1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
|
#| Copyright 2007, 2008 by Barton Willis
This is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License,
http://www.gnu.org/copyleft/gpl.html.
This software has NO WARRANTY, not even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|#
(if (not ($get '$to_poly '$version)) ($load '$to_poly))
(mfuncall '$declare '$one_to_one '$feature)
(mfuncall '$declare '$sinh '$one_to_one)
(mfuncall '$declare '$log '$one_to_one)
(mfuncall '$declare '$tanh '$one_to_one)
(mfuncall '$declare '$log '$increasing)
;; The macro opcons is defined elsewhere; I don't know if opapply is also defined elsewhere.
;; I need to check...
(defmacro opapply (op args)
`(simplify (cons (list ,op) ,args)))
(defmacro opcons (op &rest args)
`(simplify (list (list ,op) ,@args)))
;; Maybe I should use csign instead of these functions...
(defun number-sign (x)
(cond ((or (integerp x) (floatp x))
(cond ((< x 0) '$neg)
((= x 0) '$zero)
((> x 0) '$pos)))
(($ratnump x) (number-sign ($num x)))
(($bfloatp x) (number-sign (second x)))
((eq '$minf x) '$neg)
((member x '($inf $%pi $%e $%phi) :test #'eq) '$pos)
((member x '($%i '$infinity) :test #'eq) '$complex)
(($constantp x) (constant-expression-sign x))
(t nil)))
(defun constant-expression-sign (x)
(let ((f1) (f2) (f3))
;; I can do better. A big float running error evaluator would be nice.
;; (or interval arithematic). But for now let's evaluate with 25, 50,
;; and 75 digits. Provided all three agree, and |f3| > 2^-50, return the common sign.
;; I need to check for complex...
(setq f1 (bind-fpprec 25 ($bfloat x)))
(setq f2 (bind-fpprec 50 ($bfloat x)))
(setq f3 (bind-fpprec 75 ($bfloat x)))
(if (and ($bfloatp f1) ($bfloatp f2) ($bfloatp f3)
(eq (number-sign f1) (number-sign f2))
(eq (number-sign f2) (number-sign f3))
(> (first (last f3)) -50)) (number-sign f1) nil)))
;; This isn't exactly the same as CARTESIAN-PRODUCT in src/nset.lisp,
;; so give it a different name to avoid name collision.
(defun fourier_elim-cartesian-product (b)
(cond ((null b)
nil)
(t
(let ((a) (acc (mapcar #'list (car b))))
(setq b (cdr b))
(dolist (bi b acc)
(setq a nil)
(dolist (bij bi (setq acc a))
(setq a (append a (mapcar #'(lambda (x) `(,@x ,bij)) acc)))))))))
(defun expand-and-over-or (e)
(cond (($mapatom e) e)
((op-equalp e 'mand)
(setq e (mapcar #'(lambda (s) (if (op-equalp s 'mor) (margs s) (list s))) (margs e)))
(setq e (fourier_elim-cartesian-product e))
(setq e (mapcar #'(lambda (s) (opapply 'mand s)) e))
(opapply 'mor e))
(t (opapply (mop e) (mapcar 'expand-and-over-or (margs e))))))
(defun make-positive-product (l)
(let* ((n (length l)) (m (expt 2 n)) (k) (p) (acc nil))
(dotimes (i m)
(if (evenp (logcount i))
(progn
(setq p nil)
(setq k 0)
(dolist (li l)
(push (apply 'fe> (if (logbitp k i) (list 0 li nil) (list li 0 nil))) p)
(incf k))
(setq p (opapply 'mand p))
(push p acc))))
(opapply 'mor acc)))
(defun in-real-domain (e)
(cond ((eq e '$%i) nil)
(($mapatom e) t)
((op-equalp e 'mplus 'mtimes '%atan '%cos '%sin '%cosh '%sinh '%asinh)
(opapply 'mand (mapcar 'in-real-domain (margs e))))
((op-equalp e '%acos '%asin)
