1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
/* contrib_ode.mac
Driver for contributed ODE routines
Copyright (C) 2004,2006,2007 David Billinghurst
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
if get('ode1_nonlinear,'version)=false then
load('ode1_nonlinear)$
if get('odelin,'version)=false then
load('odelin)$
if get('kovacic,'version)=false then
load('kovacicODE)$
/* Set default debug output for kovacicODE */
DEBUGFLAG:0;
load('opsubst)$
contrib_ode(eqn,y,x) := block(
[soln,degree:derivdegree(eqn,y,x)],
ode_disp("-> ode_contrib"),
/* Try ode2 if first or second order*/
if (degree < 1) then (
ode_disp(" Degree of equation less than 1"),
false
)
else if (degree > 2) then (
ode_disp(" Degree of equation greater then 2"),
false
)
else if (degree=1) then (
ode_disp(" First order equation"),
ode_disp(" -> ode2"),
soln:ode2(eqn,y,x),
if (soln#false) then (
ode_disp(" Successful"),
return([soln])
)
else (
return(ode1_nonlinear(eqn,y,x))
)
)
else if (degree=2) then (
return(ode2_lin(eqn,y,x))
)
else (
error("contrib_ode: This case cannot occur"),
false
)
)$
/* Try methods for linear 2nd order ODEs.
eqn is a 2nd order ODE.
FIXME: Remove multiple checks for linearity
*/
ode2_lin(eqn,y,x) := block(
[de,a1,a2,a3,a4,soln,%k1,%k2],
ode_disp(" Second order equation"),
de: desimp(lhs(eqn)-rhs(eqn)),
a1: coeff(de,'diff(y,x,2)),
a2: coeff(de,'diff(y,x)),
a3: coeff(de,y),
a4: expand(de - a1*'diff(y,x,2) - a2*'diff(y,x) - a3*y),
if (freeof(y,[a1,a2,a3,a4])) then (
ode_disp(" Linear 2nd order ODE"),
/* Try the ode2 routines first */
ode_disp(" -> ode2"),
soln:ode2(eqn,y,x),
/* ode2 can return [] on failure */
if (soln#false and soln#[]) then (
ode_disp(" Successful"),
[soln]
) else if is(a4=0) then (
/* Now try the routines in odelin */
ode_disp(" -> odelin"),
soln:odelin(eqn,y,x),
if (soln#false) then (
ode_disp(" Successful"),
method:'odelin,
ode_disp(soln),
/* odelin returns a fundamental soln set */
soln:listify(soln),
[y=%k1*soln[1]+%k2*soln[2]]
) else (
false
)
) else (
/* Try kovacic algorithm */
ode_disp(" -> kovacicODE"),
soln:kovacicODE(de=0,y,x),
if (soln#false) then (
ode_disp(" Successful"),
method:'kovacic,
ode_disp(soln),
soln
) else (
false
)
)
) else (
ode_disp(" Non-linear 2nd order ODE"),
false
)
)$
ode_disp(msg) := block(
if get('contrib_ode,'verbose) then print(msg)
)$
ode_disp2(msg,e) := block(
if get('contrib_ode,'verbose) then print(msg,e)
)$
/* recurse through expression eq looking for a derivative
Return the derivative if found, false otherwise
*/
ode_deriv(eq) := block(
[u,v:false],
eq:expand(eq),
if mapatom(eq) then return(false),
if operatorp(eq,nounify('diff)) then return(eq),
for u in eq do
(if (v:ode_deriv(u))#false then return(true)),
v
)$
/* Check the solution of an ode. */
ode_check(e_,a_) := block(
[deriv,x_,y_,diff_e,e,u,v],
deriv:ode_deriv(e_),
if deriv=false then (
print("Not a differential equation"),
return(false)
),
x_:part(deriv,2), /* Independent variable */
y_:part(deriv,1), /* Dependent variable */
if not(mapatom(x_)) then (
print("Independent variable ",x_," not an atom"),
return(false)
),
if not(mapatom(y_)) then (
print("Dependent variable ",y_," not an atom"),
return(false)
),
/* Is it a simple solution */
if lhs(a_)=y_ then (
return(ode_check_tidy(ratsimp(ev(lhs(e_)-rhs(e_),a_,diff))))
),
/* Is a_ a parametric solution */
if length(a_)=2 and lhs(a_[1])=x_ and lhs(a_[2])=y_ then (
return(ode_check_tidy(fullratsimp(ode_check_parametric(e_,a_,x_,y_))))
),
/* Is a_ a parametric solution in disguise?
