j start s))
(grobner-makelist (make-pair (elt f i) (elt f j))
(i start (1- s)) (j (1+ i) s)))))
"Initializes the priority for critical pairs. F is the initial list of polynomials.
START is the first position beyond the elements which form a partial
grobner basis, i.e. satisfy the Buchberger criterion."
(declare (type priority-queue pq) (type fixnum start))
(dolist (pair b pq)
(priority-queue-insert pq pair)))
(defun pair-queue-insert (b pair)
(priority-queue-insert b pair))
(defun pair-queue-remove (b)
(priority-queue-remove b))
(defun pair-queue-size (b)
(priority-queue-size b))
(defun pair-queue-empty-p (b)
(priority-queue-empty-p b))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Buchberger Algorithm Implementation
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun buchberger (ring f start &optional (top-reduction-only $poly_top_reduction_only))
"An implementation of the Buchberger algorithm. Return Grobner basis
of the ideal generated by the polynomial list F. Polynomials 0 to
START-1 are assumed to be a Grobner basis already, so that certain
critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top
reduction will be preformed. This function assumes that all polynomials
in F are non-zero."
(declare (type fixnum start))
(when (endp f) (return-from buchberger f)) ;cut startup costs
(debug-cgb "~&GROBNER BASIS - BUCHBERGER ALGORITHM")
(when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
#+grobner-check (when (plusp start)
(grobner-test ring (subseq f 0 start) (subseq f 0 start)))
;;Initialize critical pairs
(let ((b (pair-queue-initialize (make-pair-queue)
f start))
(b-done (make-hash-table :test #'equal)))
(declare (type priority-queue b) (type hash-table b-done))
(dotimes (i (1- start))
(do ((j (1+ i) (1+ j))) ((>= j start))
(setf (gethash (list (elt f i) (elt f j)) b-done) t)))
(do ()
((pair-queue-empty-p b)
#+grobner-check(grobner-test ring f f)
(debug-cgb "~&GROBNER END")
f)
(let ((pair (pair-queue-remove b)))
(declare (type pair pair))
(cond
((criterion-1 pair) nil)
((criterion-2 pair b-done f) nil)
(t
(let ((sp (normal-form ring (spoly ring (pair-first pair)
(pair-second pair))
f top-reduction-only)))
(declare (type poly sp))
(cond
((poly-zerop sp)
nil)
(t
(setf sp (poly-primitive-part ring sp)
f (nconc f (list sp)))
;; Add new critical pairs
(dolist (h f)
(pair-queue-insert b (make-pair h sp)))
(debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;"
(pair-sugar pair) (length f) (pair-queue-size b)
(hash-table-count b-done)))))))
(setf (gethash (list (pair-first pair) (pair-second pair)) b-done)
t)))))
(defun parallel-buchberger (ring f start &optional (top-reduction-only $poly_top_reduction_only))
"An implementation of the Buchberger algorithm. Return Grobner basis
of the ideal generated by the polynomial list F. Polynomials 0 to
START-1 are assumed to be a Grobner basis already, so that certain
critical pairs will not be examined. If TOP-REDUCTION-ONLY set, top
reduction will be preformed."
(declare (ignore top-reduction-only)
(type fixnum start))
(when (endp f) (return-from parallel-buchberger f)) ;cut startup costs
(debug-cgb "~&GROBNER BASIS - PARALLEL-BUCHBERGER ALGORITHM")
(when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
#+grobner-check (when (plusp start)
(grobner-test ring (subseq f 0 start) (subseq f 0 start)))
;;Initialize critical pairs
(let ((b (pair-queue-initialize (make-pair-queue) f start))
(b-done (make-hash-table :test #'equal)))
(declare (type priority-queue b)
(type hash-table b-done))
(dotimes (i (1- start))
(do ((j (1+ i) (1+ j))) ((>= j start))
(declare (type fixnum j))
(setf (gethash (list (elt f i) (elt f j)) b-done) t)))
(do ()
((pair-queue-empty-p b)
#+grobner-check(grobner-test ring f f)
(debug-cgb "~&GROBNER END")
f)
(let ((pair (pair-queue-remove b)))
(when (null (pair-division-data pair))
(setf (pair-division-data pair) (list (spoly ring
(pair-first pair)
(pair-second pair))
(make-poly-zero)
(funcall (ring-unit ring))
0)))
(cond
((criterion-1 pair) nil)
((criterion-2 pair b-done f) nil)
(t
(let* ((dd (pair-division-data pair))
(p (first dd))
(sp (second dd))
(c (third dd))
(division-count (fourth dd)))
(cond
((poly-zerop p) ;normal form completed
(debug-cgb "~&~3T~d reduction~:p" division-count)
(cond
((poly-zerop sp)
(debug-cgb " ---> 0")
nil)
(t
(setf sp (poly-nreverse sp)
sp (poly-primitive-part ring sp)
f (nconc f (list sp)))
;; Add new critical pairs
(dolist (h f)
(pair-queue-insert b (make-pair h sp)))
(debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d; Pairs done: ~d;"
(pair-sugar pair) (length f) (pair-queue-size b)
(hash-table-count b-done))))
(setf (gethash (list (pair-first pair) (pair-second pair))
b-done) t))
(t ;normal form not complete
(do ()
((cond
((> (poly-sugar sp) (pair-sugar pair))
(debug-cgb "(~a)?" (poly-sugar sp))
t)
((poly-zerop p)
(debug-cgb ".")
