1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
(load("contrib_ode"),0);
0$
/* ODE tests - Murphy equations 2.401 - 2.423
Reference:
G M Murphy, Ordinary Differential Equations and Their
Solutions, Van Nostrand, 1960, pp 15-23
First Order and Second or Higher Degree, p278 ff
*/
/* Don't kill(all); It messes up trigsimp */
/* Eliminate parameter t from singular solution */
(elim_(ans,x,y,t):=block([s],s:first(solve(ans[2],t)),s:solve(ev(ans[1],s),y),s[1]),done);
done;
/* Print ode number*/
(pn_(n_):=print("Murphy ODE 2.",n_),true);
true;
/* 402 */
(pn_(402),ans:contrib_ode(eqn:log('diff(y,x))+x*'diff(y,x)+a=y,y,x));
[y = %c*x+a+log(%c),[-y+%t*x+log(%t)+a=0,(%t*x+1)/%t=0]];
/* Eliminate parameter t from singular solution */
(s:first(solve((ans[2])[2],%t)),s:first(solve(ev(first(ans[2]),s),y)));
y = log(-1/x)+a-1;
[method,ode_check(eqn,ans[1]),ode_check(eqn,s)];
[clairault,0,0];
/* 405 */
(pn_(405),ans:contrib_ode(eqn:log('diff(y,x))+a*(x*'diff(y,x)-y)=0,y,x));
[y = (%c*a*x+log(%c))/a,[a*(%t*x-y)+log(%t) = 0,(%t*a*x+1)/%t = 0]];
/* Eliminate parameter t from singular solution */
/* (s:first(solve((ans[2])[2],%t)),s:first(solve(ev(first(ans[2]),s),y))); */
s:elim_(ans[2],x,y,%t);
y=(log(-1/(a*x))-1)/a;
[method,ode_check(eqn,ans[1]),ode_check(eqn,s)];
[clairault,0,0];
/* 408 */
(pn_(408),ans:contrib_ode(eqn:'diff(y,x)*log('diff(y,x))-(1+x)*'diff(y,x)+y=0,y,x));
[y = %c*x-%c*log(%c)+%c,[y-%t*(x+1)+%t*log(%t) = 0,log(%t)-x = 0]];
/* Eliminate parameter %t from singular solution */
(s:first(solve((ans[2])[2],%t)),s:first(solve(ev(first(ans[2]),s),y)));
y = %e^x;
[method,ode_check(eqn,ans[1]),ode_check(eqn,s)];
[clairault,0,0];
/* 409 */
(pn_(409),ans:contrib_ode(eqn:log('diff(y,x)*x-y)='diff(y,x),y,x));
[y=%c*x-%e^%c,[log(%t*x-y)-%t=0,-((-y+%t*x-x)/(%t*x-y))=0]];
/* eliminate parameter %t from singular solution */
(s:first(solve((ans[2])[2],%t)),s:first(solve(ev(first(ans[2]),s),y)));
y = x*log(x)-x;
[method,ode_check(eqn,ans[1]),ode_check(eqn,s)];
[clairault,0,0];
/* 410 */
(pn_(410),ans:contrib_ode(eqn:'diff(y,x)*log('diff(y,x)+sqrt(1+'diff(y,x)^2))-sqrt(1+'diff(y,x)^2)-x*'diff(y,x)+y=0,y,x));
[y=%c*x-%c*log(sqrt(%c^2+1)+%c)+sqrt(%c^2+1),[y-%t*x+%t*log(sqrt(%t^2+1)+%t)-sqrt(%t^2+1)=0,log(sqrt(%t^2+1)+%t)-x=0]];
ans[2]:radcan(ans[2]);
[y-%t*x+%t*log(sqrt(%t^2+1)+%t)-sqrt(%t^2+1)=0,log(sqrt(%t^2+1)+%t)-x=0];
ans[2]:ans[2],log(sqrt(%t^2+1)+%t)=asinh(%t);
[y-%t*x+%t*asinh(%t)-sqrt(%t^2+1) = 0,asinh(%t)-x = 0];
solve(ans[2][2],%t);
[%t = sinh(x)];
trigsimp(ans[2][1]),%[1],triginverses=all;
y-cosh(x)=0;
ans[2]:first(solve(%,y));
y=cosh(x);
[method,ode_check(eqn,ans[1]),radcan(exponentialize((ode_check(eqn,ans[2]))))];
[clairault,0,0];
/* 416 - requires pdiff package */
block([use_pdiff:true],pn_(416),contrib_ode(eqn:f(x*'diff(y,x)-y)=g('diff(y,x)),y,x));
[f(%c*x-y)=g(%c)];
method;
clairault;
|