1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
/*
Copyright 2009 by Barton Willis
Maxima code for integration of some algebraic functions.
This is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License,
http://www.gnu.org/copyleft/gpl.html.
This software has NO WARRANTY, not even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
load("basic");
if get('abs_integrate,'version) = false then load("abs_integrate.mac")$
/* The function radcan isn't idempotent for some expressions that you might think
that it should be; for example
((-x-1)^(-bb-aa-2)*(x+2)^aa)/(((x+2)/(x+1))^aa*(1/(x+1)-(x+2)/(x +1)^2)*(1-(x+2)/(x+1))^bb)
The function infapply works around this by doing fixed point iteration on a function f. */
infapply(e,f) := block([ee],
while e # (ee : apply(f,[e])) do e : ee, e);
/* Return a list of the coefficients of a polynomial p[x]. This function doesn't check
that p is a polynomial. */
all_poly_coefs(p,x) := (p : ratexpand(p), makelist(ratcoef(p,x,k),k,0, hipow(p,x)));
collect_poly_factors(e,x) := block([l],
e : ratsimp(diff(e,x) / e),
e : factor(ratdenom(e)),
l : if safe_op(e) = "*" then args(e) else [e],
l : sublist(l, lambda([s], not freeof(x,s))),
if every(lambda([s], polynomialp(s,[x], lambda([u], freeof(x,u)), 'integerp)), l) then
setify(map(lambda([s], s / ratcoef(s,x,hipow(s,x))), l)) else false);
generate_hyper_mu(p, r, a, b) := block([l : [], f, n, i, pt, rt,k],
n : 3^length(p) - 1,
while n > 0 do (
f : 0,
pt : p, /* pt = tail of p */
rt : r,
k : n,
i : 0, /* i counts the number of nonzero terms in f */
while k > 0 do (
k : divide(k,3),
if second(k) = 1 then (
i : i + 1,
f : f + first(pt) * (first(rt) + 1)/(a + 1))
else if second(k) = 2 then (
i : i + 1,
f : f + first(pt) * (first(rt) + 1)/(a + b + 1)),
k : first(k),
rt : rest(rt),
pt : rest(pt)),
n : n - 1,
l : push([i,f],l)),
l : sort(l, lambda([a,b], first(a) < first(b))),
l : map('second,l));
/* Express sigma as a linear combination of the members of kern. */
xresidue(sigma, kern, x) := block([zip, %g, i, n, k],
%g : new_variable('general),
n : length(kern),
zip : partfrac(sigma - kern . makelist(concat(%g,i),i,1,n),x),
zip : if safe_op(zip) = "+" then args(zip) else [zip],
map('rhs, linsolve(map('ratnumer,zip), makelist(concat(%g,k),k,1,n))));
/* Return true if the function x |--> e is piecewise constant. We'll assume that
if g is piecewise constant, so is the composition f(g). This isn't true for all
functions f, (say f is 1 on the rational numbers and 0 otherwise). */
piecewise_constant_p(e,x,[z]) := (
if z = [] then (
e : infapply(e,lambda([s], convert_to_signum(radcan(s))))),
if mapatom(e) then freeof(x,e)
else (
numberp(e) or
member(safe_op(e), ['floor, 'signum]) or
every(lambda([s], piecewise_constant_p(s,x, false)), args(e))));
hyper_int(e,x) := block([kern, sigma, a, b, r, dkern, mu, eq, aa, l,
sol, f, cnst, ie : false, %fo, %so, algexact : true],
kern : collect_poly_factors(e,x),
if kern # false then (
kern : listify(kern),
sigma : partfrac(ratsimp(diff(e,x) / e),x),
a : new_variable('general),
b : new_variable('general),
dkern : map(lambda([s], diff(s,x) / s), kern),
r : xresidue(sigma, dkern, x),
l : if r = [ ] then [ ] else generate_hyper_mu(dkern, r, a, b),
for mu in l while ie = false do (
eq : mu^2*(b*diff(sigma,x,1)+sigma^2+b*diff(mu,x,1)+2*a*diff(mu,x,1)+2
*diff(mu,x,1))-mu*(b*diff(mu,x,1)*sigma+2*diff(mu,x,1)*sigma+b
*diff(mu,x,2))-(b+2*a+2)*mu^3*sigma+(2*b+1)*(diff(mu,x,1))^2+(a+1) *(b+a+1)*mu^4,
eq : partfrac(eq,x),
eq : if safe_op(eq) = "+" then args(eq) else [eq],
eq : xreduce('append, map(lambda([s], all_poly_coefs(ratnumer(s),x)),eq)),
eq : listify(setify(eq)),
sol : algsys(eq, [a,b]),
for sk in sol while ie = false do (
