File: hypergeometric.lisp

package info (click to toggle)
maxima-sage 5.45.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 113,788 kB
  • sloc: lisp: 440,833; fortran: 14,665; perl: 14,369; tcl: 10,997; sh: 4,475; makefile: 2,520; ansic: 447; python: 262; xml: 59; awk: 37; sed: 17
file content (768 lines) | stat: -rw-r--r-- 30,022 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
;;  Copyright 2009,2021 by Barton Willis

;;  This is free software; you can redistribute it and/or
;;  modify it under the terms of the GNU General Public License,
;;  http://www.gnu.org/copyleft/gpl.html.

;; This software has NO WARRANTY, not even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

(in-package :maxima)

(if (not (mget '$hypergeometric_simp 'mexpr)) ($load "hypergeometric_mac.mac"))
(if (not (mget '$abramowitz_id 'mexpr)) ($load "abramowitz_id.mac"))
(if (not (functionp 'simp-nfloat)) ($load "nfloat"))

;; mea culpa---for numerical evaluation of the hypergeometric functions, the
;; method uses a running error. When the error is too large, the value of fpprec
;; is increased and the evaluation is redone with the larger value of fpprec. 
;; The option variable max_fpprec is the largest value for fpprec Maxima will try.

(defmvar $max_fpprec 1000)

(setf (get '$max_fpprec 'assign)
      #'(lambda (a b) 
	  (declare (ignore a))
	  (if (not (and (atom b) (integerp b)))
	      (progn
		(mtell "The value of `max_fpprec' must be an integer.~%")
		'munbindp))))

(defmvar $expand_hypergeometric nil)

(setf (get '$expand_hypergeometric 'assign)
      #'(lambda (a b)
	  (declare (ignore a))
	  (if (not (or (eq b nil) (eq b t)))
	      (progn
		(mtell "The value of `expand_hypergeometric' must be either true or false.~%")
		'munbindp))))

;; If the length of l is n, return true; otherwise signal wna-err = (wrong number of arguments, by the way).

(defun argument-length-check (l n)
  (if (and (consp l) (consp (first l)) (equal n (length (margs l)))) t (wna-err (caar l))))

;; When multiple_value_return is nil, multiple_values(e1,e2,...) --> e1; otherwise
;; multiple_values(e1,e2,...) --> multiple_values(e1,e2,...).

(setf (get '$multiple_values 'operators) 'simp-multiple-values)

(defmvar $multiple_value_return nil)

(defun simp-multiple-values (e yy z)
  (declare (ignore yy))
  (if $multiple_value_return
      `(($multiple_values simp) ,@(mapcar #'(lambda (s) (simpcheck s z)) (cdr e)))
    (simpcheck (cadr e) z)))
	 
;; Detect undefined and polynomial cases. 

(defun classify-hypergeometric (a b x)
  (let ((ah nil) (bh nil))
  
    ;; Let bh = the least member of b that is a negative integer. If there is
    ;; no such member, set bh = nil.
    
    (dolist (bk b)
      (if (and (integerp bk) (<= bk 0) (or (eq bh nil) (< bk bh))) (setq bh bk)))
	  
    ;; Let ah = the greatest member of a that is a negative integer. If there is
    ;; no such member, set ah = nil.
    
    (dolist (ak a)
      (if (and (integerp ak) (<= ak 0) (or (eq ah nil) (> ak ah))) (setq ah ak)))

    ;; Undefined when either (1) ah is nil and bh is non-nil or (2) ah and bh are
    ;; non-nil and ah >= bh, and each member of a and b are numbers. (We don't
    ;; want hypergeometric([a],[-3],x) to be undefined, do we?). I suppose this
    ;; function could look for declared integers...
    
    (cond ((and (every '$numberp a)
		(every '$numberp b)
		(or (and (not ah) bh) (and ah bh (>= bh ah)))) 'undefined)

	  ((or ah (zerop1 ($ratdisrep x))
	       (and ($taylorp x) (eql 0 ($second ($first ($taylorinfo x))))
		    (integerp ($third ($first ($taylorinfo x))))))
	   'polynomial)

	  (t 'nonpolynomial))))

;; The function simpcheck changes taylor polynomials to general form--that messes
;; it harder to taylorize hypergeometrics (things like hypergeometric([5],[], taylor(x,x,0,3)) -->
;; a taylor polynomial. So use tsimpcheck: if e is a taylor polynomial, simplify; otherwise, simpcheck.

