File: fourier_elim.lisp

package info (click to toggle)
maxima-sage 5.45.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, trixie
  • size: 113,788 kB
  • sloc: lisp: 440,833; fortran: 14,665; perl: 14,369; tcl: 10,997; sh: 4,475; makefile: 2,520; ansic: 447; python: 262; xml: 59; awk: 37; sed: 17
file content (599 lines) | stat: -rw-r--r-- 22,147 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
#| Copyright 2007, 2008 by Barton Willis

  This is free software; you can redistribute it and/or
  modify it under the terms of the GNU General Public License,
  http://www.gnu.org/copyleft/gpl.html.

 This software has NO WARRANTY, not even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|#


(if (not ($get '$to_poly '$version)) ($load '$to_poly))

(mfuncall '$declare '$one_to_one '$feature)
(mfuncall '$declare '$sinh '$one_to_one)
(mfuncall '$declare '$log  '$one_to_one)
(mfuncall '$declare '$tanh '$one_to_one)
(mfuncall '$declare '$log '$increasing)
  
;; The macro opcons is defined elsewhere; I don't know if opapply is also defined elsewhere.
;; I need to check...

(defmacro opapply (op args)
  `(simplify (cons (list ,op) ,args)))

(defmacro opcons (op &rest args)
  `(simplify (list (list ,op) ,@args)))

;; Maybe I should use csign instead of these functions...

(defun number-sign (x)
  (cond ((or (integerp x) (floatp x))
	 (cond ((< x 0) '$neg)
	       ((= x 0) '$zero)
	       ((> x 0) '$pos)))
	
	(($ratnump x) (number-sign ($num x)))
	(($bfloatp x) (number-sign (second x)))
	((eq '$minf x) '$neg)
	((member x '($inf $%pi $%e $%phi) :test #'eq) '$pos)
	((member x '($%i '$infinity) :test #'eq) '$complex)
	(($constantp x) (constant-expression-sign x))
	(t nil)))
	 
(defun constant-expression-sign (x)
  (let ((f1) (f2) (f3))
   
    ;; I can do better. A big float running error evaluator would be nice.
    ;; (or interval arithematic).  But for now let's evaluate with 25, 50, 
    ;; and 75 digits. Provided all three agree, and |f3| > 2^-50, return the common sign.

    ;; I need to check for complex...
	   
    (setq f1 (bind-fpprec 25 ($bfloat x)))
    (setq f2 (bind-fpprec 50 ($bfloat x)))
    (setq f3 (bind-fpprec 75 ($bfloat x)))
    
    (if (and ($bfloatp f1) ($bfloatp f2) ($bfloatp f3)
	     (eq (number-sign f1) (number-sign f2))
	     (eq (number-sign f2) (number-sign f3))
	     (> (first (last f3)) -50)) (number-sign f1) nil)))
       
;; This isn't exactly the same as CARTESIAN-PRODUCT in src/nset.lisp,
;; so give it a different name to avoid name collision.
(defun fourier_elim-cartesian-product (b)
  (cond ((null b)
         nil)
        (t
         (let ((a) (acc (mapcar #'list (car b))))
           (setq b (cdr b))
           (dolist (bi b acc)
             (setq a nil)
             (dolist (bij bi (setq acc a))
               (setq a (append a (mapcar #'(lambda (x) `(,@x ,bij)) acc)))))))))

(defun expand-and-over-or (e)
  (cond (($mapatom e) e)
        ((op-equalp e 'mand)
         (setq e (mapcar #'(lambda (s) (if (op-equalp s 'mor) (margs s) (list s))) (margs e)))
         (setq e (fourier_elim-cartesian-product e))
         (setq e (mapcar #'(lambda (s) (opapply 'mand s)) e))
         (opapply 'mor e))
        (t (opapply (mop e) (mapcar 'expand-and-over-or (margs e))))))