f : radcan(exp(logcontract(integrate(mu,x)))),
f : block([?errorsw : true], errcatch(subst(sk, f))),
if f # [] then (
f : first(f),
%fo : new_variable('general),
f : %fo * f,
cnst : subst(sk, diff(f,x) * f^a * (1 - f)^b / e),
cnst : infapply(cnst,lambda([s], radcan(rootscontract(s)))),
if cnst # 0 then (
cnst : ratnumer(ratsimp(diff(cnst,x) / cnst)),
cnst : solve(cnst, %fo),
aa : subst(sk,a))
else cnst : [ ],
if cnst # [] and not(integerp(aa) and aa < 0) then (
f : subst(cnst,f),
%so : ratsimp(subst(sk, diff(f,x) * f^a * (1 - f)^b / e)),
if %so # 0 and piecewise_constant_p(%so,x) = true then (
ie : subst(sk, (1/%so) * f^(a+1) * hypergeometric([a+1,-b],[2+a], f)/(a+1)))))))),
ie);
generate_elliptic_candidates(p, r, %k) := block([l : [], f, n, i, pt, rt, k],
n : 5^length(p) - 1,
while n > 0 do (
f : 0,
pt : p, /* pt = tail of p */
rt : r,
k : n,
i : 0, /* i counts the number of terms in f that involve %k */
while k > 0 do (
k : divide(k,5),
if second(k) = 1 then (
f : f + first(pt) * (first(rt) + 1))
else if second(k) = 2 then (
f : f - first(pt) * (first(rt) + 1))
else if second(k) = 3 then (
i : i + 1,
f : f + first(pt) * %i * (%k^2 - 1)*(first(rt) + 1) /(2 * %k))
else if second(k) = 4 then (
i : i + 1,
f : f - first(pt) * %i * (%k^2 - 1)*(first(rt) + 1) /(2 * %k)),
k : first(k),
rt : rest(rt),
pt : rest(pt)),
n : n - 1,
l : push([i,f],l)),
l : sort(l, lambda([a,b], first(a) < first(b))),
l : map('second,l));
inverse_jacobi_int(e,x) := block([kern, sigma, %k, r, dkern, mu, eq, sol, f, cnst, ie : false,l,
%fo, %so, algexact : true],
kern : collect_poly_factors(e,x),
if kern # false then (
kern : listify(kern),
sigma : partfrac(ratsimp(diff(e,x) / e),x),
%k : new_variable('general),
dkern : map(lambda([s], diff(s,x) / s), kern),
r : xresidue(sigma, dkern, x),
l : if r = [ ] then [] else generate_elliptic_candidates(dkern, r, %k),
for mu in l while ie = false do (
eq : -2*%k^2*(mu^2*(diff(sigma,x,1))^2-4*mu^2*sigma^2*(diff(sigma,x,1))+
6*mu*(diff(mu,x,1))*sigma*(diff(sigma,x,1))-2*mu*(diff(mu,x,2))*(diff(sigma,x,1))+
8*mu^4*(diff(sigma,x,1))+4*mu^2*sigma^4-12*mu*(diff(mu,x,1))*sigma^3+
4*mu*(diff(mu,x,2))*sigma^2+9* (diff(mu,x,1))^2*sigma^2-12*mu^4*sigma^2-
6*(diff(mu,x,1))*(diff(mu,x,2))*sigma+16*mu^3*(diff(mu,x,1))*sigma+
(diff(mu,x,2))^2-8*mu^3*(diff(mu,x,2))+4*mu^2*(diff(mu,x,1))^2+8*mu^6)+
%k^4* (mu*(diff(sigma,x,1))-2*mu*sigma^2+3*(diff(mu,x,1))*sigma-2*mu^2*sigma-
diff(mu,x,2)+2*mu*(diff(mu,x,1)))*(mu*(diff(sigma,x,1))-2*mu*sigma^2+
3*(diff(mu,x,1))*sigma+2*mu^2*sigma-diff(mu,x,2)-2*mu*(diff(mu,x,1)))+
(mu*(diff(sigma,x,1))-2*mu*sigma^2+3*(diff(mu,x,1))*sigma-2*mu^2*sigma-
diff(mu,x,2)+2*mu*(diff(mu,x,1)))*(mu*(diff(sigma,x,1))-2*mu*sigma^2+
3*(diff(mu,x,1))*sigma+2*mu^2*sigma-diff(mu,x,2)-2*mu*(diff(mu,x,1))),
eq : partfrac(eq,x),
eq : if safe_op(eq) = "+" then args(eq) else [eq],
eq : xreduce('append, map(lambda([s], all_poly_coefs(ratnumer(s),x)),eq)),
eq : listify(setify(eq)),
sol : algsys(eq, [%k]),
for sk in sol while ie = false do (
f : radcan(exp(logcontract(integrate(mu,x)))),
f : block([?errorsw : true], errcatch(subst(sk, f))),
if f # [] then (
f : first(f),
%fo : new_variable('general),
f : %fo * f,
cnst : subst(sk, (diff(f,x) / (sqrt(1-f^2) * (sqrt(1-%k^2 * f^2)))) / e),
cnst : infapply(cnst,lambda([s], radcan(rootscontract(s)))),
if cnst # 0 then (
cnst : ratnumer(ratsimp(diff(cnst,x) / cnst)),
cnst : algsys([cnst], [%fo]),
cnst : first(sublist(cnst, lambda([s], freeof(x, rhs(first(s)))))))
else cnst : [ ],
if cnst # [] then (
f : subst(cnst,f),
%so : ratsimp(subst(sk, diff(f,x) / (sqrt(1-f^2) * (sqrt(1-%k^2 * f^2))) / e)),
if %so # 0 and piecewise_constant_p(%so,x) = true then (
ie : subst(sk, (1/%so) * inverse_jacobi_sn(f, %k^2)))))))),
ie);
|