t)
(t nil))
(setf (first dd) p
(second dd) sp
(third dd) c
(fourth dd) division-count
(pair-sugar pair) (poly-sugar sp))
(pair-queue-insert b pair))
(multiple-value-setq (p sp c division-count)
(normal-form-step ring f p sp c division-count))))))))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Grobner Criteria
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun criterion-1 (pair)
"Returns T if the leading monomials of the two polynomials
in G pointed to by the integers in PAIR have disjoint (relatively prime)
monomials. This test is known as the first Buchberger criterion."
(declare (type pair pair))
(let ((f (pair-first pair))
(g (pair-second pair)))
(when (monom-rel-prime-p (poly-lm f) (poly-lm g))
(debug-cgb ":1")
(return-from criterion-1 t))))
(defun criterion-2 (pair b-done partial-basis
&aux (f (pair-first pair)) (g (pair-second pair))
(place :before))
"Returns T if the leading monomial of some element P of
PARTIAL-BASIS divides the LCM of the leading monomials of the two
polynomials in the polynomial list PARTIAL-BASIS, and P paired with
each of the polynomials pointed to by the the PAIR has already been
treated, as indicated by the absence in the hash table B-done."
(declare (type pair pair) (type hash-table b-done)
(type poly f g))
;; In the code below we assume that pairs are ordered as follows:
;; if PAIR is (I J) then I appears before J in the PARTIAL-BASIS.
;; We traverse the list PARTIAL-BASIS and keep track of where we
;; are, so that we can produce the pairs in the correct order
;; when we check whether they have been processed, i.e they
;; appear in the hash table B-done
(dolist (h partial-basis nil)
(cond
((eq h f)
#+grobner-check(assert (eq place :before))
(setf place :in-the-middle))
((eq h g)
#+grobner-check(assert (eq place :in-the-middle))
(setf place :after))
((and (monom-divides-monom-lcm-p (poly-lm h) (poly-lm f) (poly-lm g))
(gethash (case place
(:before (list h f))
((:in-the-middle :after) (list f h)))
b-done)
(gethash (case place
((:before :in-the-middle) (list h g))
(:after (list g h)))
b-done))
(debug-cgb ":2")
(return-from criterion-2 t)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; An implementation of the algorithm of Gebauer and Moeller, as
;; described in the book of Becker-Weispfenning, p. 232
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun gebauer-moeller (ring f start &optional (top-reduction-only $poly_top_reduction_only))
"Compute Grobner basis by using the algorithm of Gebauer and
Moeller. This algorithm is described as BUCHBERGERNEW2 in the book by
Becker-Weispfenning entitled ``Grobner Bases''. This function assumes
that all polynomials in F are non-zero."
(declare (ignore top-reduction-only)
(type fixnum start))
(cond
((endp f) (return-from gebauer-moeller nil))
((endp (cdr f))
(return-from gebauer-moeller (list (poly-primitive-part ring (car f))))))
(debug-cgb "~&GROBNER BASIS - GEBAUER MOELLER ALGORITHM")
(when (plusp start) (debug-cgb "~&INCREMENTAL:~d done" start))
#+grobner-check (when (plusp start)
(grobner-test ring (subseq f 0 start) (subseq f 0 start)))
(let ((b (make-pair-queue))
(g (subseq f 0 start))
(f1 (subseq f start)))
(do () ((endp f1))
(multiple-value-setq (g b)
(gebauer-moeller-update g b (poly-primitive-part ring (pop f1)))))
(do () ((pair-queue-empty-p b))
(let* ((pair (pair-queue-remove b))
(g1 (pair-first pair))
(g2 (pair-second pair))
(h (normal-form ring (spoly ring g1 g2)
g
nil #| Always fully reduce! |#
)))
(unless (poly-zerop h)
(setf h (poly-primitive-part ring h))
(multiple-value-setq (g b)
(gebauer-moeller-update g b h))
(debug-cgb "~&Sugar: ~d Polynomials: ~d; Pairs left: ~d~%"
(pair-sugar pair) (length g) (pair-queue-size b))
)))
#+grobner-check(grobner-test ring g f)
(debug-cgb "~&GROBNER END")
g))
(defun gebauer-moeller-update (g b h
&aux
c d e
(b-new (make-pair-queue))
g-new)
"An implementation of the auxiliary UPDATE algorithm used by the
Gebauer-Moeller algorithm. G is a list of polynomials, B is a list of
critical pairs and H is a new polynomial which possibly will be added
to G. The naming conventions used are very close to the one used in
the book of Becker-Weispfenning."