(defun make-positive-product (l)
  (let* ((n (length l)) (m (expt 2 n)) (k) (p) (acc nil))
    (dotimes (i m)
      (if (evenp (logcount i))
          (progn 
            (setq p nil)
            (setq k 0)
            (dolist (li l)
              (push (apply 'fe> (if (logbitp k i) (list 0 li nil) (list li 0 nil))) p)
              (incf k))
           
            (setq p (opapply 'mand p))
            (push p acc))))
    (opapply 'mor acc)))

(defun in-real-domain (e)
  (cond ((eq e '$%i) nil)
	(($mapatom e) t)

	((op-equalp e 'mplus 'mtimes '%atan '%cos '%sin '%cosh '%sinh '%asinh)
	 (opapply 'mand (mapcar 'in-real-domain (margs e))))

	((op-equalp e '%acos '%asin)
	 (setq e (first (margs e)))
	 (opapply 'mand (list (fe>= e -1) (fe>= 1 e))))

	((op-equalp e '%log)
	 (fe> (first (margs e)) 0))

	((op-equalp e '%acosh)
	 (fe>= (first (margs e)) 1))

	((op-equalp e 'mexpt)
	 (let ((x (first (margs e))) (n (second (margs e))))
	   (cond ((member ($compare n 0) '("<" "<=") :test 'equal)
		  (take '(mand) (m-neq x 0) (in-real-domain x) (in-real-domain n)))
		 (t
		  (take '(mand) (m-neq x 0) (in-real-domain x) (in-real-domain n))))))
	(t (m= e (take '($conjugate) e)))))
	   
(defun freeof-floats (e)
  (if ($mapatom e) (not (or (floatp e) ($bfloatp e)))
    (every 'freeof-floats (margs (ratdisrep e)))))

;; Splitify an expression; this does e -> ((e1, boolean) (e2, boolean), ...). Examples:

;;   x -->  ((x t)),
;;   |x| --> ((-x, x < 0) (x, x >= 0)),
;;   max(a,b) --> ((a, a > b) (b, b >= a)),
;;   a + |b| --> a + ((-b, b < 0) (b, b >=0)) --> ((a-b, b < 0) (a + b, b >= 0)),

(defun $splitify (e)
  (cons '(mlist) (mapcar #'(lambda (s) (push '(mlist) s)) (splitify e))))

(defun splitify (e)
  (let ((acc nil) (f))
    (cond (($mapatom e) (list (list e t)))
	
	  ((op-equalp e '$max)
	   (splitify (max-to-abs (margs e))))
	  
	  ((op-equalp e '$min)
	   (splitify (min-to-abs (margs e))))

	  ((op-equalp e 'mabs)
	   (setq e (first (margs e)))
	   (list (list (neg e) (fe> 0 e)) (list e (fe>= e 0))))
	  
	  ((op-equalp e 'mexpt)
	   (mapcar #'(lambda (s) (list (take '(mexpt) (first s) (third e)) (second s))) (splitify (second e))))
	   
	  ((op-equalp e 'mplus 'mtimes)
	   (setq f (if (op-equalp e 'mplus) 'add 'mult))
	   (setq e (mapcar 'splitify (margs e)))
	   (setq e (fourier_elim-cartesian-product e))
	   (dolist (ek e acc)
	     (push
	      (reduce 
	       #'(lambda (a b) 
		   (list (funcall f (first a) (first b)) (take '(mand) (second a) (second b)))) ek) acc)))

	  (t (list (list e t))))))
	       
(defun fe> (a b &optional (expand nil) (use-splitify t))
  (let* ((z) (sgn) (z-split) (acc nil))
    (setq a ($ratdisrep a))
    (setq b ($ratdisrep b))

    ;; This uses p / q > 0 == q^2 * (p / q) > 0 == p * q > 0. Skip the
    ;; p / q > 0 --> p * q > 0 transformation when z contains a floating 
    ;; point number. 
    
