1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
|
;; Author Barton Willis
;; University of Nebraska at Kearney
;; Copyright (C) 2004, 2009, Barton Willis
;; Brief Description: Maxima code for linear homogeneous second order
;; differential equations.
;; Maxima odelin is free software; you can redistribute it and/or
;; modify it under the terms of the GNU General Public License,
;; http://www.gnu.org/copyleft/gpl.html.
;; Maxima odelin has NO WARRANTY, not even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
($put '$odelin 20 '$version)
;; [DB 2007-04-29] I have added some comments to generic-de-solver and
;; subsidiary routines. They are just my interpretation of the code.
;; The functions mtimesp and mexptp are either missing from
;; commercial macsyma, or they have different names. For commercial
;; macsyma, here are the definitions.
#+kcl
(defun mtimesp (x)
(and (consp x) (consp (car x)) (eq (caar x) 'mtimes)))
#+kcl
(defun mexptp (x)
(and (consp x) (consp (car x)) (equal (caar x) 'mexpt)))
(eval-when
#+gcl (load compile eval)
#-gcl (:load-toplevel :compile-toplevel :execute)
($load "sqfr")
($load "spherodialwave")
($load "kummer")
($load "extrabessel")
($load "lazysolver")
($load "gauss")
($load "functs") ;; wronskian
($load "odeutils"))
(defun ode-polynomialp (p x)
($polynomialp p `((mlist) ,x) `((lambda) ((mlist) s) ($freeof ,x s))))
(defun require-linear-homogeneous-de (de y x)
(setq y (require-symbol y "$odelin"))
(setq x (require-symbol x "$odelin"))
(cond ((or ($listp de) ($setp de))
(if (= 1 ($cardinality de))
(setq de (nth 1 de))
(merror "'odelin' doesn't handle systems of DEs.~%"))))
(setq de ($ratdisrep de))
(setq de (meqhk de))
(let ((cf) (acc) (f de) (n ($derivdegree de y x)))
(if (not (and (integerp n) (> n 0)))
(merror "'odelin' doesn't handle order ~:M DEs.~%" n))
(setq de ($rat de))
(while (> n -1)
(if (= n 0)
(setq cf ($ratcoef de y 1))
(setq cf ($ratcoef de (list '(%derivative) y x n))))
(if ($freeof y cf)
(push cf acc)
(merror "DE must be linear"))
(setq f (sub f (mul cf (list '(%derivative) y x n))))
(decf n))
(setq f (sratsimp f))
(if (not (like 0 f))
(merror "DE must be linear and homogeneous.~%"))
acc))
(defun $odelin (de y x)
(let ((cfs (require-linear-homogeneous-de de y x)) (n))
(setq n (length cfs))
(cond ((= n 2) (odelin-order-one cfs x))
((= n 3) (odelin-order-two cfs x))
(t (merror "'odelin' doesn't handle DEs with order ~:M" (- n 1))))))
(defun odelin-order-one (cfs x)
(fss-cleanup (take '($set) ($exp ($integrate (mul -1 (div (car cfs) (cadr cfs))) x))) x))
(defun expunge-const-factors (e x)
(let ((acc 1))
(cond ((like 0 e) 0)
(t
(setq e ($factor e))
(setq e (if (mtimesp e) (margs e) (list e)))
(dolist (ei e acc)
(if (not ($freeof x ei)) (setq acc (mul ei acc))))))))
;; Cleanup a fundamental solution set (FSS).