(setq e (first (margs e)))
(opapply 'mand (list (fe>= e -1) (fe>= 1 e))))
((op-equalp e '%log)
(fe> (first (margs e)) 0))
((op-equalp e '%acosh)
(fe>= (first (margs e)) 1))
((op-equalp e 'mexpt)
(let ((x (first (margs e))) (n (second (margs e))))
(cond ((member ($compare n 0) '("<" "<=") :test 'equal)
(take '(mand) (m-neq x 0) (in-real-domain x) (in-real-domain n)))
(t
(take '(mand) (m-neq x 0) (in-real-domain x) (in-real-domain n))))))
(t (m= e (take '($conjugate) e)))))
(defun freeof-floats (e)
(if ($mapatom e) (not (or (floatp e) ($bfloatp e)))
(every 'freeof-floats (margs (ratdisrep e)))))
;; Splitify an expression; this does e -> ((e1, boolean) (e2, boolean), ...). Examples:
;; x --> ((x t)),
;; |x| --> ((-x, x < 0) (x, x >= 0)),
;; max(a,b) --> ((a, a > b) (b, b >= a)),
;; a + |b| --> a + ((-b, b < 0) (b, b >=0)) --> ((a-b, b < 0) (a + b, b >= 0)),
(defun $splitify (e)
(cons '(mlist) (mapcar #'(lambda (s) (push '(mlist) s)) (splitify e))))
(defun splitify (e)
(let ((acc nil) (f))
(cond (($mapatom e) (list (list e t)))
((op-equalp e '$max)
(splitify (max-to-abs (margs e))))
((op-equalp e '$min)
(splitify (min-to-abs (margs e))))
((op-equalp e 'mabs)
(setq e (first (margs e)))
(list (list (neg e) (fe> 0 e)) (list e (fe>= e 0))))
((op-equalp e 'mexpt)
(mapcar #'(lambda (s) (list (take '(mexpt) (first s) (third e)) (second s))) (splitify (second e))))
((op-equalp e 'mplus 'mtimes)
(setq f (if (op-equalp e 'mplus) 'add 'mult))
(setq e (mapcar 'splitify (margs e)))
(setq e (fourier_elim-cartesian-product e))
(dolist (ek e acc)
(push
(reduce
#'(lambda (a b)
(list (funcall f (first a) (first b)) (take '(mand) (second a) (second b)))) ek) acc)))
(t (list (list e t))))))
(defun fe> (a b &optional (expand nil) (use-splitify t))
(let* ((z) (sgn) (z-split) (acc nil))
(setq a ($ratdisrep a))
(setq b ($ratdisrep b))
;; This uses p / q > 0 == q^2 * (p / q) > 0 == p * q > 0. Skip the
;; p / q > 0 --> p * q > 0 transformation when z contains a floating
;; point number.
(setq z (sub a b))
(setq z (if (freeof-floats z) ($factor (mul ($num z) ($denom z))) z))
(setq sgn (compare-using-empty-context a b))
(cond ((equal sgn ">") t)
((member sgn '("<" "<=" "=") :test 'equal) nil)
;; Catch four easy cases before we splitify z. Without the checks for the easy cases,
;; we'd get things like |x| > 1 --> (-1 < x & x < 0) or (x = 0) or (x < 1, x > 0).
;; First, |a| > b --> (b < 0) or (a > b, b >= 0) or (-a > b, b >= 0).
((and (op-equalp a 'mabs) ($freeof 'mabs '$min '$max b))
(setq a (first (margs a)))
(opapply 'mor (list
(opapply 'mand (list (fe> 0 b)))
(opapply 'mand (list (fe>= b 0) (fe> a b)))
(opapply 'mand (list (fe>= b 0) (fe> (neg a) b))))))
;; Second, a > |b| == a > b and a > -b.
((and (op-equalp b 'mabs) ($freeof 'mabs '$min '$max a))
(setq b (first (margs b)))
(opapply 'mand (list (fe> a b) (fe> a (neg b)))))
;; Third, min(a1,a2,..., an) > b --> a1 > b and a2 > b and .. an > b.
((and (op-equalp a '$min) ($freeof 'mabs '$min '$max b))
(opapply 'mand (mapcar #'(lambda (s) (fe> s b)) (margs a))))
;; Fourth, a > max(b1,b2, ..., bn) --> a > b1 and a > b2 and ... and a > bn.