    (setq z (sub a b))
    (setq z (if (freeof-floats z) ($factor (mul ($num z) ($denom z))) z))
    (setq sgn (compare-using-empty-context a b))
   
    (cond ((equal sgn ">") t)

	  ((member sgn '("<" "<=" "=") :test 'equal) nil)

	  ;; Catch four easy cases before we splitify z. Without the checks for the easy cases, 
	  ;; we'd get things like |x| > 1 --> (-1 < x & x < 0) or (x = 0) or (x < 1, x > 0).

	  ;; First, |a| > b --> (b < 0) or (a > b, b >= 0) or (-a > b, b >= 0).

	  ((and (op-equalp a 'mabs) ($freeof 'mabs '$min '$max b))
	   (setq a (first (margs a)))
	   (opapply 'mor (list
			  (opapply 'mand (list (fe> 0 b)))
			  (opapply 'mand (list (fe>= b 0) (fe> a b)))
			  (opapply 'mand (list (fe>= b 0) (fe> (neg a) b))))))
		    
	  ;; Second, a > |b| == a > b and  a > -b.

	  ((and (op-equalp b 'mabs) ($freeof 'mabs '$min '$max a))
	   (setq b (first (margs b)))
	   (opapply 'mand (list (fe> a b) (fe> a (neg b)))))
	  
          ;; Third, min(a1,a2,..., an) > b --> a1 > b and a2 > b and .. an > b.
	  
          ((and (op-equalp a '$min) ($freeof 'mabs '$min '$max b))
	   (opapply 'mand (mapcar #'(lambda (s) (fe> s b)) (margs a))))

          ;; Fourth, a > max(b1,b2, ..., bn) --> a > b1 and a > b2 and ... and a > bn.
	  
          ((and (op-equalp b '$max) ($freeof 'mabs '$min '$max a))
	   (opapply 'mand (mapcar #'(lambda (s) (fe> a s)) (margs b))))
	  	  	  
	  ;; Do z^n > 0 --> z # 0  n even,  z > 0, n odd.
	  ((and (op-equalp z 'mexpt) (integerp (third z)))
	   (if (even (third z)) (m-neq (second z) 0) (fe> (second z) 0)))

	  ;; Do f(a) > f(b), where f is increasing --> a > b.
	  ((and (not ($mapatom a)) (not ($mapatom b)) (eq (mop a) (mop b)) ($featurep (mop a) '$increasing))
	   (opapply 'mand (list 
			   (fe> (first (margs a)) (first (margs b)))
			   (in-real-domain a)
			   (in-real-domain b))))
	  
	  ;; Do f(a) > f(b), where f is decreasing --> a < b.
	  ((and (not ($mapatom a)) (not ($mapatom b)) (eq (mop a) (mop b)) ($featurep (mop a) '$decreasing))
	   (fe> (first (margs b)) (first (margs a))))
	  	  
	  ;; Do a^x > a^y, where a > 1 --> x > y,
	  ((and (not ($mapatom a)) (not ($mapatom b)) (eq (mop a) (mop b)) 
		(op-equalp a 'mexpt) (eql (second a) (second b))
		(equal (compare-using-empty-context (second a) 1) ">"))
	   (fe> (third a) (third b)))
	  
	  ;; Do a * b > 0 --> (a > 0, b > 0) or (a < 0, b < 0). We only do this when
	  ;; z has two or more non-constant factors. This check seems spendy--is there
	  ;; a way to bailout before we get here?

          ((and (op-equalp z 'mtimes) expand) 
	   (make-positive-product (margs z)))
	  ;; Finally, take care of the abs, max, and min cases that the previous
	  ;; four cases miss. 
	  