(defun fss-cleanup (fss x)
(let ((nfss (mbag-map #'(lambda (s) (expunge-const-factors ($radcan s) x)) fss)))
(if (like nfss fss) fss (fss-cleanup nfss x))))
(defun post-check-cleanup (fss)
(setq fss ($substitute '%bessel_j '$fbessel_j fss))
($substitute '%bessel_y '$fbessel_y fss))
(defun odelin-order-two (cfs x)
(let ((p0 (nth 0 cfs))
(p1 (nth 1 cfs))
(p2 (nth 2 cfs))
(p) (m) (sol nil)
(ode-methods (list
'ode-solve-by-factoring
'bessel-de-solver
'hypergeo01-de-solver
'spherodialwave-de-solver
'bessel-sqrt-de-solver
'hypergeo21-de-solver)))
(setq p1 (div p1 p2))
(setq p0 (div p0 p2))
(if (not (and (ode-polynomialp ($ratnumer p1) x)
(ode-polynomialp ($ratdenom p1) x)
(ode-polynomialp ($ratnumer p0) x)
(ode-polynomialp ($ratdenom p0) x)))
(setq ode-methods nil))
(setq p (add p0 (div ($diff p1 x) -2) (mul p1 p1 (div -1 4))))
(setq m ($exp ($integrate (div p1 -2) x)))
(while (and (not sol) ode-methods)
(setq sol (funcall (pop ode-methods) p x))
(if ($setp sol)
(progn
(setq sol (fss-cleanup (mbag-map #'(lambda (s) (mul m s)) sol) x))
(setq sol (if (check-fss cfs sol x) (post-check-cleanup sol) nil)))))
sol))
(defprop unk simp-unk operators)
(defun simp-unk (x y z)
(declare (ignore y z))
(merror "Maxima doesn't know the derivative of ~:M with respect the ~:M argument" (nth 2 x) (nth 1 x)))
(defun check-de-sol (cfs sol x)
(let ((zip 0))
(dolist (cf cfs)
(setq zip (add zip (mul cf sol)))
(setq sol ($diff sol x)))
(setq zip (sratsimp zip))
(or
(like 0 zip) (like 0 ($radcan zip)) (like 0 ($radcan ($expand zip)))
(like 0 (mfuncall '$expintegral_e_simplify zip))
(mtell "should vanish, but it does not ~:M~%" zip))))
(defun check-fss (cfs fss x)
(and
($setp fss)
(= (length cfs) (length fss))
(every #'(lambda (s) (check-de-sol cfs s x)) (cdr fss))
(not (like 0 ($radcan ($determinant (mfuncall '$wronskian ($listify fss) x)))))))
;; Return a polynomial in x with degree deg and a list of its
;; coefficients. Each coefficient of the polynomial is a gensym.
(defun make-unk-poly (x deg)
(setq x ($ratdisrep x))
(let ((p 0) (z 1) (cf) (cfs))
(incf deg)
(dotimes (i deg (values p (reverse cfs)))
(setq cf (gensym))
(push cf cfs)
(setq p (add p (mul cf z)))
(setq z (mul z x)))))
(defun polycfs-to-eqs (p x)
(let ((n) (eqs) ($ratfac nil) ($ratprint nil))
(setq p ($rat p x))
(setq n (+ 1 ($hipow p x)))
(dotimes (i n eqs)
(push ($ratcoef p x i) eqs))))
;; Solve y'' - r y by factoring the differential operator (D^2 - r). Specifically,
;; we factor D^2 - r as (D+a)(D-a), where r and a are rational functions.
;; Expanding, we have D^2 - r = D^2 -a' - a^2. So -r = -a' - a^2 or
;; a' + a^2 = r. Solving a' + a^2 = r is the task for factor-differential-op.
;; Solutions to (D+a)(D-a) f = 0 are f = mu, where mu = exp (integrate(a,x))
;; and f = mu * integrate(1/mu^2,x).
(defun ode-solve-by-factoring (r x)
(let ((a) (mu) ($radexpand nil))
(cond ((setq a (factor-differential-op r x))
(setq a ($radcan a)) ;; x*(x+1)*'DIFF(y,x,2)+(3*x+2)*'DIFF(y,x,1)+y
(setq mu ($radcan ($exp ($integrate a x))))
`(($set) ,mu ,(mul mu ($integrate (div 1 (mul mu mu)) x))))
(t nil))))
;; Let r = p/q be rational. We either find a rational function a such that
;; a' + a^2 = p/q = p q / q^2, or we return nil. We do this by setting
;; a = w / q. Then q w' - q' w + w^2 = pq.
