1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
throw(x);
x;
asksign(x);
if x < 0 then neg elseif equal(x,0) then zero elseif x > 0 then pos;
asksign(log(x));
if log(x) < 0 then neg elseif equal(log(x),0) then zero elseif log(x) > 0 then pos;
asksign(abs(x));
if equal(x,0) then zero elseif notequal(x, 0) then pos;
integrate(exp(a*x),x,0,inf);
if a < 0 then -(1/a) elseif equal(a,0)
then merror("defint: integral is divergent.")
elseif a > 0 then merror("defint: integral is divergent.");
integrate(x^k,x);
if equal(k,-1) then log(x) elseif notequal(k, -1) then x^(k+1)/(k+1);
integrate(x^k,x,1,b);
if k < 0 then integrate(x^k,x,1,b) elseif equal(k,0)
then b - 1 elseif k > 0 then b^(k+1)/(k+1)-1/(k+1);
integrate(x^a/(1+x),x,0,inf);
if a+1 < 0 then integrate(x^a/(x+1),x,0,inf) elseif equal(a+1,0)
then 'integrate(x^a/(x+1),x,0,inf) elseif a+1 > 0 then integrate(x^a/(x+1),x,0,inf);
integrate(x^a/(1+x)^(5/2),x,0,inf);
if a+1 < 0 then 'integrate(x^a/(x+1)^(5/2),x,0,inf) elseif equal(a+1,0)
then integrate(x^a/(x+1)^(5/2),x,0,inf)
elseif a+1 > 0 then integrate(x^a/(x+1)^(5/2),x,0,inf);
integrate(sqrt(1-s^2)/(z-s),s,-1,1);
if z-1 < 0 then integrate(sqrt(1-s^2)/(z-s),s,-1,1) elseif equal(z-1,0)
then 2*asin(1/z)*z elseif z-1 > 0 then %pi*z-%pi*sqrt(z^2-1);
(xmax(a,b):=(abs(a-b)+b+a)/2,integrate(xmax(a-x,0),x,0,b));
((b-a)*abs(b-a)-b^2+2*a*b+a*abs(a))/4;
integrate(1/(1+a^2*cos(t)^2),t,0,%pi);
if 2*sqrt(a^2+1)-a^2-2 < 0 then integrate(1/(a^2*cos(t)^2+1),t,0,%pi)
elseif equal(2*sqrt(a^2+1)-a^2-2,0)
then integrate(1/(a^2*cos(t)^2+1),t,0,%pi)
elseif 2*sqrt(a^2+1)-a^2-2 > 0 then integrate(1/(a^2*cos(t)^2+1),t,0,%pi);
integrate(exp(-la*t)*la,t,0,inf);
if la < 0 then ?merror("defint: integral is divergent.") elseif equal(la,0)
then 0 elseif la > 0 then 1;
integrate(sin(5*x)*exp(-s*x),x,0,inf);
if s < 0 then 'integrate(%e^-(s*x)*sin(5*x),x,0,inf) elseif equal(s,0)
then 'integrate(sin(5*x),x,0,inf) elseif s > 0 then 5/(s^2+25);
integrate(1/x,x,a,4);
if a-4 < 0 then integrate(1/x,x,a,4) elseif equal(a-4,0) then log(4)-log(a)
elseif a-4 > 0 then log(4)-log(a);
integrate(x^k,x,0,1);
if k < 0 then integrate(x^k,x,0,1) elseif equal(k,0) then 1 elseif k > 0 then 1/(k+1);
/* apparently doesn't provoke asksign anymore -- skip it
integrate(1/sqrt(i+n),i,1,n);
if n-1 < 0 then integrate(1/sqrt(n+i),i,1,n) elseif equal(n-1,0)
then 2^(3/2)*sqrt(n)-2*sqrt(n+1) elseif n-1 > 0 then 2^(3/2)*sqrt(n)-2*sqrt(n+1);
*/
integrate(1/(a^2*sin(x)^2+1),x,0,3*%pi);
if 2*sqrt(a^2+1)-a^2-2 < 0 then integrate(1/(a^2*sin(x)^2+1),x,0,3*%pi)
elseif equal(2*sqrt(a^2+1)-a^2-2,0)
then integrate(1/(a^2*sin(x)^2+1),x,0,3*%pi)
