File: rtest_noninteractive.mac

package info (click to toggle)
maxima-sage 5.45.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 113,788 kB
  • sloc: lisp: 440,833; fortran: 14,665; perl: 14,369; tcl: 10,997; sh: 4,475; makefile: 2,520; ansic: 447; python: 262; xml: 59; awk: 37; sed: 17
file content (291 lines) | stat: -rw-r--r-- 11,161 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
throw(x);
x;

asksign(x);
if x < 0 then neg elseif equal(x,0) then zero elseif x > 0 then pos;

asksign(log(x));
if log(x) < 0 then neg elseif equal(log(x),0) then zero elseif log(x) > 0 then pos;

asksign(abs(x));
if equal(x,0) then zero elseif notequal(x, 0) then pos;

integrate(exp(a*x),x,0,inf);
if a < 0 then -(1/a) elseif equal(a,0)
    then merror("defint: integral is divergent.")
    elseif a > 0 then merror("defint: integral is divergent.");

integrate(x^k,x);
if equal(k,-1) then log(x) elseif notequal(k, -1) then x^(k+1)/(k+1);

integrate(x^k,x,1,b);
if k < 0 then integrate(x^k,x,1,b) elseif equal(k,0)
    then b - 1 elseif k > 0 then b^(k+1)/(k+1)-1/(k+1);

integrate(x^a/(1+x),x,0,inf);
if a+1 < 0 then integrate(x^a/(x+1),x,0,inf) elseif equal(a+1,0)
    then 'integrate(x^a/(x+1),x,0,inf) elseif a+1 > 0 then integrate(x^a/(x+1),x,0,inf);

integrate(x^a/(1+x)^(5/2),x,0,inf);
if a+1 < 0 then 'integrate(x^a/(x+1)^(5/2),x,0,inf) elseif equal(a+1,0)
    then integrate(x^a/(x+1)^(5/2),x,0,inf)
    elseif a+1 > 0 then integrate(x^a/(x+1)^(5/2),x,0,inf);

integrate(sqrt(1-s^2)/(z-s),s,-1,1);
if z-1 < 0 then integrate(sqrt(1-s^2)/(z-s),s,-1,1) elseif equal(z-1,0)
    then 2*asin(1/z)*z elseif z-1 > 0 then %pi*z-%pi*sqrt(z^2-1);

(xmax(a,b):=(abs(a-b)+b+a)/2,integrate(xmax(a-x,0),x,0,b));
((b-a)*abs(b-a)-b^2+2*a*b+a*abs(a))/4;

integrate(1/(1+a^2*cos(t)^2),t,0,%pi);
if 2*sqrt(a^2+1)-a^2-2 < 0 then integrate(1/(a^2*cos(t)^2+1),t,0,%pi)
    elseif equal(2*sqrt(a^2+1)-a^2-2,0)
    then integrate(1/(a^2*cos(t)^2+1),t,0,%pi)
    elseif 2*sqrt(a^2+1)-a^2-2 > 0 then integrate(1/(a^2*cos(t)^2+1),t,0,%pi);

integrate(exp(-la*t)*la,t,0,inf);
if la < 0 then ?merror("defint: integral is divergent.") elseif equal(la,0)
    then 0 elseif la > 0 then 1;

integrate(sin(5*x)*exp(-s*x),x,0,inf);
if s < 0 then 'integrate(%e^-(s*x)*sin(5*x),x,0,inf) elseif equal(s,0)
    then 'integrate(sin(5*x),x,0,inf) elseif s > 0 then 5/(s^2+25);

integrate(1/x,x,a,4);
if a-4 < 0 then integrate(1/x,x,a,4) elseif equal(a-4,0) then log(4)-log(a)
    elseif a-4 > 0 then log(4)-log(a);

integrate(x^k,x,0,1);
if k < 0 then integrate(x^k,x,0,1) elseif equal(k,0) then 1 elseif k > 0 then 1/(k+1);

