File: odelin.lisp

package info (click to toggle)
maxima-sage 5.45.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 113,788 kB
  • sloc: lisp: 440,833; fortran: 14,665; perl: 14,369; tcl: 10,997; sh: 4,475; makefile: 2,520; ansic: 447; python: 262; xml: 59; awk: 37; sed: 17
file content (682 lines) | stat: -rw-r--r-- 22,624 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
;; Author Barton Willis
;; University of Nebraska at Kearney
;; Copyright (C) 2004, 2009, Barton Willis

;; Brief Description: Maxima code for linear homogeneous second order
;; differential equations.

;; Maxima odelin is free software; you can redistribute it and/or
;; modify it under the terms of the GNU General Public License,
;; http://www.gnu.org/copyleft/gpl.html.

;; Maxima odelin has NO WARRANTY, not even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

($put '$odelin 20 '$version)

;; [DB 2007-04-29] I have added some comments to generic-de-solver and 
;; subsidiary routines.  They are just my interpretation of the code.

;; The functions mtimesp and mexptp are either missing from 
;; commercial macsyma, or they have different names. For commercial
;; macsyma, here are the definitions.

#+kcl
(defun mtimesp (x)
  (and (consp x) (consp (car x)) (eq (caar x) 'mtimes)))

#+kcl
(defun mexptp (x)
  (and (consp x) (consp (car x)) (equal (caar x) 'mexpt)))

(eval-when
    #+gcl (load compile eval)
    #-gcl (:load-toplevel :compile-toplevel :execute)
    ($load "sqfr")
    ($load "spherodialwave")
    ($load "kummer")
    ($load "extrabessel")
    ($load "lazysolver")
    ($load "gauss")
    ($load "functs") ;; wronskian
    ($load "odeutils"))

(defun ode-polynomialp (p x)
  ($polynomialp p `((mlist) ,x) `((lambda) ((mlist) s) ($freeof ,x s))))
   
(defun require-linear-homogeneous-de (de y x)
  (setq y (require-symbol y "$odelin"))
  (setq x (require-symbol x "$odelin"))

  (cond ((or ($listp de) ($setp de))
	 (if (= 1 ($cardinality de)) 
	     (setq de (nth 1 de))
	   (merror "'odelin' doesn't handle systems of DEs.~%"))))
  
  (setq de ($ratdisrep de))
  (setq de (meqhk de))
  (let ((cf) (acc) (f de) (n ($derivdegree de y x)))
    (if (not (and (integerp n) (> n 0)))
	(merror "'odelin' doesn't handle order ~:M DEs.~%" n))
    (setq de ($rat de))
    (while (> n -1)
      (if (= n 0)
	  (setq cf ($ratcoef de y 1))
	(setq cf ($ratcoef de (list '(%derivative) y x n))))
      (if  ($freeof y cf)
	  (push cf acc)
	(merror "DE must be linear"))
      (setq f (sub f (mul cf (list '(%derivative) y x n))))
      (decf n))
    (setq f (sratsimp f))
    (if (not (like 0 f))
	(merror "DE must be linear and homogeneous.~%"))
    acc))
  	           
(defun $odelin (de y x)
  (let ((cfs (require-linear-homogeneous-de de y x)) (n))
    (setq n (length cfs))
    (cond ((= n 2) (odelin-order-one cfs x))
	  ((= n 3) (odelin-order-two cfs x))
	  (t (merror "'odelin' doesn't handle DEs with order ~:M" (- n 1))))))

(defun odelin-order-one (cfs x)
  (fss-cleanup (take '($set) ($exp ($integrate (mul -1 (div (car cfs) (cadr cfs))) x))) x))

(defun expunge-const-factors (e x)
  (let ((acc 1))
    (cond ((like 0 e) 0)
	  (t
	   (setq e ($factor e))
	   (setq e (if (mtimesp e) (margs e) (list e)))
	   (dolist (ei e acc)
	     (if (not ($freeof x ei)) (setq acc (mul ei acc))))))))

;; Cleanup a fundamental solution set (FSS). 
  