(declare
#+allegro (dynamic-extent b)
(type poly h)
(type priority-queue b))
(setf c g d nil)
(do () ((endp c))
(let ((g1 (pop c)))
(declare (type poly g1))
(when (or (monom-rel-prime-p (poly-lm h) (poly-lm g1))
(and
(notany #'(lambda (g2) (monom-lcm-divides-monom-lcm-p
(poly-lm h) (poly-lm g2)
(poly-lm h) (poly-lm g1)))
c)
(notany #'(lambda (g2) (monom-lcm-divides-monom-lcm-p
(poly-lm h) (poly-lm g2)
(poly-lm h) (poly-lm g1)))
d)))
(push g1 d))))
(setf e nil)
(do () ((endp d))
(let ((g1 (pop d)))
(declare (type poly g1))
(unless (monom-rel-prime-p (poly-lm h) (poly-lm g1))
(push g1 e))))
(do () ((pair-queue-empty-p b))
(let* ((pair (pair-queue-remove b))
(g1 (pair-first pair))
(g2 (pair-second pair)))
(declare (type pair pair)
(type poly g1 g2))
(when (or (not (monom-divides-monom-lcm-p
(poly-lm h)
(poly-lm g1) (poly-lm g2)))
(monom-lcm-equal-monom-lcm-p
(poly-lm g1) (poly-lm h)
(poly-lm g1) (poly-lm g2))
(monom-lcm-equal-monom-lcm-p
(poly-lm h) (poly-lm g2)
(poly-lm g1) (poly-lm g2)))
(pair-queue-insert b-new (make-pair g1 g2)))))
(dolist (g3 e)
(pair-queue-insert b-new (make-pair h g3)))
(setf g-new nil)
(do () ((endp g))
(let ((g1 (pop g)))
(declare (type poly g1))
(unless (monom-divides-p (poly-lm h) (poly-lm g1))
(push g1 g-new))))
(push h g-new)
(values g-new b-new))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Standard postprocessing of Grobner bases
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun reduction (ring plist)
"Reduce a list of polynomials PLIST, so that non of the terms in any of
the polynomials is divisible by a leading monomial of another
polynomial. Return the reduced list."
(do ((q plist)
(found t))
((not found)
(mapcar #'(lambda (x) (poly-primitive-part ring x)) q))
;;Find p in Q such that p is reducible mod Q\{p}
(setf found nil)
(dolist (x q)
(let ((q1 (remove x q)))
(multiple-value-bind (h c div-count)
(normal-form ring x q1 nil #| not a top reduction! |# )
(declare (ignore c))
(unless (zerop div-count)
(setf found t q q1)
(unless (poly-zerop h)
(setf q (nconc q1 (list h))))
(return)))))))
(defun minimization (p)
"Returns a sublist of the polynomial list P spanning the same
monomial ideal as P but minimal, i.e. no leading monomial
of a polynomial in the sublist divides the leading monomial
of another polynomial."
(do ((q p)
(found t))
((not found) q)
;;Find p in Q such that lm(p) is in LM(Q\{p})
(setf found nil
q (dolist (x q q)
(let ((q1 (remove x q)))
(when (member-if #'(lambda (p) (monom-divides-p (poly-lm x) (poly-lm p))) q1)
(setf found t)
(return q1)))))))
(defun poly-normalize (ring p &aux (c (poly-lc p)))
"Divide a polynomial by its leading coefficient. It assumes
that the division is possible, which may not always be the
case in rings which are not fields. The exact division operator
is assumed to be provided by the RING structure of the
COEFFICIENT-RING package."
(mapc #'(lambda (term)
(setf (term-coeff term) (funcall (ring-div ring) (term-coeff term) c)))
(poly-termlist p))
p)
(defun poly-normalize-list (ring plist)
"Divide every polynomial in a list PLIST by its leading coefficient. "
(mapcar #'(lambda (x) (poly-normalize ring x)) plist))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Algorithm and Pair heuristic selection
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun find-grobner-function (algorithm)
"Return a function which calculates Grobner basis, based on its
names. Names currently used are either Lisp symbols, Maxima symbols or
keywords."
(ecase algorithm
((buchberger :buchberger $buchberger) #'buchberger)
((parallel-buchberger :parallel-buchberger $parallel_buchberger) #'parallel-buchberger)
((gebauer-moeller :gebauer_moeller $gebauer_moeller) #'gebauer-moeller)))
(defun grobner (ring f &optional (start 0) (top-reduction-only nil))
;;(setf F (sort F #'< :key #'sugar))
(funcall
(find-grobner-function $poly_grobner_algorithm)
ring f start top-reduction-only))
(defun reduced-grobner (ring f &optional (start 0) (top-reduction-only $poly_top_reduction_only))
(reduction ring (grobner ring f start top-reduction-only)))
(defun set-pair-heuristic (method)
"Sets up variables *PAIR-KEY-FUNCTION* and *PAIR-ORDER* used
to determine the priority of critical pairs in the priority queue."