/* apparently doesn't provoke asksign anymore -- skip it
integrate(1/sqrt(i+n),i,1,n);
if n-1 < 0 then integrate(1/sqrt(n+i),i,1,n) elseif equal(n-1,0)
    then 2^(3/2)*sqrt(n)-2*sqrt(n+1) elseif n-1 > 0 then 2^(3/2)*sqrt(n)-2*sqrt(n+1);
 */

integrate(1/(a^2*sin(x)^2+1),x,0,3*%pi);
if 2*sqrt(a^2+1)-a^2-2 < 0 then integrate(1/(a^2*sin(x)^2+1),x,0,3*%pi)
    elseif equal(2*sqrt(a^2+1)-a^2-2,0)
    then integrate(1/(a^2*sin(x)^2+1),x,0,3*%pi)
    elseif 2*sqrt(a^2+1)-a^2-2 > 0 then integrate(1/(a^2*sin(x)^2+1),x,0,3*%pi);

integrate(integrate(p2^2,x1,(-4*%pi)/kp,4*%pi/kp),x2,5*%pi/kp/2,7*%pi/kp/2);
8*%pi^2*p2^2/kp^2;

integrate(1/log(t),t,x,2*x);
if x < 0
    then gamma_incomplete(0,-log(x))-gamma_incomplete(0,-log(2*x)) elseif equal(x,0)
    then 0 elseif x > 0 then integrate(1/log(t),t,x,2*x);

integrate((6*sin(8*x)+6*cos(9*x))*(j-x),x,-%pi,%pi);
(81*j+81*%pi-8)/108-(81*j-81*%pi-8)/108;

integrate(cos(n*x)*sin(n*x),x,0,t);
if t < 0 then 1/(2*n)-cos(n*t)^2/(2*n) elseif equal(t,0) then 0
    elseif t > 0 then 1/(2*n)-cos(n*t)^2/(2*n);

integrate(1/(1+sin(x)^2),x,0,z);
if z < 0 then atan(sqrt(2)*sin(z)/cos(z))/sqrt(2) elseif equal(z,0)
    then 0
    elseif z > 0 then integrate(1/(sin(x)^2+1),x,0,z);

integrate(cos(x)-cos(x-c),x,0,c/2) = -integrate(cos(x-c),x,c,c+%pi/2)-c+%pi;
if c < 0 then 2*sin(c/2)-sin(c) = -c+%pi-1 elseif equal(c,0)
    then 0 = %pi - 1 elseif c > 0 then 2*sin(c/2)-sin(c) = -c+%pi-1;

integrate(cot(x),x,0,%pi/2);
?merror("defint: integral is divergent.");

/* apparently doesn't provoke error; skip this one
integrate(r,z,-sqrt(20-r^2),sqrt(20-r^2));
?merror("defint: lower limit of integration must be real; found ~M",
        -sqrt(20-r^2));
 */

integrate((2+x+x^2)/(c+x+x^2),c);
(x^2+x+2)*log(x^2+x+c);

specint(sqrt(t)*%e^(-a/t-p*t),t);
if p < 0 then 'specint(sqrt(t)*%e^(-p*t-a/t),t) elseif equal(p,0)
    then 'specint(sqrt(t)*%e^(-a/t),t)
    elseif p > 0 then specint(sqrt(t)*%e^(-p*t-a/t),t);

(f(x):=x^2/4-2*log((1+exp(x))/2)+x,
 exp((-x^2)/4)*ratsimp(taylor(exp(f(x))*(mu+x*kb)^gamma,x,0,4)),
 integrate(%%,x,minf,inf));
(24*sqrt(%pi)
   *(8*kb^4*mu^gamma*gamma^4-48*kb^4*mu^gamma*gamma^3+88*kb^4*mu^gamma*gamma^2
                            -48*kb^4*mu^gamma*gamma+2*mu^(gamma+4))
 +4*sqrt(%pi)*(96*kb^2*mu^(gamma+2)*gamma^2-96*kb^2*mu^(gamma+2)*gamma)
 +384*sqrt(%pi)*mu^(gamma+4))
 /(192*mu^4);

