1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
;; Author Barton Willis
;; University of Nebraska at Kearney
;; Copyright (C) 2004, Barton Willis
;; Brief Description: Maxima code for linear homogeneous second order
;; differential equations.
;; Maxima odelin is free software; you can redistribute it and/or
;; modify it under the terms of the GNU General Public License,
;; http://www.gnu.org/copyleft/gpl.html.
;; Maxima odelin has NO WARRANTY, not even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
($put '$lazysolver 1 '$version)
(eval-when
#+gcl (load compile eval)
#-gcl (:load-toplevel :compile-toplevel :execute)
($load "odeutils"))
(defmvar $aalgsys_is_loquacious nil)
(defun variablep (e)
(or ($symbolp e) ($subvarp e)))
;; Check that sol is a solution to eqs and that nz is nonvanishing.
(defun $checksolution (sol eqs &optional (nz `((mlist))))
(let (($gcd '$spmod) ($algebraic t) ($ratfac nil) ($ratprint nil))
(if (not ($listp sol)) (setq sol `((mlist) ,sol)))
(if (not ($listp eqs)) (setq eqs `((mlist) ,eqs)))
(if (not ($listp nz)) (setq nz `((mlist) ,nz)))
(setq eqs (mapcar #'meqhk (cdr eqs)))
(setq eqs `((mlist) ,@eqs))
(and
(every #'mequalp (cdr sol))
(every #'(lambda (s) (variablep ($lhs s))) (cdr sol))
(every #'(lambda (s) (like 0 s)) (cdr (sratsimp ($substitute sol eqs))))
(every #'(lambda (s) (not (like 0 s)))
(cdr (sratsimp ($substitute sol nz)))))))
;; The function 'checkedalgsys' tries to return the "simplest" solution.
;; it uses this simple-minded measure of simple.
(defun my-expr-size (e)
(xmy-expr-size ($totaldisrep e)))
(defun xmy-expr-size (e)
(if (consp e) (apply #'+ (mapcar #'my-expr-size (margs e))) 1))
(defun my-freeof (unks q)
(every #'(lambda (x) ($freeof x q)) (cdr unks)))
;; This function solves 'eqs' for 'vars' and returns a solution such that
;; no expression in the Maxima list 'nz' vanishes. Since
;; 'algsys' sometimes returns bogus solutions--checkedalgsys checks
;; the putative solutions and rejects bogus solutions. To return
;; the 'simpliest' solution, we sort the putative solutions using
;; 'my-expr-size.
(defun $checkedalgsys (eqs vars &optional (nz `((mlist))))
(let ((sol) ($ratfac nil) ($ratprint nil) ($realonly nil) ($algexact t)
($gcd '$spmod) ($algebraic t)
($programmode t) ($globalsolve nil) ($solveexplicit t)
($listconstvars t) ($solveradcan nil) ($ratvars nil))
(if $aalgsys_is_loquacious
(mtell "...solving ~:M equations in ~:M variables~%"
($length eqs) ($length vars)))
(setq sol (cdr ($algsys eqs vars)))
(setq sol (sort sol #'(lambda (a b) (< (my-expr-size a) (my-expr-size b)))))
(dolist (si sol)
(if ($checksolution si eqs nz) (return si)))))
;; The function 'checkedalgsys' tries to return the "simplest" solution.
;; it uses this simple-minded measure of simple.
(defun nonconstant-factors (e vars)
(let (acc)
(setq e ($factor e))
(setq e (if (mtimesp e) (margs e) (list e)))
(dolist (ei e `(($set) ,@acc))
(if (mexptp ei) (setq ei (car (margs ei))))
(if (not (my-freeof vars ei)) (push ei acc)))))
(defun variablep (e)
(or ($symbolp e) ($subvarp e)))
(defun $checksolution (sol eqs &optional (nz `((mlist))))
(let (($gcd '$spmod) ($algebraic t) ($ratfac nil) ($ratprint nil))
(if (not ($listp sol)) (setq sol `((mlist) ,sol)))
(if (not ($listp eqs)) (setq eqs `((mlist) ,eqs)))
(if (not ($listp nz)) (setq nz `((mlist) ,nz)))
(setq eqs (mapcar #'meqhk (cdr eqs)))
(setq eqs `((mlist) ,@eqs))
(and
(every #'mequalp (cdr sol))
(every #'(lambda (s) (variablep ($lhs s))) (cdr sol))
(every #'(lambda (s) (like 0 s)) (cdr (sratsimp ($substitute sol eqs))))
(every #'(lambda (s) (not (like 0 s)))
(cdr (sratsimp ($substitute sol nz)))))))
(defun unks-in-eq (eq unks)
(let (($listconstvars nil))
($intersection ($setify ($listofvars eq)) unks)))
(defun $aalgsys (e-eqs eqs unks &optional (nz `((mlist))))
(let ((e-vars) (sol) (e-sol) ($gcd '$spmod) ($algebraic t)
($ratvars nil) ($radexpand nil) ($ratfac nil) ($ratprint nil))
(setq unks ($setify unks))
(setq unks (mbag-map #'$ratdisrep unks))
(setq eqs ($setify eqs))
(setq eqs (mbag-map #'$ratdisrep eqs))
(setq e-eqs ($setify e-eqs))
(setq e-eqs (mbag-map #'$ratdisrep e-eqs))
(setq e-eqs (mbag-map #'$factor e-eqs))
(setq e-eqs ($union e-eqs
($subset eqs #'(lambda (w)
(= 1 (number-of-unks w unks))))))
(setq e-vars (unks-in-eq e-eqs unks))
(setq e-eqs ($union e-eqs
($subset eqs #'(lambda (w)
(like (unks-in-eq w unks) e-vars)))))
(setq e-eqs (mbag-map #'$ratdisrep e-eqs))
(setq e-eqs (mbag-map #'$factor e-eqs))
(setq e-eqs ($disjoin 0 e-eqs))
;; (displa `((mequal) eeqs ,e-eqs))
(setq e-eqs ($listify e-eqs))
(setq e-vars ($listify e-vars))
(setq eqs ($listify eqs))
(setq unks ($listify unks))
(block bailout
(cond ((not ($emptyp e-vars))
(setq e-sol ($algsys e-eqs e-vars))
(setq e-sol ($setify e-sol))
(setq e-sol
($subset e-sol #'(lambda (w) ($checksolution w e-eqs nz))))
(setq e-sol
($subset e-sol #'(lambda (w) (my-freeof $%rnum_list w))))
(setq e-sol ($listify e-sol))
(cond ((not ($emptyp e-sol))
(setq e-sol (margs e-sol))
(dolist (ei e-sol)
;; (displa `((mequal) auxeq ,ei))
(setq sol ($checkedalgsys
($append ei ($substitute ei eqs)) unks nz))
(if ($listp sol) (return-from bailout sol))))
(t ($checkedalgsys ($append e-eqs eqs) unks nz))))
(t (return-from bailout ($checkedalgsys eqs unks nz)))))))
|