elseif 2*sqrt(a^2+1)-a^2-2 > 0 then integrate(1/(a^2*sin(x)^2+1),x,0,3*%pi);
integrate(integrate(p2^2,x1,(-4*%pi)/kp,4*%pi/kp),x2,5*%pi/kp/2,7*%pi/kp/2);
8*%pi^2*p2^2/kp^2;
integrate(1/log(t),t,x,2*x);
if x < 0
then gamma_incomplete(0,-log(x))-gamma_incomplete(0,-log(2*x)) elseif equal(x,0)
then 0 elseif x > 0 then integrate(1/log(t),t,x,2*x);
integrate((6*sin(8*x)+6*cos(9*x))*(j-x),x,-%pi,%pi);
(81*j+81*%pi-8)/108-(81*j-81*%pi-8)/108;
integrate(cos(n*x)*sin(n*x),x,0,t);
if t < 0 then 1/(2*n)-cos(n*t)^2/(2*n) elseif equal(t,0) then 0
elseif t > 0 then 1/(2*n)-cos(n*t)^2/(2*n);
integrate(1/(1+sin(x)^2),x,0,z);
if z < 0 then atan(sqrt(2)*sin(z)/cos(z))/sqrt(2) elseif equal(z,0)
then 0
elseif z > 0 then integrate(1/(sin(x)^2+1),x,0,z);
integrate(cos(x)-cos(x-c),x,0,c/2) = -integrate(cos(x-c),x,c,c+%pi/2)-c+%pi;
if c < 0 then 2*sin(c/2)-sin(c) = -c+%pi-1 elseif equal(c,0)
then 0 = %pi - 1 elseif c > 0 then 2*sin(c/2)-sin(c) = -c+%pi-1;
integrate(cot(x),x,0,%pi/2);
?merror("defint: integral is divergent.");
/* apparently doesn't provoke error; skip this one
integrate(r,z,-sqrt(20-r^2),sqrt(20-r^2));
?merror("defint: lower limit of integration must be real; found ~M",
-sqrt(20-r^2));
*/
integrate((2+x+x^2)/(c+x+x^2),c);
(x^2+x+2)*log(x^2+x+c);
specint(sqrt(t)*%e^(-a/t-p*t),t);
if p < 0 then 'specint(sqrt(t)*%e^(-p*t-a/t),t) elseif equal(p,0)
then 'specint(sqrt(t)*%e^(-a/t),t)
elseif p > 0 then specint(sqrt(t)*%e^(-p*t-a/t),t);
(f(x):=x^2/4-2*log((1+exp(x))/2)+x,
exp((-x^2)/4)*ratsimp(taylor(exp(f(x))*(mu+x*kb)^gamma,x,0,4)),
integrate(%%,x,minf,inf));
(24*sqrt(%pi)
*(8*kb^4*mu^gamma*gamma^4-48*kb^4*mu^gamma*gamma^3+88*kb^4*mu^gamma*gamma^2
-48*kb^4*mu^gamma*gamma+2*mu^(gamma+4))
+4*sqrt(%pi)*(96*kb^2*mu^(gamma+2)*gamma^2-96*kb^2*mu^(gamma+2)*gamma)
+384*sqrt(%pi)*mu^(gamma+4))
/(192*mu^4);
(aa:1+3*kbt*x/(2*mu)+3*kbt^2*x^2/(8*mu^2)-kbt^3*x^3/(16*mu^3)
+3*kbt^4*x^4/(128*mu^4),integrate(exp(x)*aa/(1+exp(x))^2,x,minf,inf));
(640*mu^4+80*%pi^2*kbt^2*mu^2+7*%pi^4*kbt^4)/(640*mu^4)$
(tmpp:(x1/2+x2/2)*sin(%pi*(x1/2+x2/2-(1-x1-x2-x3)/2+(-x3)/2)/2),
integrate(integrate(integrate(tmpp,x3,0,-x2-x1+1),x2,0,1-x1),x1,0,1));
if ''(-1 + x1 + x2) < 0
then (tmpp:''((x2/2+x1/2)*sin(%pi*(-x3/2-(-x3-x2-x1+1)/2+x2/2+x1/2)/2)),
integrate(integrate(integrate(tmpp,x3,0,''(-x2-x1+1)),x2,0,''(1-x1)),x1,0,
1)) elseif equal(''(x2+x1-1),0)
then (tmpp:''((x2/2+x1/2)*sin(%pi*(-x3/2-(-x3-x2-x1+1)/2+x2/2+x1/2)/2)),
integrate(integrate(integrate(tmpp,x3,0,''(-x2-x1+1)),x2,0,''(1-x1)),x1,0,
1))
elseif ''(x2+x1-1) > 0 then (tmpp:''((x2/2+x1/2)*sin(%pi*(-x3/2-(-x3-x2-x1+1)/2+x2/2+x1/2)/2)),