(defun factor-differential-op (r x)
(setq r ($rat r x))
(let*
((p ($ratnumer r))
(q ($ratdenom r))
(m ($hipow q x))
(l ($hipow p x))
(w) (zip) (n) (vars) (sol)
($ratfac nil))
(setq m ($totaldisrep m))
(setq l ($totaldisrep l))
(setq m (coerce m 'fixnum))
(setq l (coerce l 'fixnum))
(cond ((< (+ 2 l) m)
(setq n (max (+ m -1) (+ l 1))))
((evenp (+ m l))
(setq n (/ (+ m l) 2)))
(t
(setq n -1)))
(cond ((> n -1)
(multiple-value-setq (w vars) (make-unk-poly x n))
(setq vars (reverse vars))
(push '(mlist) vars)
(setq zip (add
(mul q ($diff w x))
(mul -1 w ($diff q x))
(mul w w)
(mul p q)))
(setq zip ($rat zip x))
(setq zip (polycfs-to-eqs zip x))
(push '(mlist) zip)
(setq sol ($checkedalgsys zip vars))
(cond ((not sol)
(setq sol nil))
(t
(setq w (div w q))
($substitute sol w))))
(t
nil))))
(defun polynomial-filter (p x f)
(let (($ratfac nil) ($ratprint nil))
(setq p (sratsimp p)) ;; Get rid of terms like sqr(5)^2, %i^2...
(setq p ($mysqfr p x))
(setq p (if (mtimesp p) (margs p) (list p)))
(let ((q 1) (n))
(dolist (pj p q)
(cond ((mexptp pj)
(setq n (nth 2 pj))
(setq pj (nth 1 pj)))
(($freeof x pj)
(setq n 0))
(t
(setq n 1)))
(setq n (funcall f n))
(setq q (mult q (power pj n)))))))
(defun ratfun-degree (q x)
(let (($ratfac nil))
(setq q ($rat q x))
(- ($hipow ($ratnumer q) x) ($hipow ($ratdenom q) x))))
(defun xeasy-eqs (p s x)
(let ((acc `(($set))))
(setq s (polynomial-filter s x #'(lambda (n) (min 1 n))))
(setq s (cdr ($solve s x)))
(dolist (si s (require-set acc "easy-eqs"))
(setq acc ($adjoin ($substitute si p) acc)))))
;; Find conditions that make the polynomial 'cnd' vanish at each zero of
;; the polynomial 's.' When the zero of 's' isn't messy, we simply
;; evaluate 'cnd' at the zero. When the zero of 's' is messy, we
;; use a different method. In the best of all possible worlds, I'd
;; treat all zeros as messy---when I do this, some DEs in my testing
;; routine don't get solved.
(defun easy-eqs (cnd s x)
(let ((acc) (n) ($programmode t)
($globalsolve nil) ($solveexplicit t) ($solveradcan nil))
(setq s (polynomial-filter s x #'(lambda (n) (min 1 n))))
(setq s ($factor s))
(setq s (if (mtimesp s) (margs s) (list s)))
(dolist (si s acc)
(setq si ($expand si))
(setq n ($hipow si x))
;; Check for a non-messy zero.
(cond ((< n 3)
(setq si (margs ($solve si x)))
(dolist (sij si)
(push ($substitute sij cnd) acc)))
(t
(setq acc (append acc
(polycfs-to-eqs
($second ($divide cnd si x)) x))))))))
;; Expunge multiple zeros.
(defun clean-equation (p)
(let ((acc 1))
(setq p ($sqfr p))
(setq p (cond ((mtimesp p) (margs p))
((mexptp p) (list (car (margs p))))
(t (list p))))
(dolist (pj p acc)
(setq acc (mul acc (if (mexptp pj) (car (margs pj)) pj))))))
;; generic-de-solver uses a method described by Bronstein and Lafaille,
;; to compute special function solutions of non-Liouvillian 2nd order
;; linear homogeneous ODES.
;;
;; M Bronstein, S Lafaille, Solutions of linear ordinary differential
;; equations in terms of special functions, Proceedings of ISSAC 2002, Lille,
;; ACM Press, 23-28.