(ecase method
((sugar :sugar $sugar)
(setf *pair-key-function* #'sugar-pair-key
*pair-order* #'sugar-order))
; ((minimal-mock-spoly :minimal-mock-spoly $minimal_mock_spoly)
; (setf *pair-key-function* #'mock-spoly
; *pair-order* #'mock-spoly-order))
((minimal-lcm :minimal-lcm $minimal_lcm)
(setf *pair-key-function* #'(lambda (p q)
(monom-lcm (poly-lm p) (poly-lm q)))
*pair-order* #'reverse-monomial-order))
((minimal-total-degree :minimal-total-degree $minimal_total_degree)
(setf *pair-key-function* #'(lambda (p q)
(monom-total-degree
(monom-lcm (poly-lm p) (poly-lm q))))
*pair-order* #'<))
((minimal-length :minimal-length $minimal_length)
(setf *pair-key-function* #'(lambda (p q)
(+ (poly-length p) (poly-length q)))
*pair-order* #'<))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Operations in ideal theory
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Does the term depend on variable K?
(defun term-depends-p (term k)
"Return T if the term TERM depends on variable number K."
(monom-depends-p (term-monom term) k))
;; Does the polynomial P depend on variable K?
(defun poly-depends-p (p k)
"Return T if the term polynomial P depends on variable number K."
(some #'(lambda (term) (term-depends-p term k)) (poly-termlist p)))
(defun ring-intersection (plist k)
"This function assumes that polynomial list PLIST is a Grobner basis
and it calculates the intersection with the ring R[x[k+1],...,x[n]], i.e.
it discards polynomials which depend on variables x[0], x[1], ..., x[k]."
(dotimes (i k plist)
(setf plist
(remove-if #'(lambda (p)
(poly-depends-p p i))
plist))))
(defun elimination-ideal (ring flist k
&optional (top-reduction-only $poly_top_reduction_only) (start 0)
&aux (*monomial-order*
(or *elimination-order*
(elimination-order k))))
(ring-intersection (reduced-grobner ring flist start top-reduction-only) k))
(defun colon-ideal (ring f g &optional (top-reduction-only $poly_top_reduction_only))
"Returns the reduced Grobner basis of the colon ideal Id(F):Id(G),
where F and G are two lists of polynomials. The colon ideal I:J is
defined as the set of polynomials H such that for all polynomials W in
J the polynomial W*H belongs to I."
(cond
((endp g)
;;Id(G) consists of 0 only so W*0=0 belongs to Id(F)
(if (every #'poly-zerop f)
(error "First ideal must be non-zero.")
(list (make-poly
(list (make-term
(make-monom (monom-dimension (poly-lm (find-if-not #'poly-zerop f)))
:initial-element 0)
(funcall (ring-unit ring))))))))
((endp (cdr g))
(colon-ideal-1 ring f (car g) top-reduction-only))
(t
(ideal-intersection ring
(colon-ideal-1 ring f (car g) top-reduction-only)
(colon-ideal ring f (rest g) top-reduction-only)
top-reduction-only))))
(defun colon-ideal-1 (ring f g &optional (top-reduction-only $poly_top_reduction_only))
"Returns the reduced Grobner basis of the colon ideal Id(F):Id({G}), where
F is a list of polynomials and G is a polynomial."
(mapcar #'(lambda (x) (poly-exact-divide ring x g)) (ideal-intersection ring f (list g) top-reduction-only)))
(defun ideal-intersection (ring f g &optional (top-reduction-only $poly_top_reduction_only)
&aux (*monomial-order* (or *elimination-order*
#'elimination-order-1)))
(mapcar #'poly-contract
(ring-intersection
(reduced-grobner
ring
(append (mapcar #'(lambda (p) (poly-extend p (make-monom 1 :initial-element 1))) f)
(mapcar #'(lambda (p)
(poly-append (poly-extend (poly-uminus ring p)
(make-monom 1 :initial-element 1))
(poly-extend p)))
g))
0
top-reduction-only)
1)))
(defun poly-lcm (ring f g)
"Return LCM (least common multiple) of two polynomials F and G.
The polynomials must be ordered according to monomial order PRED
and their coefficients must be compatible with the RING structure
defined in the COEFFICIENT-RING package."
(cond
((poly-zerop f) f)
((poly-zerop g) g)
((and (endp (cdr (poly-termlist f))) (endp (cdr (poly-termlist g))))
(let ((m (monom-lcm (poly-lm f) (poly-lm g))))
(make-poly-from-termlist (list (make-term m (funcall (ring-lcm ring) (poly-lc f) (poly-lc g)))))))
(t
(multiple-value-bind (f f-cont)
(poly-primitive-part ring f)
(multiple-value-bind (g g-cont)
(poly-primitive-part ring g)
(scalar-times-poly
ring
(funcall (ring-lcm ring) f-cont g-cont)
(poly-primitive-part ring (car (ideal-intersection ring (list f) (list g) nil)))))))))
;; Do two Grobner bases yield the same ideal?
(defun grobner-equal (ring g1 g2)
"Returns T if two lists of polynomials G1 and G2, assumed to be Grobner bases,
generate the same ideal, and NIL otherwise."
(and (grobner-subsetp ring g1 g2) (grobner-subsetp ring g2 g1)))
(defun grobner-subsetp (ring g1 g2)
"Returns T if a list of polynomials G1 generates
an ideal contained in the ideal generated by a polynomial list G2,
both G1 and G2 assumed to be Grobner bases. Returns NIL otherwise."