(defun fss-cleanup (fss x)
  (let ((nfss (mbag-map #'(lambda (s) (expunge-const-factors ($radcan s) x)) fss)))
    (if (like nfss fss) fss (fss-cleanup nfss x))))
       
(defun post-check-cleanup (fss)
  (setq fss ($substitute '%bessel_j '$fbessel_j fss))
  ($substitute '%bessel_y '$fbessel_y fss))
        
(defun odelin-order-two (cfs x)
  (let ((p0 (nth 0 cfs))
	(p1 (nth 1 cfs))
	(p2 (nth 2 cfs))
	(p) (m) (sol nil)
	(ode-methods (list 
		      'ode-solve-by-factoring
		      'bessel-de-solver
		      'hypergeo01-de-solver
		      'spherodialwave-de-solver
		      'bessel-sqrt-de-solver
		      'hypergeo21-de-solver)))

    (setq p1 (div p1 p2))
    (setq p0 (div p0 p2))

    (if (not (and (ode-polynomialp ($ratnumer p1) x)
		  (ode-polynomialp ($ratdenom p1) x)
		  (ode-polynomialp ($ratnumer p0) x)
		  (ode-polynomialp ($ratdenom p0) x)))
	(setq ode-methods nil))
      
    (setq p (add p0 (div ($diff p1 x) -2) (mul p1 p1 (div -1 4))))
    (setq m ($exp ($integrate (div p1 -2) x)))
       
    (while (and (not sol) ode-methods)
      (setq sol (funcall (pop ode-methods) p x))
      (if ($setp sol)
	  (progn
	    (setq sol (fss-cleanup (mbag-map #'(lambda (s) (mul m s)) sol) x))
	    (setq sol (if (check-fss cfs sol x) (post-check-cleanup sol) nil)))))
    sol))
   
(defprop unk simp-unk operators)

(defun simp-unk (x y z)
  (declare (ignore y z))
  (merror "Maxima doesn't know the derivative of ~:M with respect the ~:M argument" (nth 2 x) (nth 1 x)))
	  		 
(defun check-de-sol (cfs sol x)
  (let ((zip 0))
    (dolist (cf cfs)
      (setq zip (add zip (mul cf sol)))
      (setq sol ($diff sol x)))
    (setq zip (sratsimp zip))
    (or
     (like 0 zip) (like 0 ($radcan zip)) (like 0 ($radcan ($expand zip)))
     (like 0 (mfuncall '$expintegral_e_simplify zip))
     (mtell "should vanish, but it does not ~:M~%" zip))))

(defun check-fss (cfs fss x)
  (and 
   ($setp fss)
   (= (length cfs) (length fss))
   (every #'(lambda (s) (check-de-sol cfs s x)) (cdr fss))
   (not (like 0 ($radcan ($determinant (mfuncall '$wronskian ($listify fss) x)))))))

;; Return a polynomial in x with degree deg and a list of its
;; coefficients. Each coefficient of the polynomial is a gensym.
   	    
(defun make-unk-poly (x deg)
  (setq x ($ratdisrep x))
  (let ((p 0) (z 1) (cf) (cfs))
    (incf deg)
    (dotimes (i deg (values p (reverse cfs)))
      (setq cf (gensym))
      (push cf cfs)
      (setq p (add p (mul cf z)))
      (setq z (mul z x)))))

(defun polycfs-to-eqs (p x)
  (let ((n) (eqs) ($ratfac nil) ($ratprint nil))
    (setq p ($rat p x))
    (setq n (+ 1 ($hipow p x)))
    (dotimes (i n eqs)
      (push ($ratcoef p x i) eqs))))
    
;; Solve y'' - r y by factoring the differential operator (D^2 - r). Specifically,
;; we factor D^2 - r as (D+a)(D-a), where r and a are rational functions.
;; Expanding, we have  D^2 - r = D^2 -a' - a^2.  So -r = -a' - a^2 or
;; a' + a^2 = r. Solving a' + a^2 =  r is the task for factor-differential-op. 
;; Solutions to (D+a)(D-a) f = 0 are f = mu, where mu = exp (integrate(a,x)) 
;; and f = mu * integrate(1/mu^2,x).