integrate(integrate(integrate(tmpp,x3,0,''(-x2-x1+1)),x2,0,''(1-x1)),x1,0,
1));
limit(a*x,x,inf);
if a < 0 then minf elseif equal(a, 0) then 0 elseif a > 0 then inf;
limit(x^a,x,inf);
if a < 0 then 0 elseif equal(a, 0) then 1 elseif a > 0 then inf;
limit(x^a,x,minf);
if a < 0 then 0 elseif equal(a, 0) then 1 elseif a > 0 then infinity;
declare(a,integer);
done;
limit(x^a,x,minf);
if a < 0 then 0 elseif equal(a, 0) then 1 elseif a > 0 then infinity;
tlimit(s/(s^2+1)/sinh(s*T),s,inf);
if T < 0 then 0 elseif equal(T,0)
then ?merror("expt: undefined: 0 to a negative exponent.") elseif T > 0 then 0;
solve(x = log(sqrt(a^2-r^2)+a),r);
if a-%e^x < 0 then [r = -%e^(x/2)*sqrt(2*a-%e^x),r = %e^(x/2)*sqrt(2*a-%e^x)]
elseif equal(a-%e^x,0)
then [r = -%e^(x/2)*sqrt(2*a-%e^x),r = %e^(x/2)*sqrt(2*a-%e^x)]
elseif a-%e^x > 0 then [sqrt(a^2-r^2) = %e^x-a];
solve(sqrt(y)+sqrt(x) = sqrt(a),y);
if sqrt(a)-sqrt(x) < 0 then [sqrt(y) = sqrt(a)-sqrt(x)]
elseif equal(sqrt(a)-sqrt(x),0) then [y = x-2*sqrt(a)*sqrt(x)+a]
elseif sqrt(a)-sqrt(x) > 0 then [y = x-2*sqrt(a)*sqrt(x)+a];
solve(a^2*e^2+2*a*e*x+x^2+y^2 = (2*a-sqrt(a^2*e^2-2*a*e*x+x^2+y^2))^2,y);
if a-e*x < 0 then [sqrt(y^2+x^2-2*a*e*x+a^2*e^2) = a-e*x]
elseif equal(a-e*x,0)
then [y = -sqrt(e^2*x^2-x^2-a^2*e^2+a^2),
y = sqrt(e^2*x^2-x^2-a^2*e^2+a^2)] elseif a-e*x > 0
then [y = -sqrt(e^2*x^2-x^2-a^2*e^2+a^2),
y = sqrt(e^2*x^2-x^2-a^2*e^2+a^2)];
solve(b^(a*t) = 1,b);
if featurep(t, integer) then [b = 1] elseif featurep(t, noninteger) then [b = 1];
ode2(a*x+'diff(x,t,2) = b*sin(c*t),x,t);
if a < 0
then x = -b*sin(c*t)/(c^2-a)+%k1*%e^(%i*sqrt(a)*t)+%k2*%e^-(%i*sqrt(a)*t)
elseif equal(a,0) then x = -b*sin(c*t)/c^2+%k2*t+%k1
elseif a > 0 then x = -b*sin(c*t)/(c^2-a)+%k1*sin(sqrt(a)*t)+%k2*cos(sqrt(a)*t);
ode2(b*x+a*'diff(x,t)+'diff(x,t,2) = 0,x,t);
if 4*b-a^2 < 0
then x = %k1*%e^((sqrt(a^2-4*b)-a)*t/2)+%k2*%e^((-sqrt(a^2-4*b)-a)*t/2)
elseif equal(4*b-a^2,0) then x = (%k2*t+%k1)*%e^-(a*t/2)
elseif 4*b-a^2 > 0 then x = %e^-(a*t/2)*(%k1*sin(sqrt(4*b-a^2)*t/2)
+%k2*cos(sqrt(4*b-a^2)*t/2));
ode2(b*x+a*'diff(x,t)+'diff(x,t,2) = d*sin(e*t),x,t);
if 4*b-a^2 < 0
then x = -((d*e^2-b*d)*sin(e*t)+a*d*e*cos(e*t))/(e^4+(a^2-2*b)*e^2+b^2)
+%k1*%e^((sqrt(a^2-4*b)-a)*t/2)+%k2*%e^((-sqrt(a^2-4*b)-a)*t/2)
elseif equal(4*b-a^2,0)
then x = (%k2*t+%k1)*%e^-(a*t/2)-((16*d*e^2-4*a^2*d)*sin(e*t)
+16*a*d*e*cos(e*t))
/(16*e^4+8*a^2*e^2+a^4)
elseif 4*b-a^2 > 0
then x = %e^-(a*t/2)*(%k1*sin(sqrt(4*b-a^2)*t/2)
+%k2*cos(sqrt(4*b-a^2)*t/2))
-((d*e^2-b*d)*sin(e*t)+a*d*e*cos(e*t))/(e^4+(a^2-2*b)*e^2+b^2);
ode2(a*y+'diff(y,x,2) = c*x,y,x);
if a < 0 then y = %k1*%e^(%i*sqrt(a)*x)+%k2*%e^-(%i*sqrt(a)*x)+c*x/a