((and (op-equalp b '$max) ($freeof 'mabs '$min '$max a))
(opapply 'mand (mapcar #'(lambda (s) (fe> a s)) (margs b))))
;; Do z^n > 0 --> z # 0 n even, z > 0, n odd.
((and (op-equalp z 'mexpt) (integerp (third z)))
(if (even (third z)) (m-neq (second z) 0) (fe> (second z) 0)))
;; Do f(a) > f(b), where f is increasing --> a > b.
((and (not ($mapatom a)) (not ($mapatom b)) (eq (mop a) (mop b)) ($featurep (mop a) '$increasing))
(opapply 'mand (list
(fe> (first (margs a)) (first (margs b)))
(in-real-domain a)
(in-real-domain b))))
;; Do f(a) > f(b), where f is decreasing --> a < b.
((and (not ($mapatom a)) (not ($mapatom b)) (eq (mop a) (mop b)) ($featurep (mop a) '$decreasing))
(fe> (first (margs b)) (first (margs a))))
;; Do a^x > a^y, where a > 1 --> x > y,
((and (not ($mapatom a)) (not ($mapatom b)) (eq (mop a) (mop b))
(op-equalp a 'mexpt) (eql (second a) (second b))
(equal (compare-using-empty-context (second a) 1) ">"))
(fe> (third a) (third b)))
;; Do a * b > 0 --> (a > 0, b > 0) or (a < 0, b < 0). We only do this when
;; z has two or more non-constant factors. This check seems spendy--is there
;; a way to bailout before we get here?
((and (op-equalp z 'mtimes) expand)
(make-positive-product (margs z)))
;; Finally, take care of the abs, max, and min cases that the previous
;; four cases miss.
((and use-splitify (op-equalp z '$max '$min 'mabs 'mtimes 'mplus))
(setq z-split (splitify z))
(dolist (zk z-split)
(push `((mand) ,(fe> (first zk) 0 expand nil) ,@(rest zk)) acc))
(push '(mor) acc)
(simplifya acc nil))
(t
(opapply 'mgreaterp (list z 0))))))
(defun m= (a b &optional (use-splitify t))
(let* ((z (sub a b)) (nz) (acc) (z-split) (sgn (compare-using-empty-context a b)))
(setq z (if (freeof-floats z) ($factor z) z))
(cond
;; If compare says a = b, return true.
((equal sgn "=") t)
;; If compare says a # b, return false.
((member sgn '("<" ">" "#") :test 'equal) nil)
;; for complex numbers, look at the real and imaginary parts.
((and (complex-number-p a '$numberp) (complex-number-p b '$numberp))
(take '(mand) (m= ($realpart a) ($realpart b)) (m= ($imagpart a) ($imagpart b))))
;; z^n = 0 --> false if n <= 0 else z = 0.
((and (op-equalp z 'mexpt) (mnump (third z)))
(if (member (number-sign (third z)) '($neg $zero) :test #'eq) nil (m= (second z) 0)))
;; f(a) = f(b), where f is one-to-one --> a = b.
((and (not ($mapatom a)) (not ($mapatom b)) (eq (mop a) (mop b)) ($featurep (mop a) '$one_to_one))
(opapply 'mand (append (list (in-real-domain a) (in-real-domain b)) (mapcar #'m= (margs a) (margs b)))))
;; a * b = 0 --> a = 0 or b = 0; also a / b --> a = 0 and b # 0.