(defun ode-solve-by-factoring (r x)
  (let ((a) (mu) ($radexpand nil))
    (cond ((setq a (factor-differential-op r x))
	   (setq a ($radcan a)) ;; x*(x+1)*'DIFF(y,x,2)+(3*x+2)*'DIFF(y,x,1)+y
	   (setq mu ($radcan ($exp ($integrate a x))))
	   `(($set) ,mu ,(mul mu ($integrate (div 1 (mul mu mu)) x))))
	  (t nil))))
	   
;; Let r = p/q be rational. We either find a rational function a such that 
;; a' + a^2 =  p/q = p q / q^2, or we return nil.  We do this by setting
;; a = w / q.  Then q w' - q' w + w^2 = pq.

(defun factor-differential-op (r x)
  (setq r ($rat r x))
  (let*
      ((p ($ratnumer r))
       (q ($ratdenom r))
       (m ($hipow q x))
       (l ($hipow p x))
       (w) (zip) (n) (vars) (sol)
       ($ratfac nil))
  
    (setq m ($totaldisrep m))
    (setq l ($totaldisrep l))
    (setq m (coerce m 'fixnum))
    (setq l (coerce l 'fixnum))
    (cond ((< (+ 2 l) m)
	   (setq n (max (+ m -1) (+ l 1))))
	  ((evenp (+ m l))
	   (setq n (/ (+ m l) 2)))
	  (t
	   (setq n -1)))
    (cond ((> n -1)
	   (multiple-value-setq  (w vars) (make-unk-poly x n))
	   (setq vars (reverse vars))
	   (push '(mlist) vars)
	   (setq zip (add
		      (mul q ($diff w x)) 
		      (mul -1 w ($diff q x)) 
		      (mul w w) 
		      (mul  p q)))
	   (setq zip ($rat zip x))
	   (setq zip (polycfs-to-eqs zip x))
	   (push '(mlist) zip)
	   (setq sol ($checkedalgsys zip vars))
	
	   (cond ((not sol)
		  (setq sol nil))
		 (t
		  (setq w (div w q))
		  ($substitute sol w))))
	  (t
	   nil))))

(defun polynomial-filter (p x f)
  (let (($ratfac nil) ($ratprint nil))
    (setq p (sratsimp p)) ;; Get rid of terms like sqr(5)^2, %i^2...
    (setq p ($mysqfr p x))
    (setq p (if (mtimesp p) (margs p) (list p)))
    (let ((q 1) (n))
      (dolist (pj p q)
	(cond ((mexptp pj)
	       (setq n (nth 2 pj))
	       (setq pj (nth 1 pj)))
	      (($freeof x pj)
	       (setq n 0))
	      (t
	       (setq n 1)))
	(setq n (funcall f n))
	(setq q (mult q (power pj n)))))))
  
(defun ratfun-degree (q x)
  (let (($ratfac nil))
    (setq q ($rat q x))
    (- ($hipow ($ratnumer q) x) ($hipow ($ratdenom q) x))))

(defun xeasy-eqs (p s x)
  (let ((acc `(($set))))
    (setq s (polynomial-filter s x #'(lambda (n) (min 1 n))))
    (setq s (cdr ($solve s x)))
    (dolist (si s (require-set acc "easy-eqs"))
      (setq acc ($adjoin ($substitute si p) acc)))))

;; Find conditions that make the polynomial 'cnd' vanish at each zero of
;; the polynomial 's.'  When the zero of 's' isn't messy, we simply 
;; evaluate 'cnd' at the zero.  When the zero of 's' is messy, we 
;; use a different method. In the best of all possible worlds, I'd
;; treat all zeros as messy---when I do this, some DEs in my testing
;; routine don't get solved. 