	  ((and use-splitify (op-equalp z '$max '$min 'mabs 'mtimes 'mplus))
	   (setq z-split (splitify z))
	   (dolist (zk z-split)
	     (push `((mand) ,(fe> (first zk) 0 expand nil) ,@(rest zk)) acc))
	   (push '(mor) acc)
	   (simplifya acc nil))

          (t 
	   (opapply 'mgreaterp (list z 0))))))
              
(defun m= (a b &optional (use-splitify t))
  (let* ((z (sub a b)) (nz) (acc) (z-split) (sgn  (compare-using-empty-context a b)))
    (setq z (if (freeof-floats z) ($factor z) z))
    
    (cond 

     ;; If compare says a = b, return true.
     ((equal sgn "=") t)          
     
     ;; If compare says a # b, return false.
     ((member sgn '("<" ">" "#") :test 'equal) nil)
          
     ;; for complex numbers, look at the real and imaginary parts.
     ((and (complex-number-p a '$numberp) (complex-number-p b '$numberp))
      (take '(mand) (m= ($realpart a) ($realpart b)) (m= ($imagpart a) ($imagpart b))))

     ;; z^n = 0 --> false if n <= 0 else z = 0.
     ((and (op-equalp z 'mexpt) (mnump (third z)))
      (if (member (number-sign (third z)) '($neg $zero) :test #'eq) nil (m= (second z) 0)))
          
     ;; f(a) = f(b), where f is one-to-one --> a = b.
     ((and (not ($mapatom a)) (not ($mapatom b)) (eq (mop a) (mop b)) ($featurep (mop a) '$one_to_one))
      (opapply 'mand (append (list (in-real-domain a) (in-real-domain b)) (mapcar #'m= (margs a) (margs b)))))
     
     ;; a * b  = 0 --> a = 0 or b = 0; also a / b --> a = 0 and b # 0.
     ((op-equalp z 'mtimes)
      (setq nz (m-neq ($ratdenom z) 0))
      (expand-and-over-or 
       (take '(mand) nz (opapply 'mor (mapcar #'(lambda (s) (m= s 0)) (margs z))))))

     ((and use-splitify (op-equalp z '$max '$min 'mabs 'mtimes 'mplus))
      (setq z-split (splitify z))
      (dolist (zk z-split)
	(push `((mand) ,(m= (first zk) 0 nil) ,@(rest zk)) acc))
      (push '(mor) acc)
      (expand-and-over-or (simplifya acc nil)))
     
     (t (take '(mequal) z 0)))))

(defun m-neq (a b)
  (let ((save-context $context) (new-context (gensym)) (sgn))
    (unwind-protect
     (progn
       (setq sgn (mnqp a b))
       (cond ((or (eq sgn t) (eq sgn nil)) sgn)
	     ((eq $domain '$real) (opcons 'mor (fe> a b t) (fe> b a t)))
	     (t (take '(mnot) (m= a b)))))
     (if ($member new-context $contexts) ($killcontext new-context))
     (setq $context save-context))))
	  
(defun fe>= (a b)
  (let ((sgn (compare-using-empty-context a b)))
    (cond ((member sgn '(">=" ">") :test 'equal) t)
	  ((equal sgn "<") nil)
	  (t (opcons 'mor (fe> a b  t) (m= a b))))))

(defun standardize-inequality (e)
  (let ((a) (b))
    (cond ((op-equalp e 'mand)
	   (opapply 'mand (mapcar 'standardize-inequality (margs e))))
	  
	  ((op-equalp e 'mor)
	   (opapply 'mor (mapcar 'standardize-inequality (margs e))))

	  ((or (mrelationp e) (op-equalp e '$equal))
           (setq a (second e))
           (setq b (third e))

           (cond ((op-equalp e 'mlessp) (fe> b a t))
                 ((op-equalp e 'mleqp) (opcons 'mor (fe> b a  t) (m= a b )))
                 ((op-equalp e 'mequal '$equal) (m= a b ))
                 ((op-equalp e 'mgreaterp) (fe> a b  t))
                 ((op-equalp e 'mgeqp) (fe>= a b))
                 ((op-equalp e 'mnotequal) (m-neq a b))
                 (t e)))
          (t e))))

;; affine_p(p,vars) returns true iff p is an affine polynomial in vars, that is,
;; that it is a polynomial in vars (a list) whose total degree in vars is no greater than 1.