(every #'(lambda (p) (grobner-member ring p g2)) g1))
(defun grobner-member (ring p g)
"Returns T if a polynomial P belongs to the ideal generated by the
polynomial list G, which is assumed to be a Grobner basis. Returns NIL otherwise."
(poly-zerop (normal-form ring p g nil)))
;; Calculate F : p^inf
(defun ideal-saturation-1 (ring f p start &optional (top-reduction-only $poly_top_reduction_only)
&aux (*monomial-order* (or *elimination-order*
#'elimination-order-1)))
"Returns the reduced Grobner basis of the saturation of the ideal
generated by a polynomial list F in the ideal generated by a single
polynomial P. The saturation ideal is defined as the set of
polynomials H such for some natural number n (* (EXPT P N) H) is in the ideal
F. Geometrically, over an algebraically closed field, this is the set
of polynomials in the ideal generated by F which do not identically
vanish on the variety of P."
(mapcar
#'poly-contract
(ring-intersection
(reduced-grobner
ring
(saturation-extension-1 ring f p)
start top-reduction-only)
1)))
;; Calculate F : p1^inf : p2^inf : ... : ps^inf
(defun ideal-polysaturation-1 (ring f plist start &optional (top-reduction-only $poly_top_reduction_only))
"Returns the reduced Grobner basis of the ideal obtained by a
sequence of successive saturations in the polynomials
of the polynomial list PLIST of the ideal generated by the
polynomial list F."
(cond
((endp plist) (reduced-grobner ring f start top-reduction-only))
(t (let ((g (ideal-saturation-1 ring f (car plist) start top-reduction-only)))
(ideal-polysaturation-1 ring g (rest plist) (length g) top-reduction-only)))))
(defun ideal-saturation (ring f g start &optional (top-reduction-only $poly_top_reduction_only)
&aux
(k (length g))
(*monomial-order* (or *elimination-order*
(elimination-order k))))
"Returns the reduced Grobner basis of the saturation of the ideal
generated by a polynomial list F in the ideal generated a polynomial
list G. The saturation ideal is defined as the set of polynomials H
such for some natural number n and some P in the ideal generated by G
the polynomial P**N * H is in the ideal spanned by F. Geometrically,
over an algebraically closed field, this is the set of polynomials in
the ideal generated by F which do not identically vanish on the
variety of G."
(mapcar
#'(lambda (q) (poly-contract q k))
(ring-intersection
(reduced-grobner ring
(polysaturation-extension ring f g)
start
top-reduction-only)
k)))
(defun ideal-polysaturation (ring f ideal-list start &optional (top-reduction-only $poly_top_reduction_only))
"Returns the reduced Grobner basis of the ideal obtained by a
successive applications of IDEAL-SATURATION to F and lists of
polynomials in the list IDEAL-LIST."
(cond
((endp ideal-list) f)
(t (let ((h (ideal-saturation ring f (car ideal-list) start top-reduction-only)))
(ideal-polysaturation ring h (rest ideal-list) (length h) top-reduction-only)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Set up the coefficients to be polynomials
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; (defun poly-ring (ring vars)
;; (make-ring
;; :parse #'(lambda (expr) (poly-eval ring expr vars))
;; :unit #'(lambda () (poly-unit ring (length vars)))
;; :zerop #'poly-zerop
;; :add #'(lambda (x y) (poly-add ring x y))
;; :sub #'(lambda (x y) (poly-sub ring x y))
;; :uminus #'(lambda (x) (poly-uminus ring x))
;; :mul #'(lambda (x y) (poly-mul ring x y))
;; :div #'(lambda (x y) (poly-exact-divide ring x y))
;; :lcm #'(lambda (x y) (poly-lcm ring x y))
;; :ezgcd #'(lambda (x y &aux (gcd (poly-gcd ring x y)))
;; (values gcd
;; (poly-exact-divide ring x gcd)
;; (poly-exact-divide ring y gcd)))
;; :gcd #'(lambda (x y) (poly-gcd x y))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Conversion from internal to infix form
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun coerce-to-infix (poly-type object vars)
(case poly-type
(:termlist
`(+ ,@(mapcar #'(lambda (term) (coerce-to-infix :term term vars)) object)))
(:polynomial
(coerce-to-infix :termlist (poly-termlist object) vars))
(:poly-list
`([ ,@(mapcar #'(lambda (p) (coerce-to-infix :polynomial p vars)) object)))
(:term
`(* ,(term-coeff object)
,@(mapcar #'(lambda (var power) `(expt ,var ,power))
vars (monom-exponents (term-monom object)))))
(otherwise
object)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Maxima expression ring
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defparameter *expression-ring*
(make-ring
;;(defun coeff-zerop (expr) (meval1 `(($is) (($equal) ,expr 0))))
:parse #'(lambda (expr)
(when modulus (setf expr ($rat expr)))
expr)
:unit #'(lambda () (if modulus ($rat 1) 1))
:zerop #'(lambda (expr)
;;When is exactly a maxima expression equal to 0?