(defun easy-eqs (cnd s x)
  (let ((acc) (n) ($programmode t) 
	($globalsolve nil) ($solveexplicit t) ($solveradcan nil))
    
    (setq s (polynomial-filter s x #'(lambda (n) (min 1 n))))
    (setq s ($factor s))
    (setq s (if (mtimesp s) (margs s) (list s)))
    (dolist (si s acc)
      (setq si ($expand si))
      (setq n ($hipow si x))
      ;; Check for a non-messy zero.
      (cond ((< n 3)
	     (setq si (margs ($solve si x)))
	     (dolist (sij si)
	       (push ($substitute sij cnd) acc)))
	    (t
	     (setq acc (append acc 
			       (polycfs-to-eqs 
				($second ($divide cnd si x)) x))))))))

      
;; Expunge multiple zeros.

(defun clean-equation (p)
  (let ((acc 1))
    (setq p ($sqfr p))
    (setq p (cond ((mtimesp p) (margs p))
		  ((mexptp p) (list (car (margs p))))
		  (t (list p))))
    (dolist (pj p acc)
      (setq acc (mul acc (if (mexptp pj) (car (margs pj)) pj))))))   

;; generic-de-solver uses a method described by Bronstein and Lafaille, 
;; to compute special function solutions of non-Liouvillian 2nd order 
;; linear homogeneous ODES.
;;
;; M Bronstein, S Lafaille, Solutions of linear ordinary differential 
;; equations in terms of special functions, Proceedings of ISSAC 2002, Lille, 
;; ACM Press, 23-28. 
;; (http://www-sop.inria.fr/cafe/Manuel.Bronstein/publications/issac2002.pdf)
;;
;; Given 
;; - an ode y'' = v y, where v is a function of x, 
;; - a target 2nd order linear ODE L y = 0, with
;;    - L = D^2 + a1 D + a0 a 2nd order linear differential operator
;;    - {F1,F2} a known fundamental solution set of L y = 0
;; we seek functions m(x) and xi(x) st { m(x) F1(xi(x)), m(x) F2{xi(x)) }
;; is a fundamental solution set of y'' = v y.
;;
;; xi(x) satisfies a non-linear third-order ODE [Eq 7 in paper] (see 
;; get-de-cnd below).  The solution of this DE is a rational function 
;; xi(x)=P(x)/Q(x) where P(x) and Q(x) are polynomials.  It is shown 
;; that the denominator Q(x) is given by certain terms in the square-free
;; factorization of the denominator of v(x), and an upper bound to
;; the degree of the numerator P(x) can be found.  This allows P(x) to be 
;; found, if it exists, using the method of undetermined coefficients.  
;; These quantities depend on the order at infinity of v(x) and 
;; Delta=(a1)^2+2*a1'-4*a0
;; 
;;
;; For each target equation L = D^2 + a1 D + a0 we specialize the solver
;; by providing
;; o  params:       a list of additional parameters in the operator
;; o  denom-filter: a rule to select the terms in the square-free 
;;                  factorization of the denominator of v(x) that form Q(x).
;; o  degree-bound: the upper bound for the degree of the numerator P(x)
;; o  de-cnd: -Delta/4, where Delta = (a1)^2  + 2 a1' - 4 a0
;;
;;
;;                           i
;; Theorem 1:  Let Product( Q  ) be the squarefree decomposition of 
;;                           i
;; the denominator of v(x)and d = order at infinity of Delta, with d<2.
;;                                                 i
;; Then the denominator Q(x) of xi(x) is Product( Q  ) with n=(2-d)*i+2
;;                                                 n
;;
;; The numerator P(x) is a polynomial in x.  Either deg(P) <= deg(Q)+1
;; or deg(P) = deg(Q) + (2-order_at_infinity(v))/(2-d).  When d<0 the
;; first bound becomes deg(P) <= deg(Q).
;;
;; The function denom-filter(n) returns the exponent i for the term Q_n,
;; with i=0 for factors Q_n that are not used.
;;
;; CASE   |  n      | 1  2  3  4  5  6  7  8 |  Example
;; -------|---------|------------------------------------------------------
;; d = -1 | i=3*n+2 | 0  0  0  0  1  0  0  2 | (not used)
;; d =  0 | i=2*n+2 | 0  0  0  1  0  2  0  3 | bessel-xi-denom-filter
;; d =  1 | i=n+2   | 0  0  1  2  3  4  5  6 | bessel-sqrt-xi-denom-filter
;; d =  2 | i=0     | 0  0  0  0  0  0  0  0 | hypergeo21-xi-denom-filter
;;
;; The function degree-bound returns the upper bound of the numerator
;; P(x) of xi(x).  
;; 
;; The proof in the paper only applies for the case d<2. It does not apply
;; for the 2F1 hypergeometric function where d=2, although the method clearly 
;; works for this case too.
;;
;;
(defun generic-de-solver (v x params denom-filter degree-bound de-cnd)
  (setq v ($rat v x))
  (let ((s) (q) (p) (n) (unks) (nz) (eqs) (cnd) (sol) (xeqs) ($ratfac nil))

