File: impdiff.mac

package info (click to toggle)
maxima-sage 5.45.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 113,788 kB
  • sloc: lisp: 440,833; fortran: 14,665; perl: 14,369; tcl: 10,997; sh: 4,475; makefile: 2,520; ansic: 447; python: 262; xml: 59; awk: 37; sed: 17
file content (89 lines) | stat: -rw-r--r-- 3,197 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
/*
This subroutine implicit derivatives of multivariable expressions
Copyright (C) 1999  Dan Stanger

This library is free software; you can redistribute it and/or modify it
under the terms of the GNU Library General Public License as published
by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Dan Stanger dan.stanger@internut.com
please contact me for updates to this code or
look on my web page (currently www.diac.com/~dxs)
this code was tested using Macsyma 2.4 from Macsyma, Inc.
*/
/* f is an array, the indexes are the derivative degree
     in the indvarlist order.
   indvarlist independent variable list
   depvar the dependent variable
   orderlist the order desired
*/

/* If makeOrders is not already defined, then load it.
 * Following test looks for a Maxima function named makeOrders.
 * Probably should also look for a Lisp function,
 * in case makeOrders is reimplemented as a Lisp function.
 */
if ?mget ('makeOrders, '?mexpr) = false then load (makeOrders);

/* Display an array, either a hashed array or a declared array,
 * as a list of equations a[<subscripts>] = <value>.
 * Seems generally useful -- might want to move this into core at some point.
 */
display_array ('a) := block ([stuff, ainfo],
  stuff : errcatch (apply (arrayinfo, [a])),
  if stuff # []
    then
     (ainfo : first (stuff),
      if first (ainfo) = declared
        then display_array_declared (a, ainfo[3])
        else display_array_hashed (a, rest (rest (ainfo)))));

display_array_declared (a, dimensions) :=
 (map (lambda ([n], apply (set, makelist (i, i, 1, n))), dimensions),
  apply (cartesian_product, %%),
  makelist (arraymake (a, i), i, args (%%)),
  apply (display, %%));

display_array_hashed (a, indices) :=
 (makelist (arraymake (a, i), i, indices),
  apply (display, %%));

implicit_derivative(f,indvarlist,orderlist,depvar):=
   block([
	l:makeOrders(indvarlist,orderlist),
	orders,orderslength,diffargs],local(orders,diffargs),
	orderslength:length(l)-1,
	array([orders,diffargs],orderslength),
	fillarray(orders,l),
	depends(depvar,indvarlist),
	for i:1 thru orderslength do block([d,s],
	   diffargs[i]:apply('append,maplist(lambda([x,y],[x,y]),
			      indvarlist,orders[i])),
	   d:apply('diff, cons(arrayapply(f,orders[0]), diffargs[i])),
	   for j:(i-1) step -1 thru 1 do block(
		d:subst(
		   arrayapply(f,orders[j]),
		   apply('diff,cons(depvar,diffargs[j])), d)),
	   s:solve(d,apply('diff,cons(depvar,diffargs[i]))),
	   arraysetapply(f,orders[i],rhs(first(s)))),
       f)$

/* the following example will fill the array f with derivatives

    load (impdiff);
    f [0, 0] : x^2 + y^3 - z^4 = 0;
    implicit_derivative (f, [x, y], [2, 3], z);
    display_array (f);

 */