((op-equalp z 'mtimes)
(setq nz (m-neq ($ratdenom z) 0))
(expand-and-over-or
(take '(mand) nz (opapply 'mor (mapcar #'(lambda (s) (m= s 0)) (margs z))))))
((and use-splitify (op-equalp z '$max '$min 'mabs 'mtimes 'mplus))
(setq z-split (splitify z))
(dolist (zk z-split)
(push `((mand) ,(m= (first zk) 0 nil) ,@(rest zk)) acc))
(push '(mor) acc)
(expand-and-over-or (simplifya acc nil)))
(t (take '(mequal) z 0)))))
(defun m-neq (a b)
(let ((save-context $context) (new-context (gensym)) (sgn))
(unwind-protect
(progn
(setq sgn (mnqp a b))
(cond ((or (eq sgn t) (eq sgn nil)) sgn)
((eq $domain '$real) (opcons 'mor (fe> a b t) (fe> b a t)))
(t (take '(mnot) (m= a b)))))
(if ($member new-context $contexts) ($killcontext new-context))
(setq $context save-context))))
(defun fe>= (a b)
(let ((sgn (compare-using-empty-context a b)))
(cond ((member sgn '(">=" ">") :test 'equal) t)
((equal sgn "<") nil)
(t (opcons 'mor (fe> a b t) (m= a b))))))
(defun standardize-inequality (e)
(let ((a) (b))
(cond ((op-equalp e 'mand)
(opapply 'mand (mapcar 'standardize-inequality (margs e))))
((op-equalp e 'mor)
(opapply 'mor (mapcar 'standardize-inequality (margs e))))
((or (mrelationp e) (op-equalp e '$equal))
(setq a (second e))
(setq b (third e))
(cond ((op-equalp e 'mlessp) (fe> b a t))
((op-equalp e 'mleqp) (opcons 'mor (fe> b a t) (m= a b )))
((op-equalp e 'mequal '$equal) (m= a b ))
((op-equalp e 'mgreaterp) (fe> a b t))
((op-equalp e 'mgeqp) (fe>= a b))
((op-equalp e 'mnotequal) (m-neq a b))
(t e)))
(t e))))
;; affine_p(p,vars) returns true iff p is an affine polynomial in vars, that is,
;; that it is a polynomial in vars (a list) whose total degree in vars is no greater than 1.
;; Stavros Macrakis wrote $affine_p and the tests (see rtest_fourier_elim.mac) for this function.
(defun $affine_p (p vl)
(setq vl (require-list vl "affine_p"))
(let* (($ratfac nil)
($ratprint nil)
(rat ($rat p)))
(and (eq (caar rat) 'mrat) ; don't handle bags etc.
(not (memq 'trunc (car rat))) ; don't handle taylor series (even in other vars)
(let* (;; in affine poly, only numer can include vars
(num ($ratnumer rat))
;; (what vars are actually used; cf. $ratfreeof/$showratvars)
(numvars (caddar (minimize-varlist num)))
;; ... and denominator cannot depend on vars at all
(den ($ratdenom rat))
(denvars (caddar (minimize-varlist den)))
(truncnum))
(and
;; everything in denvars must be freeof vl
(every #'(lambda (term)
(every #'(lambda (var) (freeof var term)) vl))
denvars)
;; everything in numvars must be either in vl or freeof vl
(every #'(lambda (term)
(or (memalike term vl)
(every #'(lambda (var) (freeof var term)) vl)))
numvars)
;; there must be no terms of degree > 1
(progn
;; calculate p without terms of degree > 1
(let (($ratwtlvl 1)
;; ignore prevailing *ratweights (don't append to new ones)
(*ratweights (mapcar #'(lambda (x) (cons x 1)) vl)))
;; adding ($rat 0) performs the truncation; just ($rat num) does not
(setq truncnum (add ($rat 0) num)))
;; subtract out: any terms of degree > 1?
(equal 0 (ratdisrep (sub num truncnum)))))))))
(defun linear-elimination (l v)
(let (($linsolve_params nil) ($backsubst t) ($programmode t)
($linsolvewarn nil) ($globalsolve nil) (subs) (vars))
(setq l ($elim l v))
(cond (($member 1 ($first l)) '$emptyset)
(t
(setq subs ($linsolve ($second l) v))
(setq vars (mapcar '$lhs (margs subs)))
(setq vars (push '(mlist) vars))
`((mlist) ,subs ,($first l) ,vars)))))
(defun $fourier_elim (l vars)
(let ((eq-list nil) (pos-list nil) (other-list nil) (acc) ($listconstvars nil) ($ratprint nil))
;; Check the arguments
(setq l (if (op-equalp l 'mand 'mlist) (margs l) (list l)))
(require-list-or-set vars "$fourier_elim")
;; Standardize each inequality and simplify. To simplify, apply 'mand. After that,
;; expand 'and' over 'or.'