    (setq s ($ratdenom v))
    (setq q (polynomial-filter s x denom-filter))
    (setq n (funcall degree-bound q v x))
    (multiple-value-setq (p unks) (make-unk-poly x n))
    (setq nz `((mlist) ,p ,(sub (mul p ($diff q x)) (mul q ($diff p x)))))
    (setq unks (append params unks))
    (push `(mlist) unks)
    (setq cnd (get-de-cnd (div p q) v de-cnd x))
    (setq xeqs (easy-eqs cnd s x))
    (setq eqs (polycfs-to-eqs cnd x))
    (setq unks ($listify unks))
    (setq eqs (mapcar #'clean-equation eqs))
    (setq xeqs (mapcar #'clean-equation xeqs))
    (push `(mlist) eqs)
    (push `(mlist) xeqs)
    (setq sol ($aalgsys xeqs eqs unks nz))
    ;;(setq sol ($checkedalgsys ($append xeqs eqs) unks nz))
    
    (cond (($listp sol)
	   (setq p ($substitute sol p))
	   (setq params (mapcar #'(lambda (s) ($substitute sol s)) params))
	   `(,(div p q) ,params))
	  (t nil))))

;; Called by generic-de-solver implementing method of Bronstein and Lafaille.
;; Returns the differential equation satisfied by xi(x) [Eq 7 in paper] 
;;
;;       2                       2                           4         2
;; 3*xi'' - 2*xi'*xi''' + (a1(xi) + 2*a1'(xi) - 4*a0(xi))*xi' - 4*v*xi' = 0
;;
;; In this routine
;;    vh is the expression v(x) in DE to be solved (D^2-v)y=0
;;    v  is the expression -(a1(x)^2 + 2*a1'(x) - 4*a0(x))/4
;;    We return (-1) times equation above
;;
(defun get-de-cnd (xi vh v x)
  (let ((dxi) (ddxi) (dddxi) (dxi^2) ($ratfac nil) ($ratprint nil))
    
    (setq xi ($ratdisrep xi))
    (setq dxi ($diff xi x))
    (setq dxi^2 (mul dxi dxi))
    (setq ddxi ($diff dxi x))
    (setq dddxi ($diff ddxi x))
    
