1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
/* ode1_riccati.mac
Attempt to solve Riccati ode y' = f2(x)*y^2+f1(x)*y+f0(x)
References:
D Zwillinger, Handbook of Differential Equations, 3rd ed
Academic Press, (1997), pp 354-355
G M Murphy, Ordinary Differential Equations and Their
Solutions, Van Nostrand, 1960, pp 15-23
Copyright (C) 2004 David Billinghurst
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
put('ode1_riccati,001,'version)$
ode1_riccati(eq,y,x) := block(
[de,%a,f0,f1,f2,ans],
de:expand(lhs(eq)-rhs(eq)),
%a:coeff(de,'diff(y,x),1),
if %a=0 then return(false),
de:expand(de/%a),
f2:-ratsimp(coeff(de,y,2)),
if not(freeof(y,f2)) then return(false),
if f2=0 then return(false),
f1:-expand(ratsimp(coeff(de,y,1))),
if not(freeof(y,f1)) then return(false),
f0:-expand(ratsimp(de-'diff(y,x)+f2*y^2+f1*y)),
if not(freeof(y,f0)) then
return(false),
if not(is(ratsimp(expand(de-'diff(y,x)+f2*y^2+f1*y+f0))=0)) then
return(false),
ode_disp(" is Ricatti equation"),
ode_disp2(" f0: ",f0),
ode_disp2(" f1: ",f1),
ode_disp2(" f2: ",f2),
/* Following Murphy, (3-1, p15) see if the equation has the form
of the original equation studied by Riccati
y' + b*y^2 = c*x^m
=> f1 = 0
b:-f2(x) is constant
f0 = c*x^m
*/
ans: block(
[b,c,m],
if ( f1#0 ) then return(false),
if (not freeof(x,f2) ) then return(false),
b:-f2,
m:hipow(f0,x),
c:coeff(f0,x,m),
if ( ratsimp(f0-c*x^m)#0 ) then return(false),
ode_disp(" equation is original Riccati equation"),
ode1_riccati_original(b,c,m,y,x)
),
if ( ans#false ) then (
method:'riccati,
return(ans)
),
/* Perhaps it has the special form Murphy (3-3, p21-22)
x*y' -a*y + b*y^2 = c*x^n
=> a: f1(x)*x constant
b:-f2(x)*x constant
f0 = c*x^(n-1)
*/
ans: block(
[a,b,c,m,n],
if ( not freeof(x,a:ratsimp( f1*x)) ) then return(false),
if ( not freeof(x,b:ratsimp(-f2*x)) ) then return(false),
m:hipow(f0,x),
c:coeff(f0,x,m),
/* May want to check c and m */
if ( is(ratsimp(f0-c*x^m)#0) ) then return(false),
n:m+1,
ode_disp(" equation is special Riccati equation"),
ode1_riccati_special(a,b,c,n,y,x)
),
if ( ans#false ) then (
method:'riccati,
return(ans)
),
/* The equation doesn't have a special form, so it is a general
Riccati equation.
*/
ans:ode1_riccati_general(f0,f1,f2,y,x),
if ( ans#false ) then (
method:'riccati,
return(ans)
),
/* Default return value */
false
)$
/* Solve the original Riccati equation y' + b*y^2 = c*x^m
Murphy (3-2, p20-21)
*/
ode1_riccati_original(b,c,m,y,x) := block(
[ans,k,w,s,i],
ode_disp(" -> In ode1_riccati_original"),
ode_disp2(" b: ",b),
ode_disp2(" c: ",c),
ode_disp2(" m: ",m),
/* Solve m*(2*k+1)+4*k=0 => k= m/(2*m+4)
If k is an integer then the equation is integrable
in finite terms.