(defun tsimpcheck (e z)
  (if (or ($taylorp e) ($ratp e)) (simplifya e z) (simpcheck e z)))

;; We don't want realpart and imagpart to think that hypergeometric functions are 
;; real valued. So declare hypergeometric to be complex.

(eval-when
    #+gcl (load eval)
    #-gcl (:load-toplevel :execute)
    (let (($context '$global) (context '$global))
      (meval '(($declare) $hypergeometric $complex))))

(setf (get '$hypergeometric 'conjugate-function) 'conjugate-hypergeometric)

;; hypergeometric(a,b,x) is entire (commutes with conjugate) when length(a) < length(b) + 1. Also
;; hypergeometric(a,b,x) is analytic inside the unit disk. Outside the unit disk, we need to be careful;
;; for now, conjugate gives a nounform in this case. I suppose we could check for declared negative integer
;; parameter in the list a...I'll wait for a user to request this feature :)

(defun conjugate-hypergeometric (l)
  (let ((a (first l)) (b (second l)) (x (third l)))
    (cond ((or (< ($length a) (+ 1 ($length b))) (eq t (mgrp 1 (take '(mabs) x))))
	   (take '($hypergeometric) (take '($conjugate) a) (take '($conjugate) b) (take '($conjugate) x)))
	  (t 
	  (list (list '$conjugate 'simp) (take '($hypergeometric) a b x))))))

(defun lenient-complex-p (e)
  (and ($freeof '$infinity '$und '$ind '$inf '$minf '$false '$true t nil e) ;; what else?
       (not (mbagp e))
       (not ($featurep e '$nonscalar))
       (not (mrelationp e))
       (not ($member e $arrays))))

(defprop $hypergeometric simp-hypergeometric operators)

;; Do noncontroversial simplifications on the hypergeometric function. A user that
;; wants additional simplifications can use $hypergeometric_simp. The simplifications are

;;     (a) hypergeometric([], [], x) --> exp(x),

;;     (b) hypergeometric([a], [], x) --> 1 / (1 - x)^a,

;;     (c) hypergeometric([a1,...], [b1, ...], 0) --> 1,

;;     (d) hypergeometric([-n,...], [b1, ...], x) --> polynomial.

;;     (d) sort and delete common parameters; for example
;;         hypergeometric([p,b,a],[c,b],x) --> hypergeometric([a,p],[c],x).

;;     (e) hypergeometric([0,a1, ... ], [b1, ...], x) --> 1.

;;  Why does this code do (take '(mlist) a) instead of (cons '(mlist) a)? Because 
;; (cons '(mlist) a) messes up tellsimp rules. Say tellsimp([a], a]). Then 
;; (take (mlist) a) --> a, but (cons '(mlist) a) --> ((mlist) a). And that's not correct.

(defun simp-hypergeometric (e yy z)
  (declare (ignore yy))
  (argument-length-check e 3)
  (let ((a (second e)) (b (third e)) (x (fourth e)) (l nil) (a-len) (b-len) 
	(hg-type nil) (dig) (return-type) ($domain '$complex))
    
    (cond ((or (not ($listp a)) (not ($listp b))) 
	   (mtell "warning: The first two arguments to 'hypergeometric' must be lists.~%")
	   `(($hypergeometric simp) ,(tsimpcheck a z) ,(tsimpcheck b z) ,(tsimpcheck x z)))
	  (t
	   
	   (setq a (mapcar #'(lambda (s) (tsimpcheck s z)) (margs a))
		 b (mapcar #'(lambda (s) (tsimpcheck s z)) (margs b))
		 x (tsimpcheck x z))

	   ;; Delete common members of a and b. This code is taken from hyp.lisp.

	   (setq l (zl-intersection a b))
	   (setq a (del l a)
	   	 b (del l b))
	  
	   ;; Check for undefined cases
	   (setq hg-type (classify-hypergeometric a b x))
	 	    
	   (setq a-len (length a))
	   (setq b-len (length b))

	   ;; Sort a and b and reconvert to Maxima lists.

	   (setq a (sort a '$orderlessp))
	   (setq b (sort b '$orderlessp))
	   (setq a (simplify (cons '(mlist) a)))
	   (setq b (simplify (cons '(mlist) b)))
	   
	   ;; If constantp(x), apply rectform to x. For now, multiplication and division
	   ;; of complex numbers doesn't always return a number in rectangular form. Let's
	   ;; apply rectform to constants.