    ;; 4*dxi^4*v(xi)-4*dxi^2*vh(x)+2*dddxi*dxi-3*ddxi^2
   
    ($ratdisrep ($ratnumer
		 (add
		  (mul 4 ($substitute xi x v) dxi^2 dxi^2)
		  (mul -4 vh dxi^2)
		  (mul 2 dxi dddxi)
		  (mul -3 ddxi ddxi))))))

;; The differential operator with the FSS {bessel_j(mu,x),bessel_y(mu,x)} 
;; is L = D^2 + a1*D + a0, with a1 = 1/x and a0 = (1-mu^2/x^2).
;; 
;; Delta = (a1)^2+2*a1'-4*a0  = (4*mu^2-1)/x^2-4
;;       -> constant as x-> infinity.  (order at infinity is 0)
;;
;; de-cnd = -Delta/4 = (4*x^2+1-4*mu^2)/(4*x^2)
;;
;; Additional parameter [mu]
;;
(defun bessel-xi-denom-filter (n)
  (if (and (evenp n) (> n 3)) (/ (- n 2) 2) 0))

(defun bessel-xi-degree-bound (q v x)
  (ceiling (+ 1 ($hipow q x) (/ (max (ratfun-degree v x) -2) 2))))

(defun bessel-de-solver (v x)
  (let* 
      ((mu (gensym)) (z) (m) ($radexpand nil)
       (xi (generic-de-solver v x 
			      (list mu)
			      'bessel-xi-denom-filter
			      'bessel-xi-degree-bound
			      (div (add (mul 4 x x) 1 (mul -4 mu mu))
				   (mul 4 x x)))))
    (cond (xi
	   (setq z (nth 0 xi))
	   (setq mu (car (nth 1 xi)))
	   (setq z (sratsimp z))
	   (setq mu (sratsimp mu))
	   (setq m (mul 
		    (power z (div 1 2)) 
		    (power ($diff z x) (div -1 2))))
	   
	   (mbag-map #'(lambda (s) (mul m s))
		     `(($set) 
		       (($fbessel_j) ,mu ,z)
		       (($fbessel_y) ,mu ,z)))))))

;; The differential operator with the FSS 
;;   {bessel_j(mu,sqrt(x)),bessel_y(mu,sqrt(x))} 
;; is L = D^2 + a1 D + a0, with a1 = 1/x and a0 = (1/x-mu^2/x^2)/4.
;; 
;; Delta = (a1)^2 +2*a1'-4*a0 = (mu^2-1)/x^2-1/x
;;       -> 1/x as x-> infinity.  (order at infinity is 1)
;;
;; de-cnd = -Delta/4 = (1 + x - mu^2)/(4*x^2)
;;
;; Additional parameter [mu]
;;       
(defun bessel-sqrt-xi-denom-filter (n)
  (if (> n 2) (- n 2) 0))

(defun bessel-sqrt-xi-degree-bound (q v x)
  (+ 2 ($hipow q x) (max -2 (ratfun-degree v x))))

(defun bessel-sqrt-de-solver (v x)
  (let*  ((mu (gensym)) (z) (m) ($radexpand nil)
	  (xi (generic-de-solver v x 
				 (list mu)
				 'bessel-sqrt-xi-denom-filter
				 'bessel-sqrt-xi-degree-bound
				 (div (add 1 x (mul -1 mu mu)) (mul 4 x x)))))
    (cond (xi
	   (setq z (nth 0 xi))
	   (setq mu (car (nth 1 xi)))
	   (setq z (sratsimp z))
	   (setq mu (sratsimp mu))
	   (setq m (mul 
		    (power z (div 1 2)) 
		    (power ($diff z x) (div -1 2))))
	   
	   (setq z (power z (div 1 2)))
	   (mbag-map #'(lambda (s) (mul m s))
		     `(($set) 
		       (($fbessel_j) ,mu ,z)
		       (($fbessel_y) ,mu ,z)))))))