;; Stavros Macrakis wrote $affine_p and the tests (see rtest_fourier_elim.mac) for this function.

(defun $affine_p (p vl)
  (setq vl (require-list vl "affine_p"))
  (let* (($ratfac nil)
	 ($ratprint nil)
	 (rat ($rat p)))
    (and (eq (caar rat) 'mrat) ; don't handle bags etc.
	 (not (memq 'trunc (car rat))) ; don't handle taylor series (even in other vars)
	 (let* (;; in affine poly, only numer can include vars
		(num ($ratnumer rat))
		;; (what vars are actually used; cf. $ratfreeof/$showratvars)
		(numvars (caddar (minimize-varlist num)))
		;; ... and denominator cannot depend on vars at all
		(den ($ratdenom rat))
		(denvars (caddar (minimize-varlist den)))
		(truncnum))
	   (and
	    ;; everything in denvars must be freeof vl
	    (every #'(lambda (term)
		       (every #'(lambda (var) (freeof var term)) vl)) 
		   denvars)
	    ;; everything in numvars must be either in vl or freeof vl
	    (every #'(lambda (term)
		       (or (memalike term vl)
			   (every #'(lambda (var) (freeof var term)) vl)))
		   numvars)
	    ;; there must be no terms of degree > 1
	    (progn
	      ;; calculate p without terms of degree > 1
	      (let (($ratwtlvl 1)
		    ;; ignore prevailing *ratweights (don't append to new ones)
		    (*ratweights (mapcar #'(lambda (x) (cons x 1)) vl)))
		;; adding ($rat 0) performs the truncation; just ($rat num) does not
		(setq truncnum (add ($rat 0) num)))
	      ;; subtract out: any terms of degree > 1?
	      (equal 0 (ratdisrep (sub num truncnum)))))))))

(defun linear-elimination (l v)
  (let (($linsolve_params nil) ($backsubst t) ($programmode t) 
	($linsolvewarn nil) ($globalsolve nil) (subs) (vars))
    
    (setq l ($elim l v))
    (cond (($member 1 ($first l)) '$emptyset)
	  (t
	   (setq subs ($linsolve ($second l) v))
	   (setq vars (mapcar '$lhs (margs subs)))
	   (setq vars (push '(mlist) vars))
	   `((mlist) ,subs ,($first l) ,vars)))))
	  	   
(defun $fourier_elim (l vars)
 
  (let ((eq-list nil) (pos-list nil) (other-list nil) (acc) ($listconstvars nil) ($ratprint nil))
    
    ;; Check the arguments

    (setq l (if (op-equalp l 'mand 'mlist) (margs l) (list l)))
    (require-list-or-set vars "$fourier_elim")
    
    ;; Standardize each inequality and simplify. To simplify, apply 'mand. After that,
    ;; expand 'and' over 'or.'
    
    (setq l (opapply 'mand (mapcar #'(lambda (s) (standardize-inequality s)) l)))
    (setq l (expand-and-over-or l))
   
    (cond ((eq t l) '$universalset)
          ((eq nil l) '$emptyset)
          ((op-equalp l 'mor)
           (setq l (margs l))
           (dolist (li l)
	     (push ($fourier_elim li vars) acc))

           (setq acc (delete '$emptyset acc))
           (cond ((null acc) '$emptyset)
                 ((member t acc) '$universalset)
                 (t (opapply 'mor acc))))

          (t
	   (setq l (if (op-equalp l 'mand) (margs l) (list l)))
           (setq l (delete t l))
	   
           ;; Push all non-affine expressions into other-list; push all equalities 
           ;; into eq-list, push all > equalities into pos-list, and push everything else
           ;; into other-list. 

	   (dolist (li l)
	     (cond ((not ($affine_p ($lhs li) ($listofvars li))) (push li other-list))
                   ((op-equalp li 'mequal) (push li eq-list))
		   ((op-equalp li 'mgreaterp) (push ($lhs li) pos-list))
                   (t (push li other-list))))
           
	   ;; Using eq-list, elimination as many variables as possible.
	   