;; (http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/issac2002.pdf)
;;
;; Given
;; - an ode y'' = v y, where v is a function of x,
;; - a target 2nd order linear ODE L y = 0, with
;; - L = D^2 + a1 D + a0 a 2nd order linear differential operator
;; - {F1,F2} a known fundamental solution set of L y = 0
;; we seek functions m(x) and xi(x) st { m(x) F1(xi(x)), m(x) F2{xi(x)) }
;; is a fundamental solution set of y'' = v y.
;;
;; xi(x) satisfies a non-linear third-order ODE [Eq 7 in paper] (see
;; get-de-cnd below). The solution of this DE is a rational function
;; xi(x)=P(x)/Q(x) where P(x) and Q(x) are polynomials. It is shown
;; that the denominator Q(x) is given by certain terms in the square-free
;; factorization of the denominator of v(x), and an upper bound to
;; the degree of the numerator P(x) can be found. This allows P(x) to be
;; found, if it exists, using the method of undetermined coefficients.
;; These quantities depend on the order at infinity of v(x) and
;; Delta=(a1)^2+2*a1'-4*a0
;;
;;
;; For each target equation L = D^2 + a1 D + a0 we specialize the solver
;; by providing
;; o params: a list of additional parameters in the operator
;; o denom-filter: a rule to select the terms in the square-free
;; factorization of the denominator of v(x) that form Q(x).
;; o degree-bound: the upper bound for the degree of the numerator P(x)
;; o de-cnd: -Delta/4, where Delta = (a1)^2 + 2 a1' - 4 a0
;;
;;
;; i
;; Theorem 1: Let Product( Q ) be the squarefree decomposition of
;; i
;; the denominator of v(x)and d = order at infinity of Delta, with d<2.
;; i
;; Then the denominator Q(x) of xi(x) is Product( Q ) with n=(2-d)*i+2
;; n
;;
;; The numerator P(x) is a polynomial in x. Either deg(P) <= deg(Q)+1
;; or deg(P) = deg(Q) + (2-order_at_infinity(v))/(2-d). When d<0 the
;; first bound becomes deg(P) <= deg(Q).
;;
;; The function denom-filter(n) returns the exponent i for the term Q_n,
;; with i=0 for factors Q_n that are not used.
;;
;; CASE | n | 1 2 3 4 5 6 7 8 | Example
;; -------|---------|------------------------------------------------------
;; d = -1 | i=3*n+2 | 0 0 0 0 1 0 0 2 | (not used)
;; d = 0 | i=2*n+2 | 0 0 0 1 0 2 0 3 | bessel-xi-denom-filter
;; d = 1 | i=n+2 | 0 0 1 2 3 4 5 6 | bessel-sqrt-xi-denom-filter
;; d = 2 | i=0 | 0 0 0 0 0 0 0 0 | hypergeo21-xi-denom-filter
;;
;; The function degree-bound returns the upper bound of the numerator
;; P(x) of xi(x).
;;
;; The proof in the paper only applies for the case d<2. It does not apply
;; for the 2F1 hypergeometric function where d=2, although the method clearly
;; works for this case too.
;;
;;
(defun generic-de-solver (v x params denom-filter degree-bound de-cnd)
(setq v ($rat v x))
(let ((s) (q) (p) (n) (unks) (nz) (eqs) (cnd) (sol) (xeqs) ($ratfac nil))
(setq s ($ratdenom v))
(setq q (polynomial-filter s x denom-filter))
(setq n (funcall degree-bound q v x))
(multiple-value-setq (p unks) (make-unk-poly x n))
(setq nz `((mlist) ,p ,(sub (mul p ($diff q x)) (mul q ($diff p x)))))
(setq unks (append params unks))
(push `(mlist) unks)
(setq cnd (get-de-cnd (div p q) v de-cnd x))
(setq xeqs (easy-eqs cnd s x))
(setq eqs (polycfs-to-eqs cnd x))
(setq unks ($listify unks))
(setq eqs (mapcar #'clean-equation eqs))
(setq xeqs (mapcar #'clean-equation xeqs))
(push `(mlist) eqs)
(push `(mlist) xeqs)
(setq sol ($aalgsys xeqs eqs unks nz))
;;(setq sol ($checkedalgsys ($append xeqs eqs) unks nz))
(cond (($listp sol)
(setq p ($substitute sol p))
(setq params (mapcar #'(lambda (s) ($substitute sol s)) params))
`(,(div p q) ,params))
(t nil))))
;; Called by generic-de-solver implementing method of Bronstein and Lafaille.