For example, Kamke 1.555 returns
[(-y)+%t*x+sqrt(%t^2+1)=0, (sqrt(%t^2+1)*x+%t)/sqrt(%t^2+1)=0]
*/
if length(a_)=2 and not freeof(%t,a_) then (
s:solve(a_,[x_,y_]),
/* Check to see if the solution s is a valid
FIXME: Have assumed a single solution
*/
if s#[]
and freeof(x_,y_,rhs(s[1][1]))
and freeof(x_,y_,rhs(s[1][2])) then (
return(ode_check_tidy(fullratsimp(ode_check_parametric(e_,s[1],x_,y_))))
)
),
/* Must be an implicit solution */
diff_e:diff(subst(v(x),y_,a_),x_),
diff_e:subst(y_,v(x),diff_e),
u:solve(diff_e,'diff(y_,x_)),
if u=[] then (
print("Problem - dy/dx is ",u),
return(false)
),
u:first(u),
if ( lhs(u)#'diff(y_,x_) or not(freeof('diff(y_,x_),rhs(u))) ) then (
print("Problem - dy/dx is ",u),
return(false)
),
ode_check_tidy(fullratsimp(ev(lhs(e_)-rhs(e_),u)))
)$
/* Attempt to simplify the result from ode_check() */
ode_check_tidy(e) := block(
for f in ['bessel_simplify, 'expintegral_e_simplify,'ode_trig_simp]
do
(if (f(e)=0) then return(e:0)),
return(expand(e))
)$
/* This Bessel function simplification code can be improved,
but is does work well on the contrib_ode testsuite.
*/
bessel_simplify(e) := block(
for f in ['besksimp, 'besisimp, 'besysimp, 'besjsimp,
'hankel1simp, 'hankel2simp, 'struvehsimp, 'struvelsimp]
do
e:f(e),
return(e))$
freeof_bessel(e):=freeof(bessel_j,bessel_y,bessel_i,bessel_k,e);
/* Simplify expressions containing bessel_F, where F in {j,y,i,k}.
Repeatedly find the highest order term F and substitute Fsub for F
When F is a Bessel function of order n and argument x, then
Fsub is contains Bessel functions of order n-1 and n-2.
We separate the set of arguments into classes that have identical
second arguments and orders that differ by integers, then work on each
class until all the orders differ by less than 2.
*/
besFsimp(ex,F,Fsub) := block([arglist,ords,ord2,max,min,s,t,u,m,n,x,e:ex],
if freeof(F,ex) then return(ex),
argset:setify(gatherargs(ex,F)),
/* partition arguments into sets with same second argument and
orders that differ by an integer */
argset:equiv_classes(argset,lambda([x,y],
(second(x)=second(y)) and integerp(ratsimp(first(x)-first(y))))),
/* Iterate over each equivalance class */
for s in argset do (
x:second(first(s)), /* The common argument for s */
ords:map('first,s), /* List of orders */
t:first(ords), /* One element of the list of orders */
ord2:map(lambda([m],ratsimp(m-t)),ords), /* List of differences */
max:lmax(ord2), /* maximum order is t+max */
min:lmin(ord2), /* minimum order is t+min */
for m: max step -1 unless ratsimp(m-min)<2 do (
n:subset(ords,lambda([u],is(ratsimp(u-t-m)=0))),
n:if emptyp(n) then ratsimp(t+m) else first(n),
e:subst(apply(Fsub,[n,x]),apply(F,[n,x]),e),
e:ratsimp(e)
)
),
ratsimp(e)
)$
/* Recurrence for Bessel and Hankel functions A&S 9.1.27, DLMF 10.6.1 */
besjsimp(ex):=besFsimp(ex,bessel_j,
lambda([n,x], 2*(n-1)*bessel_j(n-1,x)/x-bessel_j(n-2,x)));
besysimp(ex):=besFsimp(ex,bessel_y,
lambda([n,x], 2*(n-1)*bessel_y(n-1,x)/x-bessel_y(n-2,x)));
besisimp(ex):=besFsimp(ex,bessel_i,
lambda([n,x],-2*(n-1)*bessel_i(n-1,x)/x+bessel_i(n-2,x)));
hankel1simp(ex):=besFsimp(ex,hankel_1,
lambda([n,x], 2*(n-1)*hankel_1(n-1,x)/x-hankel_1(n-2,x)));
hankel2simp(ex):=besFsimp(ex,hankel_2,
lambda([n,x], 2*(n-1)*hankel_2(n-1,x)/x-hankel_2(n-2,x)));
/* bessel_k requires special treatment due to the simplification
bessel_k(-n,x) => bessel_k(n,x), which upsets the recurrence
relationship. */
besksimp(ex):=block(
[bk:gensym(),e],
e:opsubst(bk,bessel_k,ex),
e:besksimp_1(e,bk),
/* Recurrence relation for bessel_k */
e:besFsimp(e,bk,lambda([n,x], 2*(n-1)*bk(n-1,x)/x+bk(n-2,x))),
opsubst(bessel_k,bk,e)
);
/* This is a helper function for besksimp.