elseif equal(a,0) then y = c*x^3/6+%k2*x+%k1
elseif a > 0 then y = %k1*sin(sqrt(a)*x)+%k2*cos(sqrt(a)*x)+c*x/a;
ode2(b*y+a*'diff(y,x)+'diff(y,x,2) = c*x,y,x);
if 4*b-a^2 < 0
then y = %k1*%e^((sqrt(a^2-4*b)-a)*x/2)+%k2*%e^((-sqrt(a^2-4*b)-a)*x/2)
+(b*c*x-a*c)/b^2
elseif equal(4*b-a^2,0)
then y = (%k2*x+%k1)*%e^-(a*x/2)+(4*a*c*x-16*c)/a^3
elseif 4*b-a^2 > 0 then y = %e^-(a*x/2)*(%k1*sin(sqrt(4*b-a^2)*x/2)
+%k2*cos(sqrt(4*b-a^2)*x/2))
+(b*c*x-a*c)/b^2;
block([gcd:spmod],expr:sin(a)/(1-cos(a)^2*sin(t)^2),
assume(cos(a) > 0,sin(a) > 0),integrate(expr,t,0,2*%pi));
if cos(a)^2-1.0 < 0 then -%pi*sin(a)^2/(cos(a)^2-1) elseif cos(a)^2-1.0 > 0
then sin(a)/(1-cos(a)^2*sin(t)^2)$
/* doesn't cause a question, just skip it
(load(simplify_sum),sum(r*binom(n,r)*binom(m,k-r)/k/binom(m+n,k),r,0,k),
simplify_sum(intosum(%%)));
?merror(?\~M\ non\-rational\ term\ ratio\ to\ nusum,
binom(m,-r+k-1)*binom(n,r+1)*(r+1)/(binom(m,k-r)*binom(n,r)*r));
*/
integrate(1/(x^2-a),x);
if a < 0 then atan(x/sqrt(-a))/sqrt(-a) elseif a > 0
then log((2*x-2*sqrt(a))/(2*x+2*sqrt(a)))/(2*sqrt(a))$
integrate(1/x,x,a,b);
if b - a < 0 then integrate(1/x,x,a,b)
elseif equal(b - a, 0) then integrate(1/x,x,a,b)
elseif b - a > 0 then integrate(1/x,x,a,b);
limit((exp(a*x)-1)/(exp(a*x)+1),x,inf);
if a < 0 then -1 elseif equal (a, 0) then 0 elseif a > 0 then 1;
limit(exp(b*a), b, inf);
if a < 0 then 0 elseif equal (a, 0) then 1 elseif a > 0 then inf;
limit(exp(-b*a), b, inf);
if a < 0 then inf elseif equal (a, 0) then 1 elseif a > 0 then 0;
/* not sure if this one is handled correctly by expand_branches --
* do we get into a cycle of asksign questions??
*
(foo : %e^(beta*hbar*omega-beta*(hbar*(2*n+1)*omega+delta))
/(1/(1-%e^-(beta*hbar*omega))^2 +(%e^-(beta*delta)-1)/(1-%e^-(2*beta*hbar*omega))),
limit (foo, beta, inf));
0;
limit (ratsimp (foo), beta, inf);
0;
*
*/
limit ((%e^-(b*d)-1)/(1-%e^-(2*b*h*z)), b, inf);
0;
/* a couple of examples inspired by mailing list 2015-03-04
* tnx David Scherfgen
*/
integrate (x^n + x^m, x);
if equal(m,-1) then integrate(x^n+1/x,x) elseif notequal(m,-1) then
integrate(x^n+x^m,x);
(load (expand_branches), 0);
0;
expand_branches (integrate (x^n + x^m, x));
if equal(m,-1)
then (if equal(n,-1) then 2*log(x) elseif notequal(n,-1)
then log(x)+x^(n+1)/(n+1)) elseif notequal(m,-1)
then (if equal(n,-1) then log(x)+x^(m+1)/(m+1) elseif notequal(n,-1)
then x^(n+1)/(n+1)+x^(m+1)/(m+1));
/* expected failure due to assume weakness; see SF bug #2915 */
integrate (1/(a*x^2 + b), x);
if a*b < 0 then log((2*a*x-2*sqrt(-a*b))/(2*a*x+2*sqrt(-a*b)))/(2*sqrt(-a*b))
elseif a*b > 0 then atan(a*x/sqrt(a*b))/sqrt(a*b)$
|