;; Returns the differential equation satisfied by xi(x) [Eq 7 in paper]
;;
;; 2 2 4 2
;; 3*xi'' - 2*xi'*xi''' + (a1(xi) + 2*a1'(xi) - 4*a0(xi))*xi' - 4*v*xi' = 0
;;
;; In this routine
;; vh is the expression v(x) in DE to be solved (D^2-v)y=0
;; v is the expression -(a1(x)^2 + 2*a1'(x) - 4*a0(x))/4
;; We return (-1) times equation above
;;
(defun get-de-cnd (xi vh v x)
(let ((dxi) (ddxi) (dddxi) (dxi^2) ($ratfac nil) ($ratprint nil))
(setq xi ($ratdisrep xi))
(setq dxi ($diff xi x))
(setq dxi^2 (mul dxi dxi))
(setq ddxi ($diff dxi x))
(setq dddxi ($diff ddxi x))
;; 4*dxi^4*v(xi)-4*dxi^2*vh(x)+2*dddxi*dxi-3*ddxi^2
($ratdisrep ($ratnumer
(add
(mul 4 ($substitute xi x v) dxi^2 dxi^2)
(mul -4 vh dxi^2)
(mul 2 dxi dddxi)
(mul -3 ddxi ddxi))))))
;; The differential operator with the FSS {bessel_j(mu,x),bessel_y(mu,x)}
;; is L = D^2 + a1*D + a0, with a1 = 1/x and a0 = (1-mu^2/x^2).
;;
;; Delta = (a1)^2+2*a1'-4*a0 = (4*mu^2-1)/x^2-4
;; -> constant as x-> infinity. (order at infinity is 0)
;;
;; de-cnd = -Delta/4 = (4*x^2+1-4*mu^2)/(4*x^2)
;;
;; Additional parameter [mu]
;;
(defun bessel-xi-denom-filter (n)
(if (and (evenp n) (> n 3)) (/ (- n 2) 2) 0))
(defun bessel-xi-degree-bound (q v x)
(ceiling (+ 1 ($hipow q x) (/ (max (ratfun-degree v x) -2) 2))))
(defun bessel-de-solver (v x)
(let*
((mu (gensym)) (z) (m) ($radexpand nil)
(xi (generic-de-solver v x
(list mu)
'bessel-xi-denom-filter
'bessel-xi-degree-bound
(div (add (mul 4 x x) 1 (mul -4 mu mu))
(mul 4 x x)))))
(cond (xi
(setq z (nth 0 xi))
(setq mu (car (nth 1 xi)))
(setq z (sratsimp z))
(setq mu (sratsimp mu))
(setq m (mul
(power z (div 1 2))
(power ($diff z x) (div -1 2))))
(mbag-map #'(lambda (s) (mul m s))
`(($set)
(($fbessel_j) ,mu ,z)
(($fbessel_y) ,mu ,z)))))))
;; The differential operator with the FSS
;; {bessel_j(mu,sqrt(x)),bessel_y(mu,sqrt(x))}
;; is L = D^2 + a1 D + a0, with a1 = 1/x and a0 = (1/x-mu^2/x^2)/4.