(setq l (opapply 'mand (mapcar #'(lambda (s) (standardize-inequality s)) l)))
(setq l (expand-and-over-or l))
(cond ((eq t l) '$universalset)
((eq nil l) '$emptyset)
((op-equalp l 'mor)
(setq l (margs l))
(dolist (li l)
(push ($fourier_elim li vars) acc))
(setq acc (delete '$emptyset acc))
(cond ((null acc) '$emptyset)
((member t acc) '$universalset)
(t (opapply 'mor acc))))
(t
(setq l (if (op-equalp l 'mand) (margs l) (list l)))
(setq l (delete t l))
;; Push all non-affine expressions into other-list; push all equalities
;; into eq-list, push all > equalities into pos-list, and push everything else
;; into other-list.
(dolist (li l)
(cond ((not ($affine_p ($lhs li) ($listofvars li))) (push li other-list))
((op-equalp li 'mequal) (push li eq-list))
((op-equalp li 'mgreaterp) (push ($lhs li) pos-list))
(t (push li other-list))))
;; Using eq-list, elimination as many variables as possible.
(push '(mlist) eq-list)
(push '(mlist) pos-list)
(push '(mlist) other-list)
(setq eq-list (linear-elimination eq-list vars))
(cond ((eq '$emptyset eq-list) (setq pos-list '$emptyset))
(t
;;;(setq elim-vars ($third eq-list))
(setq other-list (append other-list (margs ($second eq-list))))
(setq eq-list ($first eq-list))
(setq pos-list ($substitute eq-list pos-list))
(setq other-list ($substitute eq-list other-list))))
(cond ((eq pos-list '$emptyset) pos-list)
(t
(setq pos-list (fourier-elim (margs pos-list) (margs vars)))
(if (eq pos-list '$emptyset) pos-list
($append eq-list pos-list other-list))))))))
;; Without the post-fourier-elim-simp, we get
;; (%i2) eqs : [0 < x, x<1, 0 < y, y <1, x+y+z < 4, z > 0]$
;; (%i3) fourier_elim(eqs,[z,y,x]);
;; (%o3) [0<z,z<-y-x+4,0<y,y<min(1,4-x),0<x,x<1]
;; Since 0 < x < 1, Maxima should be able to deduce that min(1,4-x) = 1. So (%o3)
;; should simplify to [0<z,z<-y-x+4,0<y,y<1,0<x,x<1].
;; To do this simplification, it's necessary to set dosimp to true--why, I don't
;; know (alternatively, use ($expand e 0 0)).
(defun post-fourier-elim-simp (pos)
(let ((save-context $context) (new-context (gensym)))
;; (a) Declare a new context (b) put every member of the CL list
;; pos into the fact database (c) simplify each member of pos
;; (d) kill the new context and restore the old context.
(unwind-protect
(progn
($newcontext new-context)
(mapcar #'(lambda (s) (mfuncall '$assume s)) pos)
(let ((dosimp t))
(setq pos (mapcar #'(lambda (s) (simplifya s nil)) pos))
(delete-if #'(lambda (s) (equal t (standardize-inequality s))) pos)))
(if ($member new-context $contexts) ($killcontext new-context))
(setq $context save-context))))
(defun fourier-elim (pos vars)
(let ((vi) (acc nil) (w))
(while (and (not (eq pos '$emptyset)) (first pos) vars)
(setq vi (pop vars))
(setq w (fourier-elim-one-variable pos vi))
(setq acc (append acc (first w)))
(setq pos (second w)))
(if (eq '$emptyset pos) '$emptyset
(progn
(setq pos (delete t (mapcar #'(lambda (s) (fe> s 0)) pos)))
(if (consp (member 'nil pos)) '$emptyset
(opapply 'mlist (post-fourier-elim-simp (append acc pos))))))))
;; Do Fourier elimination on a list l of inequalities with respect to the
;; indeterminate x. Each member of l is a polynomial, and each polynomial p in
;; in this list implies the inequality p > 0. The function fourier-elim-one-variable
;; returns a list of the form
;;
;; ((lb < x , x < ub), other),
;;
;; where other list of list of the implied inequalities (require that each lower bound is less than
;; each upper bound) and members of p that do not determine a bound on v.