- the function bk has been substituted for bessel_k in ex
- collect all the arguments of each occurrence of bk in e
- partition arguments into sets with same argument and where
either the orders m and n differ by integer or m and (-n)
differ by integer (so m+n is an integer).
- for the elements where m+n is an integer, substitute
bk(-n,x) for bk(n,x) in e
- return e
*/
besksimp_1(e,bk):=block(
[s,argset],
/* Break into equivalence classes */
argset:equiv_classes(setify(gatherargs(e,bk)),
lambda([x,y],
(second(x)=second(y))
and
(integerp(ratsimp(first(x)-first(y)))
or integerp(ratsimp(first(x)+first(y)))))),
/* For each equivalnce class */
for s in argset do block(
[x,ords,t,n],
x:second(first(s)), /* The common argument for s */
ords:map('first,s), /* Set of orders */
/* t is an element of ords, If ords are numbers then t is the largest */
t:first(ords), if every(numberp,ords) then t:lmax(ords),
/* Find the subset that do not differ by an integer from t
and change sign of the order for those orders */
for n in subset(ords,lambda([i],integerp(ratsimp(t+i)))) do (
e:subst(bk(-n,x),bk(n,x),e) )
),
e
);
/* Recurrence for struve_h DLMF 11.4.23 */
struvehsimp(ex):=besFsimp(ex,struve_h,
lambda([n,x],2^(1-n)*x^(n-1)/(sqrt(%pi)*gamma(n+1/2))
+2*(n-1)*struve_h(n-1,x)/x-struve_h(n-2,x)))$
/* Recurrence for struve_l DLMF 11.4.25 */
struvelsimp(ex):=besFsimp(ex,struve_l,
lambda([n,x],-2^(1-n)*x^(n-1)/(sqrt(%pi)*gamma(n+1/2))
-2*(n-1)*struve_l(n-1,x)/x+struve_l(n-2,x)))$
/* Simplify expressions containing exponential integral expintegral_e
using the recurrence (A&S 5.1.14).
expintegral_e(n+1,z)
= (1/n) * (exp(-z)-z*expintegral_e(n,z)) n = 1,2,3 ....
functions.wolfram.com indicates that it also applies for non-integer n,
and this is supported by some numerical tests.
This is a support routine for checking solutions of differential equations
in the contrib_ode testsuite. Assumes numberp(n) but this could be relaxed,
as was done for Bessel functions. Not required for existing testsuite.
*/
expintegral_e_simplify(ex) := block( [argset],
if freeof(expintegral_e,ex) then return(ex),
/* Get the set of arguments. Partition into sets with orders that
differ by an integer and with common second arguments. */
argset:setify(gatherargs(ex,expintegral_e)),
argset:equiv_classes(argset,
lambda([x,y], integerp(x[1]-y[1]) and (second(x)=second(y)))),
/* Iterate over each equivalance class */
for s in argset do block( [z, ords],
z:second(first(s)), /* The common argument for s */
ords:map('first,s), /* List of orders */
for n: lmax(ords)-1 step -1 thru lmin(ords) do (
ex:subst((1/n)*(exp(-z)-z*expintegral_e(n,z)), expintegral_e(n+1,z), ex)
)
),
/* Note: When ratsimp was in the loop, then z within the expression
was sometimes altered and subst didn't work */
ratsimp(ex)
);
ode_freeof_trig(e) :=
freeof(cos,sin,tan,cot,sec,csc,cosh,sinh,tanh,coth,sech,csch,e)$
ode_trig_simp(e) := block(
if ode_freeof_trig(e) then
e
else
radcan(trigrat(trigsimp(e)))
)$
/* Check parametric solution of first order ode e_
Solution is of form [x = X(%t), y = Y(%t) ]
May have x=X(%t,y) or y=Y(%t,x) but not both
*/
ode_check_parametric(e_, a_, x, y) := block(
[X,Y,dydx,s],
X:rhs(a_[1]),
Y:rhs(a_[2]),
if not freeof(y,X) then X:subst(Y,y,X),
if not freeof(x,Y) then Y:subst(X,x,Y),
dydx:diff(Y,%t)/diff(X,%t),
s:subst(dydx,'diff(y,x),lhs(e_)-rhs(e_)),
s:subst(X,x,s),
s:subst(Y,y,s),
return(s)
)$
|