The solution is then found using the transformation y = w/x, giving
x*w'(x)-w+b*w^2=c*x^(m+2)
which is the special Riccati equation with a=1 and n=m+2
*/
if ( asksign(m+2)#'zero and integerp(k:m/(2*m+4)) ) then (
ode_disp(" Equation is integrable in finite terms"),
ode_disp(" Transforming using y=w/x and calling ode1_riccati_special"),
ans:ode1_riccati_special(1,b,c,m+2,w,x),
ode_disp2(" Solution to transformed equation is ",ans),
return(y=ratsimp(rhs(ans)/x))
)
else (
ode1_riccati_original_not_integrable(b,c,m,y,x)
)
)$
/* Solve the original Riccati equation y' + b*y^2 = c*x^m
for cases not integrable in finite terms
*/
ode1_riccati_original_not_integrable(b,c,m,y,x) := block(
if (asksign(m+2)='zero) then
ode1_riccati_original_2(b,c,y,x)
else
ode1_riccati_original_3(b,c,m,y,x)
)$
/* Solve the original Riccati equation y' + b*y^2 = c*x^-2
- Transform to second order linear ode, Murphy (3-2c, p20-21)
- Solve using Murphy A3-250
*/
ode1_riccati_original_2(b,c,y,x) := block(
[a:-b*c,r,r2,%c],
ode_disp(" -> In ode1_riccati_original_2"),
ode_disp(" Original Riccati equation with m=-2"),
ode_disp2(" b: ",b),
ode_disp2(" c: ",c),
ode_disp2(" a: ",a),
/* Let b*y*u(x)=u'(x) so that ode becomes
u''(x) - b*c*x^-2*u(x) = 0
NOTE: Murphy (p21) has sign of second term wrong.
*/
r2:a-1/4,
ode_disp2(" r2: ",r2),
if is(r2>0) then (
/* Murphy A3-250-i */
ode_disp(" Case i: r2>0"),
r:sqrt(r2),
ode_disp2(" r: ",r),
u:sqrt(x)*(cos(r*log(x))+%c*sin(r*log(x)))
)
else if (r2<0) then (
/* Murphy A3-250-ii */
ode_disp(" Case ii: r2<0"),
r:sqrt(-r2), /* typo in Murphy: missing "-" */
ode_disp2(" r: ",r),
u:sqrt(x)*(x^r+%c*x^-r)
)
else if is(equal(r2,0)) then (
/* Murphy A3-250-iii */
ode_disp(" Case iii: r2=0"),
u:sqrt(x)*(1+%c*log(x))
)
else (
error("ode1_riccati_original_2: Impossible case")
),
ode_disp2(" u: ",u),
return(y=ratsimp(diff(u,x)/(b*u)))
)$
/* Solve the original Riccati equation y' + b*y^2 = c*x^m for m#-2
- Transform to second order linear ode, Murphy (3-2c, p20-21)
- Solve using Murphy A3-41
*/
ode1_riccati_original_3(b,c,m,y,x) := block(
[p:m+2,n:1/(m+2),%c,u,signb,signc],
ode_disp(" -> In ode1_riccati_original_3"),
ode_disp(" Original Riccati equation with m#-2"),
ode_disp2(" b: ",b),
ode_disp2(" c: ",c),
ode_disp2(" m: ",m),
ode_disp2(" p: ",p),
ode_disp2(" n: ",n),
/* Let b*y*u(x)=u'(x) so that ode becomes
u''(x) - b*c*x^m*u(x) = 0
NOTE: Murphy (p21) has sign of second term wrong.
Solution expressed in terms of Bessel functions of order n.