	   (push '(mlist) eq-list)
	   (push '(mlist) pos-list)
	   (push '(mlist) other-list)
	   (setq eq-list (linear-elimination eq-list vars))
	   
	   (cond ((eq '$emptyset eq-list) (setq pos-list '$emptyset))
		 (t
		  ;;;(setq elim-vars ($third eq-list))
		  (setq other-list (append other-list (margs ($second eq-list))))
		  (setq eq-list ($first eq-list))
		  (setq pos-list ($substitute eq-list pos-list))
		  (setq other-list ($substitute eq-list other-list))))
	   
           (cond ((eq pos-list '$emptyset) pos-list)
                 (t
		  (setq pos-list (fourier-elim (margs pos-list) (margs vars)))
		  (if (eq pos-list '$emptyset) pos-list
		    ($append eq-list pos-list other-list))))))))

;; Without the post-fourier-elim-simp, we get

;; (%i2) eqs : [0 < x, x<1, 0 < y, y <1, x+y+z < 4, z > 0]$
;; (%i3) fourier_elim(eqs,[z,y,x]);
;; (%o3) [0<z,z<-y-x+4,0<y,y<min(1,4-x),0<x,x<1]

;; Since 0 < x < 1, Maxima should be able to deduce that min(1,4-x) = 1. So (%o3)
;; should simplify to [0<z,z<-y-x+4,0<y,y<1,0<x,x<1]. 
;; To do this simplification, it's necessary to set dosimp to true--why, I don't
;; know (alternatively, use ($expand e 0 0)).

(defun post-fourier-elim-simp (pos)
  (let ((save-context $context) (new-context (gensym)))

    ;; (a) Declare a new context (b) put every member of the CL list 
    ;; pos into the fact database (c) simplify each member of pos 
    ;; (d) kill the new context and restore the old context.
    
    (unwind-protect
	(progn
	  ($newcontext new-context)
	  (mapcar #'(lambda (s) (mfuncall '$assume s)) pos)
	  (let ((dosimp t)) 
	    (setq pos (mapcar #'(lambda (s) (simplifya s nil)) pos))
	    (delete-if #'(lambda (s) (equal t (standardize-inequality s))) pos)))
	  
      (if ($member new-context $contexts) ($killcontext new-context))
      (setq $context save-context))))
	    
(defun fourier-elim (pos vars)
  (let ((vi) (acc nil) (w))
    (while (and (not (eq pos '$emptyset)) (first pos) vars)
      (setq vi (pop vars))
      (setq w (fourier-elim-one-variable pos vi))
      (setq acc (append acc (first w)))
      (setq pos (second w)))
    (if (eq '$emptyset pos) '$emptyset
      (progn
	(setq pos (delete t (mapcar #'(lambda (s) (fe> s 0)) pos)))
	(if (consp (member 'nil pos)) '$emptyset
	  (opapply 'mlist (post-fourier-elim-simp (append acc pos))))))))
    
;; Do Fourier elimination on a list l of inequalities with respect to the 
;; indeterminate x. Each member of l is a polynomial, and each polynomial p in
;; in this list  implies the inequality p > 0. The function fourier-elim-one-variable 
;; returns a list of the form
;;
;;   ((lb < x , x < ub), other),
;;
;; where other list of list of the implied inequalities (require that each lower bound is less than 
;; each upper bound) and members of p that do not determine a bound on v.

;; Each member of l is a polynomial with real coefficients. Also each member p of l 
;; determines an inequality p > 0. 

(defun simplify-fe-args (pos)

  ;; (1) Delete all manifestly positive members of pos.
  ;; (2) If pos has a zero or negative member set pos to (-1).
  ;; (3) Remove the extremal members of pos (apply min).
  