	   (if ($constantp x) (setq x ($rectform x)))
	   (cond 
	    
	    ;; Catch undefined cases and return a nounform. 
	    ((or (eq hg-type 'undefined) 
		 (member-if #'(lambda(s) (not (lenient-complex-p s))) (cdr a))
		 (member-if #'(lambda(s) (not (lenient-complex-p s))) (cdr b))
		 (not (lenient-complex-p x)))
	     `(($hypergeometric simp) ,a ,b ,x))
	     
	    ;; pFq([a1,...,ap], [b1,...,bq], 0) --> 1 + 0
	    ((zerop1 x) (add 1 x))

	    ;; pFq([0,a1,...,ap], [b1,...,bq], x) --> 1
	    ((member-if 'zerop1 (margs a)) 1)
	    	       
	    ;; Do hypergeometric([],[],x) --> exp(x). All numerical evaluation is funneled through
	    ;; the same entry point; the function hypergeometric-0f0 doesn't do numerical evaluation.
	    ((and (= 0 a-len) (= 0 b-len) (hypergeometric-0f0 x)))

	    ;; Do hypergeometric([a],[],x) --> 1 / (1-x)^a. 
	    ((and (= a-len 1) (= 0 b-len) (hypergeometric-1f0 (second a) x)))
		 		 		 
	    ;; Try reflection identity for 1F1.
	    ((and (= a-len 1) (= b-len 1) (hypergeometric-1f1 (second a) (second b) x hg-type)))
		 
	    ;; For 2F1, value at 1--nothing else.
	    ((and (= a-len 2) (= b-len 1) (hypergeometric-2f1 (second a) (third a) (second b) x)))
		 	
	    ;; Try numerical evaluation; return nil on failure. This should handle IEEE float, 
	    ;; IEEE complex float, bigfloat, and complex big float cases.
	    ((and (setq return-type (use-float-hypergeometric-numerical-eval (margs a) (margs b) x))
		  (setq dig (ceiling (* (if (eq return-type 'float) (float-digits 1.0) fpprec) 
					#.(/ (log 2) (log 10)))))
		  (hypergeometric-float-eval (margs a) (margs b) x dig return-type)))
	    
	    ;; Try rational number numerical evaluation; return nil on failure. This should handle
	    ;; rational and complex rational numerical evaluation.
	    ((use-rational-hypergeometric-numerical-eval (margs a) (margs b) x)
	     (rational-hypergeometric-numerical-eval (margs a) (margs b) x))

	    ;; Handle all other polynomial cases; this includes the case that
	    ;; x is a Taylor polynomial centered at zero.
	    ((hypergeometric-poly-case (margs a) (margs b) x))
	
	    ;; Return a nounform.
	    (t `(($hypergeometric simp) ,a ,b ,x)))))))

;; When x isn't a float, do 0F0([],[],x) --> exp(x).
(defun hypergeometric-0f0 (x)
  (if (use-float-hypergeometric-numerical-eval nil nil x) nil (take '(mexpt) '$%e x)))

;; When a or x aren't floats, do 1F0([a],[],x) --> 1/(1-x)^a. 
(defun hypergeometric-1f0 (a x)
  (cond ((use-float-hypergeometric-numerical-eval (list a) nil x) nil)
	((onep x)
	 (if (eq t (mgrp 0 a)) 0 nil))
	(t  (div 1 (take '(mexpt) (sub 1 x) a)))))
  
;; Apply the Kummer reflection identity when b-a is a negative integer and we know that
;; the hypergeometric function is not already known to be a polynomial (that is a is not a
;; negative integer) or when (great (neg x) x); otherwise, return nil. This function 
;; doesn't do floating point evaluation.