;; The differential operator with the FSS {kummer_m(a,b,x),kummer_u(a,b,x)} 
;; is L = D^2 + a1*D + a0, with a1 = b/x - 1 and a0 = -a/x.
;;  
;; Delta = (a1)^2+2*a1'-4*a0 = 1+(4*a-2*b)/x+(b^2-2*b)/x^2
;;       = (x^2 + (4 a - 2 b) x + b^2 -2 b)/x^2
;;       -> 1 as x-> infinity.  (order at infinity is 0)
;;
;; de-cnd = -Delta/4 = (-x^2+(2*b-4*a)*x-b^2+2*b)/(4*x^2)
;;
;; Additional parameters to be determined are [a,b]
;;
(defun hypergeo01-xi-denom-filter (n)
  (if (and (evenp n) (> n 3)) (/ (- n 2) 2) 0))

(defun hypergeo01-xi-degree-bound (q v x)
  (ceiling (+ 1 ($hipow q x) (/ (max (ratfun-degree v x) -2) 2))))

(defun hypergeo01-de-solver (v x)
  (let* ((a (gensym)) (b (gensym)) (m) (z) ($radexpand nil)
	 (xi (generic-de-solver v x 
				(list a b)
				'hypergeo01-xi-denom-filter
				'hypergeo01-xi-degree-bound
				;; (-x^2+(2*b-4*a)*x-b^2+2*b)/(4*x^2)
				(div
				 (add 
				  (mul x x)
				  (mul (sub (mul 4 a) (mul 2 b)) x)
				  (mul b b)
				  (mul -2 b))
				 (mul -4 x x)))))
    (cond (xi
	   (setq z (car xi))
	   (setq a (caadr xi))
	   (setq b (cadadr xi))
	   (setq z (sratsimp z))
	   (setq m (mul 
		    (power '$%e (div z -2)) 
		    (power z (div b 2))
		    (power ($diff z x) (div -1 2))))

	   (mbag-map #'(lambda (s) (mul s m))
		     `(($set) 
		       (($kummer_m) ,a ,b ,z)
		       (($kummer_u) ,a ,b ,z)))))))

;; The differential operator with the FSS 
;; {spherodialwave_a(b,c,q,x),spherodialwave_b(b,c,q,x)} 
;; is L = D^2 + a1*D + a0, with a1 = -2*(b+1)*x/(1-x^2) 
;; and a0 = (c-4*q*x^2)/(1-x^2)
;;  
;; Delta = (a1)^2  + 2 a1' - 4 a0
;;       = 4*(-q*x^4 + (4q+b^2+b+c)*x^2 - (b+c+1)) / (1-x^2)^2
;;       -> constant as x-> infinity.  (order at infinity is 0)
;;
;; de-cnd = -Delta/4 = (q*x^4 - (4q+b^2+b+c)*x^2 + (b+c+1)) / (1-x^2)^2
;;
;; Additional parameters to be determined are [b,c,q]
;;
;; FIXME: [DB 2007-04-29] Need to clarify definition of the spheroidal
;; wave functions as I can't find a reference that exactly matches.
;; The values of a1 and a0 above:
;; - give an ODE that is satisfied by spherodialwave_a and spherodialwave_b, 
;; - value of de-cnd derived from them matches the one in the code below.
;;
(defun spherodialwave-xi-denom-filter (n)
  (if (and (evenp n) (> n 3)) (/ (- n 2) 2) 0))

(defun spherodialwave-xi-degree-bound (q v x)
  (ceiling (+ 1 ($hipow q x) (/ (max (ratfun-degree v x) -2) 2))))

(defun spherodialwave-de-solver (v x)
  (let* ((b (gensym)) (c (gensym)) (q (gensym)) (m) (z) (x2 (mul x x))
	 ($radexpand nil)
	 (xi (generic-de-solver v x 
				(list b c q)
				'spherodialwave-xi-denom-filter
				'spherodialwave-xi-degree-bound
				(mul
				 (power (add 1 (mul (add -2 x2) x2)) -1)
				 (add 1 b c
				      (mul x2 (add (mul 
						     (add -1 (mul -1 b)) b)
						   (mul -1 c) (mul -4 q)
						   (mul 4 q x2))))))))

    ;; (x2*(4*q*x2-4*q-c+(-b-1)*b)+c+b+1)/((x2-2)*x2+1), x2 = x^2.
    