(cond ((numberp expr)
(= expr 0))
((atom expr) nil)
(t
(case (caar expr)
(mrat (eql ($ratdisrep expr) 0))
(otherwise (eql (sratsimp expr) 0))))))
:add #'(lambda (x y) (sratsimp (m+ x y)))
:sub #'(lambda (x y) (sratsimp (m- x y)))
:uminus #'(lambda (x) (m- x))
:mul #'(lambda (x y) (m* x y))
;;(defun coeff-div (x y) (cadr ($divide x y)))
:div #'(lambda (x y) (sratsimp (m// x y)))
:lcm #'(lambda (x y) (sratsimp (m// (m* x y) (second ($ezgcd x y)))))
:ezgcd #'(lambda (x y) (apply #'values (cdr ($ezgcd x y))))
:gcd #'(lambda (x y) (second ($ezgcd x y)))))
(defvar *maxima-ring* *expression-ring*
"The ring of coefficients, over which all polynomials
are assumed to be defined.")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Maxima expression parsing
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun equal-test-p (expr1 expr2)
(alike1 expr1 expr2))
(defun coerce-maxima-list (expr)
"convert a maxima list to lisp list."
(cond
((and (consp (car expr)) (eql (caar expr) 'mlist)) (cdr expr))
(t expr)))
(defun free-of-vars (expr vars) (apply #'$freeof `(,@vars ,expr)))
;; This function removes rational numbers from coefficients of polynomials.
(defun parse-poly (expr vars)
(parse-poly1 ($num (sratsimp expr)) vars))
(defun parse-poly1 (expr vars &aux (vars (coerce-maxima-list vars)))
"Convert a maxima polynomial expression EXPR in variables VARS to internal form."
(labels ((parse (arg) (parse-poly1 arg vars))
(parse-list (args) (mapcar #'parse args)))
(cond
((eql expr 0) (make-poly-zero))
((member expr vars :test #'equal-test-p)
(let ((pos (position expr vars :test #'equal-test-p)))
(make-variable *maxima-ring* (length vars) pos)))
((free-of-vars expr vars)
;;This means that variable-free CRE and Poisson forms will be converted
;;to coefficients intact
(coerce-coeff *maxima-ring* expr vars))
(t
(case (caar expr)
(mplus (reduce #'(lambda (x y) (poly-add *maxima-ring* x y)) (parse-list (cdr expr))))
(mminus (poly-uminus *maxima-ring* (parse (cadr expr))))
(mtimes
(if (endp (cddr expr)) ;unary
(parse (cdr expr))
(reduce #'(lambda (p q) (poly-mul *maxima-ring* p q)) (parse-list (cdr expr)))))
(mexpt
(cond
((member (cadr expr) vars :test #'equal-test-p)
;;Special handling of (expt var pow)
(let ((pos (position (cadr expr) vars :test #'equal-test-p)))
(make-variable *maxima-ring* (length vars) pos (caddr expr))))
((not (and (integerp (caddr expr)) (plusp (caddr expr))))
;; Negative power means division in coefficient ring
;; Non-integer power means non-polynomial coefficient
(mtell "~%Warning: Expression ~%~M~%contains power which is not a positive integer. Parsing as coefficient.~%"
expr)
(coerce-coeff *maxima-ring* expr vars))
(t (poly-expt *maxima-ring* (parse (cadr expr)) (caddr expr)))))
(mrat (parse ($ratdisrep expr)))
(mpois (parse ($outofpois expr)))
(otherwise
(coerce-coeff *maxima-ring* expr vars)))))))
(defun parse-poly-list (expr vars)
(case (caar expr)
(mlist (mapcar #'(lambda (p) (parse-poly p vars)) (cdr expr)))
(t (merror "Expression ~M is not a list of polynomials in variables ~M."
expr vars))))
(defun parse-poly-list-list (poly-list-list vars)
(mapcar #'(lambda (g) (parse-poly-list g vars)) (coerce-maxima-list poly-list-list)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Order utilities
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun find-order (order)
"This function returns the order function bases on its name."
(cond
((null order) nil)
((symbolp order)
(case order
((lex :lex $lex) #'lex>)
((grlex :grlex $grlex) #'grlex>)
((grevlex :grevlex $grevlex) #'grevlex>)
((invlex :invlex $invlex) #'invlex>)
((elimination-order-1 :elimination-order-1 elimination_order_1) #'elimination-order-1)
(otherwise
(mtell "~%Warning: Order ~M not found. Using default.~%" order))))
(t
(mtell "~%Order specification ~M is not recognized. Using default.~%" order)
nil)))
(defun find-ring (ring)
"This function returns the ring structure bases on input symbol."
(cond
((null ring) nil)
((symbolp ring)
(case ring
((expression-ring :expression-ring $expression_ring) *expression-ring*)
((ring-of-integers :ring-of-integers $ring_of_integers) *ring-of-integers*)
(otherwise
(mtell "~%Warning: Ring ~M not found. Using default.~%" ring))))
(t
(mtell "~%Ring specification ~M is not recognized. Using default.~%" ring)
nil)))
(defmacro with-monomial-order ((order) &body body)
"Evaluate BODY with monomial order set to ORDER."
`(let ((*monomial-order* (or (find-order ,order) *monomial-order*)))
. ,body))
(defmacro with-coefficient-ring ((ring) &body body)
"Evaluate BODY with coefficient ring set to RING."