;;
;; Delta = (a1)^2 +2*a1'-4*a0 = (mu^2-1)/x^2-1/x
;; -> 1/x as x-> infinity. (order at infinity is 1)
;;
;; de-cnd = -Delta/4 = (1 + x - mu^2)/(4*x^2)
;;
;; Additional parameter [mu]
;;
(defun bessel-sqrt-xi-denom-filter (n)
(if (> n 2) (- n 2) 0))
(defun bessel-sqrt-xi-degree-bound (q v x)
(+ 2 ($hipow q x) (max -2 (ratfun-degree v x))))
(defun bessel-sqrt-de-solver (v x)
(let* ((mu (gensym)) (z) (m) ($radexpand nil)
(xi (generic-de-solver v x
(list mu)
'bessel-sqrt-xi-denom-filter
'bessel-sqrt-xi-degree-bound
(div (add 1 x (mul -1 mu mu)) (mul 4 x x)))))
(cond (xi
(setq z (nth 0 xi))
(setq mu (car (nth 1 xi)))
(setq z (sratsimp z))
(setq mu (sratsimp mu))
(setq m (mul
(power z (div 1 2))
(power ($diff z x) (div -1 2))))
(setq z (power z (div 1 2)))
(mbag-map #'(lambda (s) (mul m s))
`(($set)
(($fbessel_j) ,mu ,z)
(($fbessel_y) ,mu ,z)))))))
;; The differential operator with the FSS {kummer_m(a,b,x),kummer_u(a,b,x)}
;; is L = D^2 + a1*D + a0, with a1 = b/x - 1 and a0 = -a/x.
;;
;; Delta = (a1)^2+2*a1'-4*a0 = 1+(4*a-2*b)/x+(b^2-2*b)/x^2
;; = (x^2 + (4 a - 2 b) x + b^2 -2 b)/x^2
;; -> 1 as x-> infinity. (order at infinity is 0)
;;
;; de-cnd = -Delta/4 = (-x^2+(2*b-4*a)*x-b^2+2*b)/(4*x^2)
;;
;; Additional parameters to be determined are [a,b]
;;
(defun hypergeo01-xi-denom-filter (n)
(if (and (evenp n) (> n 3)) (/ (- n 2) 2) 0))
(defun hypergeo01-xi-degree-bound (q v x)
(ceiling (+ 1 ($hipow q x) (/ (max (ratfun-degree v x) -2) 2))))
(defun hypergeo01-de-solver (v x)
(let* ((a (gensym)) (b (gensym)) (m) (z) ($radexpand nil)
(xi (generic-de-solver v x
(list a b)
'hypergeo01-xi-denom-filter
'hypergeo01-xi-degree-bound
;; (-x^2+(2*b-4*a)*x-b^2+2*b)/(4*x^2)
(div
(add
(mul x x)
(mul (sub (mul 4 a) (mul 2 b)) x)
(mul b b)
(mul -2 b))
(mul -4 x x)))))
(cond (xi
(setq z (car xi))
(setq a (caadr xi))
(setq b (cadadr xi))
(setq z (sratsimp z))
(setq m (mul
(power '$%e (div z -2))
(power z (div b 2))
(power ($diff z x) (div -1 2))))
(mbag-map #'(lambda (s) (mul s m))
`(($set)
(($kummer_m) ,a ,b ,z)
(($kummer_u) ,a ,b ,z)))))))
;; The differential operator with the FSS
;; {spherodialwave_a(b,c,q,x),spherodialwave_b(b,c,q,x)}
;; is L = D^2 + a1*D + a0, with a1 = -2*(b+1)*x/(1-x^2)
;; and a0 = (c-4*q*x^2)/(1-x^2)
;;
;; Delta = (a1)^2 + 2 a1' - 4 a0
;; = 4*(-q*x^4 + (4q+b^2+b+c)*x^2 - (b+c+1)) / (1-x^2)^2
;; -> constant as x-> infinity. (order at infinity is 0)
;;
;; de-cnd = -Delta/4 = (q*x^4 - (4q+b^2+b+c)*x^2 + (b+c+1)) / (1-x^2)^2
;;
;; Additional parameters to be determined are [b,c,q]
;;
;; FIXME: [DB 2007-04-29] Need to clarify definition of the spheroidal
;; wave functions as I can't find a reference that exactly matches.
;; The values of a1 and a0 above:
;; - give an ODE that is satisfied by spherodialwave_a and spherodialwave_b,
;; - value of de-cnd derived from them matches the one in the code below.