  (cond ((member pos '($inf $minf) :test #'eq) (list pos))
	(t
	 (let ((save-context $context) (new-context (gensym)))
	   (unwind-protect
	       (progn
		 ($newcontext new-context)
		 (setq pos (delete-if #'(lambda (s) (eq '$pos (csign s))) pos))
		 (if (some #'(lambda (s) (member (csign s) '($neg $nz $zero) :test #'eq)) pos) (setq pos (list -1)))
		 (setq pos (apply-min pos))
		 (if (op-equalp pos '$min) (margs pos) (list pos)))
	     (if ($member new-context $contexts) ($killcontext new-context))
	     (setq $context save-context))))))

(defun fourier-elim-one-variable (pos x &optional (need-simp t))
 
  (let ((cf) (acc nil) (lb nil) (ub nil) (lb-args) (ub-args) (sgn) (sol) (bounds nil))
        (if need-simp (setq pos (simplify-fe-args pos)))
   
    ;; Find the lower and upper bounds for x; push the lower bounds into the list 'lb', and the upper
    ;; bounds into holds 'ub' holds the upper bounds. All polynomials that don't determine a bound get 
    ;; pushed into acc. 

    ;; Example: say 1 - x > 0. The coefficient of x is negative, and solving 1 - x = 0 for
    ;; x gives an *upper* bound for x (that is x < 1) . Simiarly, say 1 + x > 0. The 
    ;; coefficient of x is positive and solving 1 + x = 0 for x gives a *lower* bound for x
    ;; (that is x > -1).
    
    (dolist (li pos)
      (setq cf ($ratcoef li x))
      (setq sgn (number-sign cf))
      (if (member sgn '($neg $pos) :test #'eq)
          (progn 
            (setq sol ($expand (div (sub (mul cf x) li) cf)))
            (if (eq sgn '$neg) (push sol ub) (push sol lb)))
        (push li acc)))
    
    ;; Delete the non-extremal members of lb and ub 

    (setq lb (apply-max lb))
    (setq ub (apply-min ub))
    (setq lb-args (if (op-equalp lb '$max) (margs lb) (list lb)))
    (setq ub-args (if (op-equalp ub '$min) (margs ub) (list ub)))

    (setq lb-args (delete '$minf lb-args))
    (setq ub-args (delete '$inf ub-args))
    
    ;; Require that each lower bound be smaller than each upper bound. We could use
    ;; fe> instead of sub here. But I think it's not needed, and fe> is more spendy.
    
    (setq acc (append acc (mapcar #'(lambda (s) (sub (second s) (first s)))
				  (fourier_elim-cartesian-product (list lb-args ub-args)))))
    
    ;; Return ((lb < x x < ub) acc).
      
    (if (not (eq '$inf ub)) (push (opcons 'mlessp x ub) bounds))
    (if (not (eq '$minf lb)) (push (opcons 'mlessp lb x) bounds))
    
    (list
     ;;(list (opcons 'mlessp lb x) (opcons 'mlessp x ub))
     bounds
     (if (some #'(lambda (s) (or (eql 0 s) (eq nil s))) acc) '$emptyset acc))))

;; Apply max and min without looking at the current context; if something goes wrong,
;; cleanup the mess.

(defun apply-max (l)
  (let ((save-context $context) (new-context (gensym)))
    (unwind-protect
	(progn
	  ($newcontext new-context)
	  (setq l (mapcar '$expand l))
	  (opapply '$max l))
      (if ($member new-context $contexts) ($killcontext new-context))
      (setq $context save-context))))

(defun apply-min (l)
  (let ((save-context $context) (new-context (gensym)))
    (unwind-protect
      (progn
	($newcontext new-context)
	(setq l (mapcar '$expand l))
	(opapply '$min l))
      (if ($member new-context $contexts) ($killcontext new-context))
      (setq $context save-context))))
 
(defun compare-using-empty-context (a b)
  (let ((save-context $context) (new-context (gensym)))
    (unwind-protect
	(progn
	  ($newcontext new-context)
	  ($compare a b))
      (if ($member new-context $contexts) ($killcontext new-context))
      (setq $context save-context))))