;; Each member of l is a polynomial with real coefficients. Also each member p of l
;; determines an inequality p > 0.
(defun simplify-fe-args (pos)
;; (1) Delete all manifestly positive members of pos.
;; (2) If pos has a zero or negative member set pos to (-1).
;; (3) Remove the extremal members of pos (apply min).
(cond ((member pos '($inf $minf) :test #'eq) (list pos))
(t
(let ((save-context $context) (new-context (gensym)))
(unwind-protect
(progn
($newcontext new-context)
(setq pos (delete-if #'(lambda (s) (eq '$pos (csign s))) pos))
(if (some #'(lambda (s) (member (csign s) '($neg $nz $zero) :test #'eq)) pos) (setq pos (list -1)))
(setq pos (apply-min pos))
(if (op-equalp pos '$min) (margs pos) (list pos)))
(if ($member new-context $contexts) ($killcontext new-context))
(setq $context save-context))))))
(defun fourier-elim-one-variable (pos x &optional (need-simp t))
(let ((cf) (acc nil) (lb nil) (ub nil) (lb-args) (ub-args) (sgn) (sol) (bounds nil))
(if need-simp (setq pos (simplify-fe-args pos)))
;; Find the lower and upper bounds for x; push the lower bounds into the list 'lb', and the upper
;; bounds into holds 'ub' holds the upper bounds. All polynomials that don't determine a bound get
;; pushed into acc.
;; Example: say 1 - x > 0. The coefficient of x is negative, and solving 1 - x = 0 for
;; x gives an *upper* bound for x (that is x < 1) . Simiarly, say 1 + x > 0. The
;; coefficient of x is positive and solving 1 + x = 0 for x gives a *lower* bound for x
;; (that is x > -1).
(dolist (li pos)
(setq cf ($ratcoef li x))
(setq sgn (number-sign cf))
(if (member sgn '($neg $pos) :test #'eq)
(progn
(setq sol ($expand (div (sub (mul cf x) li) cf)))
(if (eq sgn '$neg) (push sol ub) (push sol lb)))
(push li acc)))
;; Delete the non-extremal members of lb and ub
(setq lb (apply-max lb))
(setq ub (apply-min ub))
(setq lb-args (if (op-equalp lb '$max) (margs lb) (list lb)))
(setq ub-args (if (op-equalp ub '$min) (margs ub) (list ub)))
(setq lb-args (delete '$minf lb-args))
(setq ub-args (delete '$inf ub-args))
;; Require that each lower bound be smaller than each upper bound. We could use
;; fe> instead of sub here. But I think it's not needed, and fe> is more spendy.
(setq acc (append acc (mapcar #'(lambda (s) (sub (second s) (first s)))
(fourier_elim-cartesian-product (list lb-args ub-args)))))
;; Return ((lb < x x < ub) acc).
(if (not (eq '$inf ub)) (push (opcons 'mlessp x ub) bounds))
(if (not (eq '$minf lb)) (push (opcons 'mlessp lb x) bounds))
(list
;;(list (opcons 'mlessp lb x) (opcons 'mlessp x ub))
bounds
(if (some #'(lambda (s) (or (eql 0 s) (eq nil s))) acc) '$emptyset acc))))
;; Apply max and min without looking at the current context; if something goes wrong,
;; cleanup the mess.
(defun apply-max (l)
(let ((save-context $context) (new-context (gensym)))
(unwind-protect
(progn
($newcontext new-context)
(setq l (mapcar '$expand l))
(opapply '$max l))
(if ($member new-context $contexts) ($killcontext new-context))
(setq $context save-context))))
(defun apply-min (l)
(let ((save-context $context) (new-context (gensym)))
(unwind-protect
(progn
($newcontext new-context)
(setq l (mapcar '$expand l))
(opapply '$min l))
(if ($member new-context $contexts) ($killcontext new-context))
(setq $context save-context))))
(defun compare-using-empty-context (a b)
(let ((save-context $context) (new-context (gensym)))
(unwind-protect
(progn
($newcontext new-context)
($compare a b))
(if ($member new-context $contexts) ($killcontext new-context))
(setq $context save-context))))
|