File: ode1_clairault.mac

package info (click to toggle)
maxima-sage 5.45.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 113,788 kB
  • sloc: lisp: 440,833; fortran: 14,665; perl: 14,369; tcl: 10,997; sh: 4,475; makefile: 2,520; ansic: 447; python: 262; xml: 59; awk: 37; sed: 17
file content (126 lines) | stat: -rw-r--r-- 3,988 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
/* ode1_clairault.mac

  Solve Clairault's equation f(x*y'-y)=g(y')

  References: 
 
  Daniel Zwillinger, Handbook of Differential Equations, 3rd ed
  Academic Press, (1997), pp 216-218 


  Copyright (C) 2004 David Billinghurst		 
  		       								 
  This program is free software; you can redistribute it and/or modify	 
  it under the terms of the GNU General Public License as published by	 
  the Free Software Foundation; either version 2 of the License, or		 
  (at your option) any later version.					 
 		       								 
  This program is distributed in the hope that it will be useful,		 
  but WITHOUT ANY WARRANTY; without even the implied warranty of		 
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the		 
  GNU General Public License for more details.				 
 		       								 
  You should have received a copy of the GNU General Public License	
  along with this program; if not, write to the Free Software 		 
  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/

put('ode1_clairault,001,'version)$

/* Attempt to separate expression exp into f(x)+g(y)
   Returns [f(x),g(y)] is this is possible
           false otherwise 
   Adapted from SEPARABLE() in ode2.mac */ 

plusseparable(eq,x,y) := block( 
  [u,xpart:[],ypart:[],flag:false,inflag:true],
  eq:expand(eq),
  if atom(eq) or not(inpart(eq,0)="+") then eq: [eq],
  for u in eq do
    if freeof(x,u) then 
      ypart: cons(u,ypart) 
    else if freeof(y,u) then 
      xpart: cons(u,xpart) 
    else 
      return(flag: true),
  if flag = true then return(false),
  if xpart = [] then xpart: 0 else xpart: apply("+",xpart),
  if ypart = [] then ypart: 0 else ypart: apply("+",ypart),
  return([xpart,ypart])
)$

/* If we can write eqn as f(x*y'-y)=g(y') then the solution 
   is given implicitly by f(x*%c-y)=g(%c)

   A singular solution may exist 
   
 */
ode1_clairault(eq,y,x) := block(
  [ans,%c,de,%f,%g,%p,%r,_t,sep],
  /* substitute %p=y', %r=x*y'-y */
  de: expand(lhs(eq)-rhs(eq)),
  de: subst(%p,'diff(y,x),de),
  de: ratsimp(subst((%r+y)/%p,x,de)),
  if not(freeof(x,y,de)) then (
    ode_disp2("     Expression not free of x and y: ",de),
    return(false)
  ),
  sep:plusseparable(de,%r,%p),
  if is(sep=false) then 
    /* Perhaps de is const+f(%p)*%r */
    sep:plusseparable(ratsimp(de/%r),%r,%p),
  if is(sep#false) then (
    %f: sep[1], 
    %g:-sep[2]
  )
  else (
    ode_disp2("     Expression free of x and y but can't write as f(%r)=g(%p): ",de),
    /* Don't give up yet */
    _t:solve(de,%r),
    if _t=[] then return(false),
    ode_disp2("     Solving for %r: ",_t),
    %f:%r,
    %g:rhs(_t[1]),
    if not(freeof(%r,%g)) then return(false)
  ),
  /* Next line added to avoid testsuite failures 2003-01-02
     Guessed the fix and should analyse it further */
  if ( is(%f=0) ) then return(false),
  ode_disp2("     %f: ",%f),
  ode_disp2("     %g: ",%g),
  method: 'clairault,
  ans:subst(x*%c-y,%r,%f)=subst(%c,%p,%g),
  /* Try and solve for y */
  _t:solve(ans,y),
  if length(_t)=0 then ans:[ans] else ans:_t,
  ans:append(ans,ode1_clairault_singular(eq,y,x)),
  return(ans)
)$

/* Is there a singular solution to Clairault equation eq:f(x*p-y)-g(p)=0 ?

     Differentiate eq wrt x to get 'diff(y,x,2)*eq2=0
     If possible, eliminate 'diff(y,x) between eq and eq2.  
     else return parametric solution in variable %t
*/

ode1_clairault_singular(eq,y,x) := block(
  [expr,eq2,%t,ans,u],
  eq:lhs(eq)-rhs(eq),
  expr:subst(u,y,eq),
  depends(u,x),
  expr:diff(expr,x),
  remove(u,dependency),
  expr:subst(y,u,expr),
  expr:expand(expr),
  eq2:ratsimp(ratcoeff(expr,'diff(y,x,2))),
  if not(freeof('diff(y,x,2),eq2)) then return([]),
  expr: ratsimp(expr-eq2*'diff(y,x,2)),
  if not(is(expr=0)) then return([]),
  /* Try and eliminate t */
  eq:subst(%t,'diff(y,x),eq),
  eq2:subst(%t,'diff(y,x),eq2),
  ans:eliminate([eq,eq2],[%t]),
  if ( not(freeof(%t,ans)) or (ans=1) ) then return([[eq=0,eq2=0]]),
  return(solve(ans,y))
)$