(defun hypergeometric-1f1 (a b x hg-type)
  (cond ((use-float-hypergeometric-numerical-eval (list a) (list b) x) nil)
	((or (and (not (eq hg-type 'polynomial)) (great (neg x) x))
	     (and (not (eq hg-type 'polynomial)) (integerp (sub b a)) (< (sub b a) 0)))
	 (mul (take '(mexpt) '$%e x) 
	      (take '($hypergeometric) (take '(mlist) (sub b a)) (take '(mlist) b) (neg x))))
	(t nil)))

;; Coerce x to the number type of z. The Maxima function safe_float returns a bigfloat when
;; conversion to a float fails (overflow, for example).
(defun number-coerce (x z)
  (cond ((complex-number-p z '$bfloatp)
	 ($bfloat x))
	((complex-number-p z 'floatp)
	 (mfuncall '$safe_float x))
	(t x)))

;; 2F1(a,b;c, x) -->  gamma(c) gamma(c - a - b) / (gamma(c-a) gamma (c-b)) 
;; (Chu-Vandermonde identity, A & S 15.1.20) provided real_part(c-a-b) > 0 and c # 0,-1,-2, ...
;; The c = 0, -1, -2, ... case should be caught previously. If we wanted to be super careful, we'd
;; demand explicitly that c isn't a negative integer.

(defun hypergeometric-2f1 (a b c x)
  (let ((z)) 
    (setq z (sub c (add a b)))
    (cond ((and (onep1 x) (complex-number-p z '$numberp) (eq t (mgrp ($realpart z) 0)))
	   (number-coerce 
	    (div
	     (mul (take '(%gamma) c) (take '(%gamma) z))
	     (mul (take '(%gamma) (sub c a)) (take '(%gamma) (sub c b))))
	    x))
	  (t nil))))


		     
;; For numerical evaluation of a general hypergeometric function, there aren't many 
;; alternatives to power series summation.

;; Pursuant to well-established Maxima coding practices :), bigfloat
;; functions receive bigfloat arguments and return bigfloat values.

(in-package #-gcl #:bigfloat #+gcl "BIGFLOAT")

;(import 'maxima::while) ;; <--- broken Why?

(defmacro while (cond &rest body)
  `(do ()
       ((not ,cond))
     ,@body))

(defun 0f0-numeric (x)
  (exp x))

(defun 1f0-numeric (a x)
  (/ 1 (expt (- 1 x) a)))
   	  
;; This is DLMF: http://dlmf.nist.gov/15.15#E1 with zo = 1/2. Also here is Maxima code that
;; sums the first n+1 terms of the sum. The CL function 2f1-numeric-alt uses a running
;; error and it sums until three consecutive partial sums have a modified relative difference
;; that is bounded by the machine epsilon.

#|
ff(a,b,c,x,n) := block([f, f0 : 1, f1 : 1- 2 * b / c,s : 1,k : 1, cf : a / (1-2/x), z],
  b : c - 2 * b,
  z : 1 - 2 / x,
  while k <= n do (    
    s : s + cf * f1,
    cf : cf * (a + k) / ((k + 1) * z),    
    f : (k * f0 + b * f1)/(k+c),
    f0 : f1,
    f1 : f,
    k : k + 1),
  s / (1-x/2)^a)$
|#

(defun 2f1-numeric-alt (a b c x)
  (let ((f) (f0 1) (f1 (- 1 (/ (* 2 b) c))) (s 1) (ds 1) (k 1) (cf (/ a (- 1 (/ 2 x)))) (z) (se 0) 
	(eps (epsilon x)) (done 0))
    (setq b (- c (* 2 b)))
    (setq z (- 1 (/ 2 x)))
    (while (< done 3)
      (setq ds (* cf f1))
      (setq s (+ s ds))
      (setq done (if (< (abs ds) (* eps (max 1 (abs s)))) (+ done 1) 0))
      (setq se (+ se (abs s) (abs ds)))
      (setq cf (/ (* cf (+ a k)) (* (+ 1 k) z)))
      (setq f (/ (+ (* k f0) (* b f1)) (+ k c)))
      (setq f0 f1)
      (setq f1 f)
      (setq k (+ k 1)))
    (values (/ s (expt (- 1 (/ x 2)) a)) (* se (epsilon x)))))

;; hypergeometric([ma,mb],[mc],mx); prefix m means Maxima expression.