*/
signb:asksign(b),
signc:asksign(c),
/* b*c<0 */
if ( (signb='pos and signc='neg) or (signb='neg and signc='pos) ) then
if integerp(n) then (
u: sqrt(x)*(bessel_j(n,2*sqrt(-b*c)*x^(p/2)/p)
+ %c*bessel_y(n,2*sqrt(-b*c)*x^(p/2)/p) )
) else (
u: sqrt(x)*(bessel_j(n,2*sqrt(-b*c)*x^(p/2)/p)
+ %c*bessel_j(-n,2*sqrt(-b*c)*x^(p/2)/p) )
)
else if ((signb='pos and signc='pos) or (signb='neg and signc='neg)) then
if integerp(n) then (
u: sqrt(x)*(bessel_i(n,2*sqrt(b*c)*x^(p/2)/p)
+ %c*bessel_k(n,2*sqrt(b*c)*x^(p/2)/p) )
) else (
u: sqrt(x)*(bessel_i(n,2*sqrt(b*c)*x^(p/2)/p)
+ %c*bessel_k(-n,2*sqrt(b*c)*x^(p/2)/p) )
)
else
/* b and c are non-zero constants, so this is an error */
error("ode_riccati_original_3: Impossible case has just happened"),
return(y=ratsimp(diff(u,x)/(b*u)))
)$
/* Solve the special Riccati equation x*y' -a*y + b*y^2 = c*x^n
Murphy (3-3, p21-22)
*/
ode1_riccati_special(a,b,c,n,y,x) := block(
[k,s,u,%c,signb,signc],
ode_disp(" -> In ode1_riccati_special"),
ode_disp2(" a: ",a),
ode_disp2(" b: ",b),
ode_disp2(" c: ",c),
ode_disp2(" n: ",n),
/* Certain cases are integrable. */
/* Case (a.i). n=2*a
Equation can be made exact using integrating factor x^(a-1)
and integrated
*/
if ( is(equal(n,2*a)) ) then (
ode_disp(" Case (a.i)"),
return(ode1_riccati_special_i(a,b,c,n,y,x))
)
/* Case (a.ii) (n-2*a)/(2*n) a positive integer */
else if ( n#0 and integerp(k:(n-2*a)/(2*n)) and k>0 ) then (
ode_disp2(" Case (a.ii) with k = ",k),
if oddp(k) then
s:rhs(ode1_riccati_special_i(n/2,c,b,n,y,x))
else
s:rhs(ode1_riccati_special_i(n/2,b,c,n,y,x)),
for i:(k-1) thru 1 step -1 do (
if oddp(i) then
s:(a+i*n)/c+x^n/s
else
s:(a+i*n)/b+x^n/s
),
return(y=a/b+x^n/s)
)
/* Case (a.iii) (n+2*a)/(2*n) a positive integer */
else if ( n#0 and integerp(k:(n+2*a)/(2*n)) and k>0 ) then (
ode_disp2(" Case (a.iii) with k = ",k),
if oddp(k) then
s:rhs(ode1_riccati_special_i(n/2,c,b,n,y,x))
else
s:rhs(ode1_riccati_special_i(n/2,b,c,n,y,x)),
for i:(k-1) thru 1 step -1 do (
if oddp(i) then
s:(i*n-a)/c+x^n/s
else
s:(i*n-a)/b+x^n/s
),
return(y=x^n/s)
)
/* Not integrable in finite terms. For a=0 we have
x*y' + b*y^2 = c*x^n
Let y = x*u'(x)/(b*u(x)) => x^2*u'' + x*u' - b*c*x^n*u = 0
This is Murphy A3.202 or Abramowitz and Stegun 9.1.53
*/
else if is(equal(a,0)) then (
/* Can never have n=0 so division is always safe */
ode_disp(" Case (c.i)"),
signb:asksign(b),
signc:asksign(c),
/* b*c<0 */
if ( (signb='pos and signc='neg) or (signb='neg and signc='pos) ) then
u: bessel_j(0,2*sqrt(-b*c)*x^(n/2)/n)
+ %c*bessel_y(0,2*sqrt(-b*c)*x^(n/2)/n)
/* b*c>0 */
else if ((signb='pos and signc='pos) or (signb='neg and signc='neg)) then
u: bessel_i(0,2*sqrt(b*c)*x^(n/2)/n)
+ %c*bessel_k(0,2*sqrt(b*c)*x^(n/2)/n)
else
/* b and c are non-zero constants, so this is an error */
error("ode_riccati_special: Impossible case has just happened"),
return(y=ratsimp(x*diff(u,x)/(b*u)))
)
/* For a#0, transform using y=z*u(z) with z=x^a
to give u' + (b/a)*u^2 = (c/a)*z^((n-2*a)/a)
which is the original Riccati equation
*/
else (
ode_disp(" Case (c.ii)"),
s:ode1_riccati_original_not_integrable(b/a,c/a,(n-2*a)/a,u,z),
ode_disp2(" Solution of transformed eqn is ",s),
return(y=ratsimp(subst(x^a,z,z*rhs(s))))
)
)$
/* Solve the special Riccati equation x*y' -a*y + b*y^2 = c*x^n
for the case n=2*a. Murphy (3-3, p21-22).