    (cond (xi
	   (setq z (nth 0 xi))
	   (setq b (nth 0 (nth 1 xi)))
	   (setq c (nth 1 (nth 1 xi)))
	   (setq q (nth 2 (nth 1 xi)))
	   (setq z (sratsimp z))
	   (setq m (mul 
		    (power (sub (mul z z) 1) (div (add b 1) 2))
		    (power ($diff z x) (div -1 2))))

	   (mbag-map #'(lambda (s) (mul m s))
		     `(($set) 
		       (($spherodialwave_a) ,b ,c ,q ,z)
		       (($spherodialwave_b) ,b ,c ,q ,z)))))))

;; The differential operator for the hypergeometric differential equation 
;; (A&S 15.5.1) with the FSS {gauss_a(a,b,c,x),gauss_b(a,b,c,x)} is
;; L = D^2 + a1 D + a0, with a1=(c-(a+b+1)*x)/(x*(1-x)) and a0=-a*b/(x*(1-x)).
;;  
;; Delta = (a1)^2  + 2*a1' - 4*a0
;;           2            2       2                                      2
;;         (b  - 2 a b + a  - 1) x  + ((- 2 b - 2 a + 2) c + 4 a b) x + c  - 2 c
;;       = ---------------------------------------------------------------------
;;                                           2  2
;;                                    (x - 1)  x
;;
;;       -> constant/x^2 as x-> infinity.  (order at infinity is 2)
;; 
;; de-cnd = -Delta/4 
;;        = -((b^2-2*a*b+a^2-1)*x^2+((-2*b-2*a+2)*c+4*a*b)*x+c^2-2*c)/(4*x^2*(x-1)^2)
;;
;; Additional parameters to be determined are [a,b,c]
;;
(defun hypergeo21-xi-denom-filter (n)
  (declare (ignore n))
  0)

(defun hypergeo21-xi-degree-bound (q v x)
  (declare (ignore q v x))
  1)

(defun hypergeo21-de-solver (v x)
  (let* ((a (gensym)) (b (gensym)) (c (gensym)) (m) (z) ($radexpand nil)
	 (xi (generic-de-solver v x 
				(list a b c)
				'hypergeo21-xi-denom-filter
				'hypergeo21-xi-degree-bound

				(div
				 (add
				  (mul x
					 (add
					  (mul
					   (add (mul (add (mul 2 a) 
							  (*mminus b)) b)
						(*mminus (power a 2))
						1)
					   x)
					  (mul (add (mul 2 b) (mul 2 a) -2) c)
					  (mul -4 a b)))
				  (mul (add 2 (*mminus c)) c))
				 (mul (power x 2)
				      (add (mul x (add (mul 4 x) -8)) 4))))))
			
    
    (cond (xi
	   (setq z (nth 0 xi))
	   (setq a (nth 0 (nth 1 xi)))
	   (setq b (nth 1 (nth 1 xi)))
	   (setq c (nth 2 (nth 1 xi)))
	   (setq z (sratsimp z))
;; (xi(x))^(c/2) * (xi(x)-1)^((-c+b+a+1)/2) * f(xi(x)) / sqrt(diff(xi(x),x))
	   (setq m (mul 
		    (power z (div c 2)) (power (sub z 1) 
					       (div (add 1 a b (mul -1 c)) 2))
		    (power ($diff z x) (div -1 2))))

	   (mbag-map #'(lambda (s) (mul m s))
		     `(($set) 
		       (($gauss_a) ,a ,b ,c ,z)
		       (($gauss_b) ,a ,b ,c ,z)))))))