(aa:1+3*kbt*x/(2*mu)+3*kbt^2*x^2/(8*mu^2)-kbt^3*x^3/(16*mu^3)
     +3*kbt^4*x^4/(128*mu^4),integrate(exp(x)*aa/(1+exp(x))^2,x,minf,inf));
(640*mu^4+80*%pi^2*kbt^2*mu^2+7*%pi^4*kbt^4)/(640*mu^4)$

(tmpp:(x1/2+x2/2)*sin(%pi*(x1/2+x2/2-(1-x1-x2-x3)/2+(-x3)/2)/2),
 integrate(integrate(integrate(tmpp,x3,0,-x2-x1+1),x2,0,1-x1),x1,0,1));
if ''(-1 + x1 + x2) < 0
    then (tmpp:''((x2/2+x1/2)*sin(%pi*(-x3/2-(-x3-x2-x1+1)/2+x2/2+x1/2)/2)),
          integrate(integrate(integrate(tmpp,x3,0,''(-x2-x1+1)),x2,0,''(1-x1)),x1,0,
                    1)) elseif equal(''(x2+x1-1),0)
    then (tmpp:''((x2/2+x1/2)*sin(%pi*(-x3/2-(-x3-x2-x1+1)/2+x2/2+x1/2)/2)),
          integrate(integrate(integrate(tmpp,x3,0,''(-x2-x1+1)),x2,0,''(1-x1)),x1,0,
                    1))
    elseif ''(x2+x1-1) > 0 then (tmpp:''((x2/2+x1/2)*sin(%pi*(-x3/2-(-x3-x2-x1+1)/2+x2/2+x1/2)/2)),
          integrate(integrate(integrate(tmpp,x3,0,''(-x2-x1+1)),x2,0,''(1-x1)),x1,0,
                    1));

limit(a*x,x,inf);
if a < 0 then minf elseif equal(a, 0) then 0 elseif a > 0 then inf;

limit(x^a,x,inf);
if a < 0 then 0 elseif equal(a, 0) then 1 elseif a > 0 then inf;

limit(x^a,x,minf);
if a < 0 then 0 elseif equal(a, 0) then 1 elseif a > 0 then infinity;

declare(a,integer);
done;
limit(x^a,x,minf);
if a < 0 then 0 elseif equal(a, 0) then 1 elseif a > 0 then infinity;

tlimit(s/(s^2+1)/sinh(s*T),s,inf);
if T < 0 then 0 elseif equal(T,0)
    then ?merror("expt: undefined: 0 to a negative exponent.") elseif T > 0 then 0;

solve(x = log(sqrt(a^2-r^2)+a),r);
if a-%e^x < 0 then [r = -%e^(x/2)*sqrt(2*a-%e^x),r = %e^(x/2)*sqrt(2*a-%e^x)]
    elseif equal(a-%e^x,0)
    then [r = -%e^(x/2)*sqrt(2*a-%e^x),r = %e^(x/2)*sqrt(2*a-%e^x)]
    elseif a-%e^x > 0 then [sqrt(a^2-r^2) = %e^x-a];

solve(sqrt(y)+sqrt(x) = sqrt(a),y);
if sqrt(a)-sqrt(x) < 0 then [sqrt(y) = sqrt(a)-sqrt(x)]
    elseif equal(sqrt(a)-sqrt(x),0) then [y = x-2*sqrt(a)*sqrt(x)+a]
    elseif sqrt(a)-sqrt(x) > 0 then [y = x-2*sqrt(a)*sqrt(x)+a];