Note: Signs changed from Murphy in cases a.i.1 and a.i.3.
*/
ode1_riccati_special_i(a,b,c,n,y,x) := block(
[%c,signb,signc],
ode_disp(" -> In ode1_riccati_special_i"),
ode_disp2(" a: ",a),
ode_disp2(" b: ",b),
ode_disp2(" c: ",c),
ode_disp2(" n: ",n),
if not(equal(n,2*a)) then error("ode1_riccati_special_i: n#2*a"),
/* Case (a.i). n=2*a
Equation can be made exact using integrating factor x^(a-1)
and integrated to give solution(s) below.
*/
signb:asksign(b),
signc:asksign(c),
/* b*c > 0 */
if ( signb='pos and signc='pos ) then (
/* Murphy has the sign of the solution wrong */
ode_disp(" Case (a.i.1) b*c>0, b>0 and c>0"),
return(y=sqrt(c/b)*x^a*tanh(sqrt(b*c)*x^a/a+%c))
)
else if ( signb='neg and signc='neg ) then (
ode_disp(" Case (a.i.2) b*c>0, b<0 and c<0"),
return(y=sqrt(c/b)*x^a*tanh(%c-sqrt(b*c)*x^a/a))
)
/* b*c < 0 */
else if ( signb='pos and signc='neg ) then (
ode_disp(" Case (a.i.3) b*c<0, b>0 and c<0"),
return(y=sqrt(-c/b)*x^a*tan(%c-sqrt(-b*c)*x^a/a))
)
else if ( signb='neg and signc='pos ) then (
ode_disp(" Case (a.i.4) b*c<0, b<0 and c>0"),
/* Murphy has the sign of the solution wrong */
return(y=sqrt(-c/b)*x^a*tan(sqrt(-b*c)*x^a/a+%c))
),
/* b and c are non-zero constants, so this is an error */
error("ode_riccati_special_i: Impossible case has just happened")
)$
/* The equation doesn't have a special form, so it is a generalized
Riccati equation. Try transforming it to a linear second order
ode.
Substitute y = -z'/(z*f2)
=> f2*z''-(f2'+f1*f2)z'+f2^2*f0*z=0
Solve this second order linear ode for z. The solution has form
z=%k1*f+%k2*g, with two constants, but a first order ode only has
one constant %c. Without loss of generality take %k1=1 and %k2=%c
y = -z'/(z*f2) = -(f'+%c*g')/((f+%c*g)*f2)
*/
ode1_riccati_general(f0,f1,f2,y,x) := block(
[de,z,ans,%c,%k1,%k2,%u],
ode_disp(" Transforming to 2nd order ode"),
de: f2*'diff(z,x,2)-(diff(f2,x)+f1*f2)*'diff(z,x)+f2^2*f0*z=0,
if get('contrib_ode,'verbose) then disp(de),
ans:contrib_ode(de,z,x),
ode_disp(" with solution"),
if get('contrib_ode,'verbose) then disp(ans),
if is(ans=false) then (
ode_disp(" Cannot solve 2nd order ode"),
/* Return the transformation and the second order ODE */
method:'riccati,
return([y=-'diff(%u,x)/(%u*f2),subst(%u,z,de)])
)
else if (lhs(ans[1])#z) then (
/* give up on parametric solutions for z */
ode_disp(" 2nd order ode has parametric solution"),
ode_disp(" giving up"),
false
)
else (
ode_disp(" solution found"),
method:'riccati,
ans:rhs(ans[1]), ans:subst(1,%k1,ans), ans:subst(%c,%k2,ans),
return(y=ratsimp(-diff(ans,x)/(ans*f2)))
)
)$
|