;;
(defun spherodialwave-xi-denom-filter (n)
(if (and (evenp n) (> n 3)) (/ (- n 2) 2) 0))
(defun spherodialwave-xi-degree-bound (q v x)
(ceiling (+ 1 ($hipow q x) (/ (max (ratfun-degree v x) -2) 2))))
(defun spherodialwave-de-solver (v x)
(let* ((b (gensym)) (c (gensym)) (q (gensym)) (m) (z) (x2 (mul x x))
($radexpand nil)
(xi (generic-de-solver v x
(list b c q)
'spherodialwave-xi-denom-filter
'spherodialwave-xi-degree-bound
(mul
(power (add 1 (mul (add -2 x2) x2)) -1)
(add 1 b c
(mul x2 (add (mul
(add -1 (mul -1 b)) b)
(mul -1 c) (mul -4 q)
(mul 4 q x2))))))))
;; (x2*(4*q*x2-4*q-c+(-b-1)*b)+c+b+1)/((x2-2)*x2+1), x2 = x^2.
(cond (xi
(setq z (nth 0 xi))
(setq b (nth 0 (nth 1 xi)))
(setq c (nth 1 (nth 1 xi)))
(setq q (nth 2 (nth 1 xi)))
(setq z (sratsimp z))
(setq m (mul
(power (sub (mul z z) 1) (div (add b 1) 2))
(power ($diff z x) (div -1 2))))
(mbag-map #'(lambda (s) (mul m s))
`(($set)
(($spherodialwave_a) ,b ,c ,q ,z)
(($spherodialwave_b) ,b ,c ,q ,z)))))))
;; The differential operator for the hypergeometric differential equation
;; (A&S 15.5.1) with the FSS {gauss_a(a,b,c,x),gauss_b(a,b,c,x)} is
;; L = D^2 + a1 D + a0, with a1=(c-(a+b+1)*x)/(x*(1-x)) and a0=-a*b/(x*(1-x)).
;;
;; Delta = (a1)^2 + 2*a1' - 4*a0
;; 2 2 2 2
;; (b - 2 a b + a - 1) x + ((- 2 b - 2 a + 2) c + 4 a b) x + c - 2 c
;; = ---------------------------------------------------------------------
;; 2 2
;; (x - 1) x
;;
;; -> constant/x^2 as x-> infinity. (order at infinity is 2)
;;
;; de-cnd = -Delta/4
;; = -((b^2-2*a*b+a^2-1)*x^2+((-2*b-2*a+2)*c+4*a*b)*x+c^2-2*c)/(4*x^2*(x-1)^2)
;;
;; Additional parameters to be determined are [a,b,c]
;;
(defun hypergeo21-xi-denom-filter (n)
(declare (ignore n))
0)
(defun hypergeo21-xi-degree-bound (q v x)
(declare (ignore q v x))
1)
(defun hypergeo21-de-solver (v x)
(let* ((a (gensym)) (b (gensym)) (c (gensym)) (m) (z) ($radexpand nil)
(xi (generic-de-solver v x
(list a b c)
'hypergeo21-xi-denom-filter
'hypergeo21-xi-degree-bound
(div
(add
(mul x
(add
(mul
(add (mul (add (mul 2 a)
(*mminus b)) b)
(*mminus (power a 2))
1)
x)
(mul (add (mul 2 b) (mul 2 a) -2) c)
(mul -4 a b)))
(mul (add 2 (*mminus c)) c))
(mul (power x 2)
(add (mul x (add (mul 4 x) -8)) 4))))))
(cond (xi
(setq z (nth 0 xi))
(setq a (nth 0 (nth 1 xi)))
(setq b (nth 1 (nth 1 xi)))
(setq c (nth 2 (nth 1 xi)))
(setq z (sratsimp z))
;; (xi(x))^(c/2) * (xi(x)-1)^((-c+b+a+1)/2) * f(xi(x)) / sqrt(diff(xi(x),x))
(setq m (mul
(power z (div c 2)) (power (sub z 1)
(div (add 1 a b (mul -1 c)) 2))
(power ($diff z x) (div -1 2))))
(mbag-map #'(lambda (s) (mul m s))
`(($set)
(($gauss_a) ,a ,b ,c ,z)
(($gauss_b) ,a ,b ,c ,z)))))))
|