solve(a^2*e^2+2*a*e*x+x^2+y^2 = (2*a-sqrt(a^2*e^2-2*a*e*x+x^2+y^2))^2,y);
if a-e*x < 0 then [sqrt(y^2+x^2-2*a*e*x+a^2*e^2) = a-e*x]
    elseif equal(a-e*x,0)
    then [y = -sqrt(e^2*x^2-x^2-a^2*e^2+a^2),
          y = sqrt(e^2*x^2-x^2-a^2*e^2+a^2)] elseif a-e*x > 0
    then [y = -sqrt(e^2*x^2-x^2-a^2*e^2+a^2),
          y = sqrt(e^2*x^2-x^2-a^2*e^2+a^2)];

solve(b^(a*t) = 1,b);
if featurep(t, integer) then [b = 1] elseif featurep(t, noninteger) then [b = 1];

ode2(a*x+'diff(x,t,2) = b*sin(c*t),x,t);
if a < 0
    then x = -b*sin(c*t)/(c^2-a)+%k1*%e^(%i*sqrt(a)*t)+%k2*%e^-(%i*sqrt(a)*t)
    elseif equal(a,0) then x = -b*sin(c*t)/c^2+%k2*t+%k1
    elseif a > 0 then x = -b*sin(c*t)/(c^2-a)+%k1*sin(sqrt(a)*t)+%k2*cos(sqrt(a)*t);

ode2(b*x+a*'diff(x,t)+'diff(x,t,2) = 0,x,t);
if 4*b-a^2 < 0
    then x = %k1*%e^((sqrt(a^2-4*b)-a)*t/2)+%k2*%e^((-sqrt(a^2-4*b)-a)*t/2)
    elseif equal(4*b-a^2,0) then x = (%k2*t+%k1)*%e^-(a*t/2)
    elseif 4*b-a^2 > 0 then x = %e^-(a*t/2)*(%k1*sin(sqrt(4*b-a^2)*t/2)
                         +%k2*cos(sqrt(4*b-a^2)*t/2));

ode2(b*x+a*'diff(x,t)+'diff(x,t,2) = d*sin(e*t),x,t);
if 4*b-a^2 < 0
    then x = -((d*e^2-b*d)*sin(e*t)+a*d*e*cos(e*t))/(e^4+(a^2-2*b)*e^2+b^2)
           +%k1*%e^((sqrt(a^2-4*b)-a)*t/2)+%k2*%e^((-sqrt(a^2-4*b)-a)*t/2)
    elseif equal(4*b-a^2,0)
    then x = (%k2*t+%k1)*%e^-(a*t/2)-((16*d*e^2-4*a^2*d)*sin(e*t)
                                     +16*a*d*e*cos(e*t))
                                     /(16*e^4+8*a^2*e^2+a^4)
    elseif 4*b-a^2 > 0
    then x = %e^-(a*t/2)*(%k1*sin(sqrt(4*b-a^2)*t/2)
                         +%k2*cos(sqrt(4*b-a^2)*t/2))
           -((d*e^2-b*d)*sin(e*t)+a*d*e*cos(e*t))/(e^4+(a^2-2*b)*e^2+b^2);

ode2(a*y+'diff(y,x,2) = c*x,y,x);
if a < 0 then y = %k1*%e^(%i*sqrt(a)*x)+%k2*%e^-(%i*sqrt(a)*x)+c*x/a
    elseif equal(a,0) then y = c*x^3/6+%k2*x+%k1
    elseif a > 0 then y = %k1*sin(sqrt(a)*x)+%k2*cos(sqrt(a)*x)+c*x/a;

ode2(b*y+a*'diff(y,x)+'diff(y,x,2) = c*x,y,x);
if 4*b-a^2 < 0
    then y = %k1*%e^((sqrt(a^2-4*b)-a)*x/2)+%k2*%e^((-sqrt(a^2-4*b)-a)*x/2)
                                           +(b*c*x-a*c)/b^2
    elseif equal(4*b-a^2,0)
    then y = (%k2*x+%k1)*%e^-(a*x/2)+(4*a*c*x-16*c)/a^3
    elseif 4*b-a^2 > 0 then y = %e^-(a*x/2)*(%k1*sin(sqrt(4*b-a^2)*x/2)
                         +%k2*cos(sqrt(4*b-a^2)*x/2))
           +(b*c*x-a*c)/b^2;