`(let ((*maxima-ring* (or (find-ring ,ring) *maxima-ring*)))
. ,body))
(defmacro with-elimination-orders ((primary secondary elimination-order)
&body body)
"Evaluate BODY with primary and secondary elimination orders set to PRIMARY and SECONDARY."
`(let ((*primary-elimination-order* (or (find-order ,primary) *primary-elimination-order*))
(*secondary-elimination-order* (or (find-order ,secondary) *secondary-elimination-order*))
(*elimination-order* (or (find-order ,elimination-order) *elimination-order*)))
. ,body))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Conversion from internal form to Maxima general form
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun maxima-head ()
(if $poly_return_term_list
'(mlist)
'(mplus)))
(defun coerce-to-maxima (poly-type object vars)
(case poly-type
(:polynomial
`(,(maxima-head) ,@(mapcar #'(lambda (term) (coerce-to-maxima :term term vars)) (poly-termlist object))))
(:poly-list
`((mlist) ,@(mapcar #'(lambda (p) (coerce-to-maxima :polynomial p vars)) object)))
(:term
`((mtimes) ,(term-coeff object)
,@(mapcar #'(lambda (var power) `((mexpt) ,var ,power))
vars (monom-exponents (term-monom object)))))
(otherwise
object)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Macro facility for writing Maxima-level wrappers for
;; functions operating on internal representation
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defmacro with-parsed-polynomials (((maxima-vars &optional (maxima-new-vars nil new-vars-supplied-p))
&key (polynomials nil)
(poly-lists nil)
(poly-list-lists nil)
(value-type nil))
&body body
&aux (vars (gensym))
(new-vars (gensym)))
`(let ((,vars (coerce-maxima-list ,maxima-vars))
,@(when new-vars-supplied-p
(list `(,new-vars (coerce-maxima-list ,maxima-new-vars)))))
(coerce-to-maxima
,value-type
(with-coefficient-ring ($poly_coefficient_ring)
(with-monomial-order ($poly_monomial_order)
(with-elimination-orders ($poly_primary_elimination_order
$poly_secondary_elimination_order
$poly_elimination_order)
(let ,(let ((args nil))
(dolist (p polynomials args)
(setf args (cons `(,p (parse-poly ,p ,vars)) args)))
(dolist (p poly-lists args)
(setf args (cons `(,p (parse-poly-list ,p ,vars)) args)))
(dolist (p poly-list-lists args)
(setf args (cons `(,p (parse-poly-list-list ,p ,vars)) args))))
. ,body))))
,(if new-vars-supplied-p
`(append ,vars ,new-vars)
vars))))
(defmacro define-unop (maxima-name fun-name
&optional (documentation nil documentation-supplied-p))
"Define a MAXIMA-level unary operator MAXIMA-NAME corresponding to unary function FUN-NAME."
`(defun ,maxima-name (p vars
&aux
(vars (coerce-maxima-list vars))
(p (parse-poly p vars)))
,@(when documentation-supplied-p (list documentation))
(coerce-to-maxima :polynomial (,fun-name *maxima-ring* p) vars)))
(defmacro define-binop (maxima-name fun-name
&optional (documentation nil documentation-supplied-p))
"Define a MAXIMA-level binary operator MAXIMA-NAME corresponding to binary function FUN-NAME."
`(defmfun ,maxima-name (p q vars
&aux
(vars (coerce-maxima-list vars))
(p (parse-poly p vars))
(q (parse-poly q vars)))
,@(when documentation-supplied-p (list documentation))
(coerce-to-maxima :polynomial (,fun-name *maxima-ring* p q) vars)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Maxima-level interface functions
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Auxiliary function for removing zero polynomial
(defun remzero (plist) (remove #'poly-zerop plist))
;;Simple operators
(define-binop $poly_add poly-add
"Adds two polynomials P and Q")
(define-binop $poly_subtract poly-sub
"Subtracts a polynomial Q from P.")
(define-binop $poly_multiply poly-mul
"Returns the product of polynomials P and Q.")
(define-binop $poly_s_polynomial spoly
"Returns the syzygy polynomial (S-polynomial) of two polynomials P and Q.")
(define-unop $poly_primitive_part poly-primitive-part
"Returns the polynomial P divided by GCD of its coefficients.")
(define-unop $poly_normalize poly-normalize
"Returns the polynomial P divided by the leading coefficient.")
;;Functions
(defmfun $poly_expand (p vars)
"This function is equivalent to EXPAND(P) if P parses correctly to a polynomial.
If the representation is not compatible with a polynomial in variables VARS,
the result is an error."
