File: log10.mac

package info (click to toggle)
maxima-sage 5.45.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 113,788 kB
  • sloc: lisp: 440,833; fortran: 14,665; perl: 14,369; tcl: 10,997; sh: 4,475; makefile: 2,520; ansic: 447; python: 262; xml: 59; awk: 37; sed: 17
file content (156 lines) | stat: -rw-r--r-- 5,125 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/* Simplification rules and other functions to implement log10 (base-10 logarithm)
 *
 * Copyright 2006 by Robert Dodier
 *
 * Released under the terms of the GNU General Public License
 *
 * Summary:
 *
 * log10 (<float>) => log (<float>) / log (10.0)
 * log10 (<bigfloat>) => log (<bigfloat>) / log (10b0)
 * log10 (a / b) => log10 (a) - log10 (b)
 * log10 (a * b) => log10 (a) + log10 (b)
 * log10 (a ^ b) => b log10 (a)
 * log10 (<integer divisible by 10>) => <power of 10 in integer> + log10 (<remainder>)
 * log10 (10) => 1
 * log10 (1) => 0
 * d/dx log10(x) => 1/log(10) 1/x
 *
 * log10 is an increasing function (Maxima can't do much with that, but anyway ...)
 *
 * log10 (x) => log (x) / log (10) (if you ask for it explicitly)
 *
 * Could also try to simplify is (log10 (x) < y) => is (x < 10^y),
 * likewise with other relational operators, but I didn't do that yet.
 *
 * Examples:

log10 (1);
log10 (10);
log10 (12/13);
log10 (12/13), numer;
log10 (2.3 * 234/2423);
log10 (2.3 * 234/2423 + 1b0);
log10 (1230000);
log10 (9293923000000000 * w^23);
log10 (w * (3 + b)^-8);
log10 (123 * qwwqwe/235 * q^e);
plot2d (log10 (x), [x, 1/100, 10]);
quad_qags (log10 (x), x, 1, 10);
integrate (log10 (x), x, 1, 10);
expand_log10 (%);
''%, nouns;
%, numer;
assume (x > y);
is (log10 (x) > log10 (y));
diff (log10 (x), x);
expand_log10 (sin (log10 (x) + log10 (y)) / log10 (z));
contract_log10 (%);

 * which yield these outputs:

(%i1) load ("./log10.mac");
(%o1)                      ./log10.mac
(%i2) log10 (1);
(%o2)                           0
(%i3) log10 (10);
(%o3)                           1
(%i4) log10 (12/13);
(%o4)                 log10(12) - log10(13)
(%i5) log10 (12/13), numer;
(%o5)                 - .03476210625921192
(%i6) log10 (2.3 * 234/2423);
(%o6)                  - .6534097207097704
(%i7) log10 (2.3 * 234/2423 + 1b0);
Warning:  Float to bigfloat conversion of 0.22212133718530744
(%o7)                 8.711432657265806b-2
(%i8) log10 (1230000);
(%o8)                    log10(123) + 4
(%i9) log10 (9293923000000000 * w^23);
(%o9)           23 log10(w) + log10(9293923) + 9
(%i10) log10 (w * (3 + b)^-8);
(%o10)              log10(w) - 8 log10(b + 3)
(%i11) log10 (123 * qwwqwe/235 * q^e);
(%o11) log10(qwwqwe) + e log10(q) - log10(235) + log10(123)
(%i12) plot2d (log10 (x), [x, 1/100, 10]);
(%o12) 
(%i13) quad_qags (log10 (x), x, 1, 10);
(%o13)  [6.091349662870734, 1.985877489938315E-10, 63, 0]
(%i14) integrate (log10 (x), x, 1, 10);
                          10
                         /
                         [
(%o14)                   I   log10(x) dx
                         ]
                         /
                          1
(%i15) expand_log10 (%);
                           10
                          /
                          [
                          I   log(x) dx
                          ]
                          /
                           1
(%o15)                    -------------
                             log(10)
(%i16) ''%, nouns;
(%o16)         .4342944819032518 (10 log(10) - 9)
(%i17) %, numer;
(%o17)                  6.091349662870734
(%i18) assume (x > y);
(%o18)                       [x > y]
(%i19) is (log10 (x) > log10 (y));
(%o19)                        true
(%i20) diff (log10 (x), x);
                                1
(%o20)                      ---------
                            log(10) x
(%i21) expand_log10 (sin (log10 (x) + log10 (y)) / log10 (z));
                             log(y)    log(x)
                 log(10) sin(------- + -------)
                             log(10)   log(10)
(%o21)           ------------------------------
                             log(z)
(%i22) contract_log10 (%);
                    sin(log10(y) + log10(x))
(%o22)              ------------------------
                            log10(z)

 */

multp (e) := not atom(e) and op(e) = "*";

divp (e) := not atom(e) and op(e) = "/";

exponp (e) := not atom(e) and op(e) = "^";

divisible_by10 (e) := integerp(e) and e # 0 and mod (e, 10) = 0;

not10 (e) := e # 10;

power_of (m, n) := if n = 0 then 0 else block ([p : 0], while mod (n, m) = 0 do (p : p + 1, n : n/m), p);

block ([simp : false],
    local (aa, bb, cc, dd, ee, ff, gg, hh),
    matchdeclare (aa, multp, bb, exponp, cc, floatnump, dd, bfloatp, ee, divisible_by10, ff, all, gg, divp, hh, not10),
    tellsimp (log10(cc), log(cc)/log(10.0)),
    tellsimp (log10(dd), log(dd)/log(10b0)),
    tellsimp (log10(gg), log10 (first (args (gg))) - log10 (second (args (gg)))),
    tellsimp (log10(aa), apply ("+", map (log10, args (aa)))),
    tellsimp (log10(bb), second (args (bb)) * log10 (first (args (bb)))),
    tellsimp (log10(ee), block ([p : power_of (10, ee)], p + log10 (ee / 10^p))),
    tellsimp (log10(10), 1),
    tellsimp (log10(1), 0),

    gradef (log10(x), (1/log(10))*(1/x)),

    declare (log10, increasing),

    defrule (expand_log10_rule, log10 (ff), log(ff)/log(10)),
    expand_log10 (expr) := apply1 (expr, expand_log10_rule),

    defrule (contract_log10_rule, log (hh), log10(hh) * log(10)),
    contract_log10 (expr) := apply1 (expr, contract_log10_rule));