block([gcd:spmod],expr:sin(a)/(1-cos(a)^2*sin(t)^2),
      assume(cos(a) > 0,sin(a) > 0),integrate(expr,t,0,2*%pi));
if cos(a)^2-1.0 < 0 then -%pi*sin(a)^2/(cos(a)^2-1) elseif cos(a)^2-1.0 > 0
    then sin(a)/(1-cos(a)^2*sin(t)^2)$

/* doesn't cause a question, just skip it
(load(simplify_sum),sum(r*binom(n,r)*binom(m,k-r)/k/binom(m+n,k),r,0,k),
 simplify_sum(intosum(%%)));
?merror(?\~M\ non\-rational\ term\ ratio\ to\ nusum,
        binom(m,-r+k-1)*binom(n,r+1)*(r+1)/(binom(m,k-r)*binom(n,r)*r));
 */

integrate(1/(x^2-a),x);
if a < 0 then atan(x/sqrt(-a))/sqrt(-a) elseif a > 0
    then log((2*x-2*sqrt(a))/(2*x+2*sqrt(a)))/(2*sqrt(a))$

integrate(1/x,x,a,b);
if b - a < 0 then integrate(1/x,x,a,b)
  elseif equal(b - a, 0) then integrate(1/x,x,a,b)
  elseif b - a > 0 then integrate(1/x,x,a,b);

limit((exp(a*x)-1)/(exp(a*x)+1),x,inf);
if a < 0 then -1 elseif equal (a, 0) then 0 elseif a > 0 then 1;

limit(exp(b*a), b, inf);
if a < 0 then 0 elseif equal (a, 0) then 1 elseif a > 0 then inf;

limit(exp(-b*a), b, inf);
if a < 0 then inf elseif equal (a, 0) then 1 elseif a > 0 then 0;

/* not sure if this one is handled correctly by expand_branches --
 * do we get into a cycle of asksign questions??
 *
(foo : %e^(beta*hbar*omega-beta*(hbar*(2*n+1)*omega+delta))
         /(1/(1-%e^-(beta*hbar*omega))^2 +(%e^-(beta*delta)-1)/(1-%e^-(2*beta*hbar*omega))),
 limit (foo, beta, inf));
0;

limit (ratsimp (foo), beta, inf);
0;
 *
 */

limit ((%e^-(b*d)-1)/(1-%e^-(2*b*h*z)), b, inf);
0;

/* a couple of examples inspired by mailing list 2015-03-04
 * tnx David Scherfgen
 */

integrate (x^n + x^m, x);
if equal(m,-1) then integrate(x^n+1/x,x) elseif notequal(m,-1) then
integrate(x^n+x^m,x);

(load (expand_branches), 0);
0;

expand_branches (integrate (x^n + x^m, x));
if equal(m,-1)
    then (if equal(n,-1) then 2*log(x) elseif notequal(n,-1)
              then log(x)+x^(n+1)/(n+1)) elseif notequal(m,-1)
    then (if equal(n,-1) then log(x)+x^(m+1)/(m+1) elseif notequal(n,-1)
              then x^(n+1)/(n+1)+x^(m+1)/(m+1));

/* expected failure due to assume weakness; see SF bug #2915 */

integrate (1/(a*x^2 + b), x);
if a*b < 0 then log((2*a*x-2*sqrt(-a*b))/(2*a*x+2*sqrt(-a*b)))/(2*sqrt(-a*b))
elseif a*b > 0 then atan(a*x/sqrt(a*b))/sqrt(a*b)$