(with-parsed-polynomials ((vars) :polynomials (p)
:value-type :polynomial)
p))
(defmfun $poly_expt (p n vars)
(with-parsed-polynomials ((vars) :polynomials (p) :value-type :polynomial)
(poly-expt *maxima-ring* p n)))
(defmfun $poly_content (p vars)
(with-parsed-polynomials ((vars) :polynomials (p))
(poly-content *maxima-ring* p)))
(defmfun $poly_pseudo_divide (f fl vars
&aux (vars (coerce-maxima-list vars))
(f (parse-poly f vars))
(fl (parse-poly-list fl vars)))
(multiple-value-bind (quot rem c division-count)
(poly-pseudo-divide *maxima-ring* f fl)
`((mlist)
,(coerce-to-maxima :poly-list quot vars)
,(coerce-to-maxima :polynomial rem vars)
,c
,division-count)))
(defmfun $poly_exact_divide (f g vars)
(with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
(poly-exact-divide *maxima-ring* f g)))
(defmfun $poly_normal_form (f fl vars)
(with-parsed-polynomials ((vars) :polynomials (f)
:poly-lists (fl)
:value-type :polynomial)
(normal-form *maxima-ring* f (remzero fl) nil)))
(defmfun $poly_buchberger_criterion (g vars)
(with-parsed-polynomials ((vars) :poly-lists (g))
(buchberger-criterion *maxima-ring* g)))
(defmfun $poly_buchberger (fl vars)
(with-parsed-polynomials ((vars) :poly-lists (fl) :value-type :poly-list)
(buchberger *maxima-ring* (remzero fl) 0 nil)))
(defmfun $poly_reduction (plist vars)
(with-parsed-polynomials ((vars) :poly-lists (plist)
:value-type :poly-list)
(reduction *maxima-ring* plist)))
(defmfun $poly_minimization (plist vars)
(with-parsed-polynomials ((vars) :poly-lists (plist)
:value-type :poly-list)
(minimization plist)))
(defmfun $poly_normalize_list (plist vars)
(with-parsed-polynomials ((vars) :poly-lists (plist)
:value-type :poly-list)
(poly-normalize-list *maxima-ring* plist)))
(defmfun $poly_grobner (f vars)
(with-parsed-polynomials ((vars) :poly-lists (f)
:value-type :poly-list)
(grobner *maxima-ring* (remzero f))))
(defmfun $poly_reduced_grobner (f vars)
(with-parsed-polynomials ((vars) :poly-lists (f)
:value-type :poly-list)
(reduced-grobner *maxima-ring* (remzero f))))
(defmfun $poly_depends_p (p var mvars
&aux (vars (coerce-maxima-list mvars))
(pos (position var vars)))
(if (null pos)
(merror "~%Variable ~M not in the list of variables ~M." var mvars)
(poly-depends-p (parse-poly p vars) pos)))
(defmfun $poly_elimination_ideal (flist k vars)
(with-parsed-polynomials ((vars) :poly-lists (flist)
:value-type :poly-list)
(elimination-ideal *maxima-ring* flist k nil 0)))
(defmfun $poly_colon_ideal (f g vars)
(with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
(colon-ideal *maxima-ring* f g nil)))
(defmfun $poly_ideal_intersection (f g vars)
(with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
(ideal-intersection *maxima-ring* f g nil)))
(defmfun $poly_lcm (f g vars)
(with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
(poly-lcm *maxima-ring* f g)))
(defmfun $poly_gcd (f g vars)
($first ($divide (m* f g) ($poly_lcm f g vars))))
(defmfun $poly_grobner_equal (g1 g2 vars)
(with-parsed-polynomials ((vars) :poly-lists (g1 g2))
(grobner-equal *maxima-ring* g1 g2)))
(defmfun $poly_grobner_subsetp (g1 g2 vars)
(with-parsed-polynomials ((vars) :poly-lists (g1 g2))
(grobner-subsetp *maxima-ring* g1 g2)))
(defmfun $poly_grobner_member (p g vars)
(with-parsed-polynomials ((vars) :polynomials (p) :poly-lists (g))
(grobner-member *maxima-ring* p g)))
(defmfun $poly_ideal_saturation1 (f p vars)
(with-parsed-polynomials ((vars) :poly-lists (f) :polynomials (p)
:value-type :poly-list)
(ideal-saturation-1 *maxima-ring* f p 0)))
(defmfun $poly_saturation_extension (f plist vars new-vars)
(with-parsed-polynomials ((vars new-vars)
:poly-lists (f plist)
:value-type :poly-list)
(saturation-extension *maxima-ring* f plist)))
(defmfun $poly_polysaturation_extension (f plist vars new-vars)
(with-parsed-polynomials ((vars new-vars)
:poly-lists (f plist)
:value-type :poly-list)
(polysaturation-extension *maxima-ring* f plist)))
(defmfun $poly_ideal_polysaturation1 (f plist vars)
(with-parsed-polynomials ((vars) :poly-lists (f plist)
:value-type :poly-list)
(ideal-polysaturation-1 *maxima-ring* f plist 0 nil)))
(defmfun $poly_ideal_saturation (f g vars)
(with-parsed-polynomials ((vars) :poly-lists (f g)
:value-type :poly-list)
(ideal-saturation *maxima-ring* f g 0 nil)))
(defmfun $poly_ideal_polysaturation (f ideal-list vars)
(with-parsed-polynomials ((vars) :poly-lists (f)
:poly-list-lists (ideal-list)
:value-type :poly-list)
(ideal-polysaturation *maxima-ring* f ideal-list 0 nil)))
|