(defun 2f1-numeric (ma mb mc mx digits)
  (let* ((region) (f) (ff) (er) (local-fpprec digits) (eps) (mma) (mmb) (mmc) (mmx)
	 (x (bigfloat::to mx))
	 (d (list (list "none" (abs x)) ;; region I, inside unit disk
		  (list "15.3.4" (if (= x 1) nil (abs (/ x (- x 1)))))
		  (list "15.3.6" (abs (- 1 x)))
		  (list "15.3.7" (if (zerop x) nil (abs (/ 1 x))))
		  (list "15.3.8" (if (= x 1) nil (abs (/ 1 (- 1 x)))))
		  (list "15.3.9" (if (zerop x) nil (abs (- 1 (/ 1 x))))))))
     
    (setq d (delete-if #'(lambda(s) (null (second s))) d))
    ;; Sort d from least to greatest magnitude.
    ;;(print `(d = ,d))
    (setq d (sort d #'(lambda (a b) (< (second a) (second b)))))
    (setq region (first (first d)))
    ;;(print `(region = ,region))
    ;;(print `(d = ,(second (first d))))
    
    (cond 
     ;; When x = 0, return 1. 
     ((zerop x) 1)
     
     ;; Use the alternative numerical method when |x| > 0.9; this happens when x is near exp(+/- %i %pi / 3).

     ((> (second (first d)) 0.9)
      (setq eps (epsilon (bigfloat::to mx)))
      (setq er 1)
      (setq f 1)

      (while (> (abs er) (* eps (max (abs f) 1)))
	(maxima::bind-fpprec local-fpprec
			     (setq mma (maxima::nfloat ma `((maxima::mlist)) local-fpprec maxima::$max_fpprec))
			     (setq mmb (maxima::nfloat mb `((maxima::mlist)) local-fpprec maxima::$max_fpprec))
			     (setq mmc (maxima::nfloat mc `((maxima::mlist)) local-fpprec maxima::$max_fpprec))
			     (setq mmx (maxima::nfloat mx `((maxima::mlist)) local-fpprec maxima::$max_fpprec))
			     (multiple-value-setq (f er) 
			       (2f1-numeric-alt 
				(bigfloat::to mma) (bigfloat::to mmb) (bigfloat:to mmc) (bigfloat::to mmx)))
			     (setq local-fpprec (* 2 local-fpprec))))
      
      (values f er))
     ;; ma or mb negative integers--that causes trouble for most of the A&S 15.3.4--15.3.9 
     ;; transformations--let's quickly dispatch hypergeometric-float-eval; also dispatch
     ;; hypergeometric-float-eval when the tranformation is "none" (with adjust-parameters
     ;; is false!

     ((or (equal region "none") (and (integerp ma) (<= ma 0)) (and (integerp mb) (<= mb 0))
	  (< (abs x) 0.5))
      (hypergeometric-float-eval (list ma mb) (list mc) mx digits nil))
 
     ;; The case of a,b, and c integers causes trouble; let's dispatch hgfred on it.
     ((and (integerp ma) (integerp mb) (integerp mc))
      (setq f (maxima::$hgfred (maxima::take '(maxima::mlist) ma mb)
			       (maxima::take '(maxima::mlist) mc) 'maxima::z))
      (setq f (maxima::$horner f 'maxima::z))
      (let ((d))
	(multiple-value-setq (f d) 
	  (maxima::nfloat f `((maxima::mlist) ((maxima::mequal) maxima::z ,mx)) digits maxima::$max_fpprec))
	(values (bigfloat f) (bigfloat d))))

     (t
      (let ((maxima::$multiple_value_return t))
	(setq ff  `((maxima::$hypergeometric maxima::simp)
		    ((maxima::mlist maxima::simp) ,ma ,mb) 
		    ((maxima::mlist maxima::simp) ,mc) maxima::z))
	(setq f nil)
	(while d 
	  (setq f (if (equal region "none")
		      `((maxima::multiple_values) ,ff t)
		    (maxima::mfuncall 'maxima::$abramowitz_id ff region)))
	  (if (maxima::$second f)
	      (setq d nil f (maxima::$first f)) (setq region (first (pop d)))))
	
	;;(maxima::displa f)
	;;(maxima::displa `((maxima::mequal) maxima::z ,mx))
	(setq f (multiple-value-list
		 (maxima::nfloat f `((maxima::mlist) ((maxima::mequal) maxima::z ,mx)) 
				 digits maxima::$max_fpprec)))
	(values (bigfloat::to (first f)) (bigfloat::to (second f))))))))

;; Let a = (a1, a2, ..., am) and b = (b1, b2, ..., bn). Approximate sum(c(k) x^k / k!,k,1,inf),
;; where c(k + 1) / c(k) = (a1 + k) (a2 + k) ... (am + k) / (b1 + k) (b2 + k) ... (bn + k).
   
(defun hypergeometric-by-series (a b x)
  ;; es = running error for e and ez running error for z.

  (let ((s 0) (s0 1) (k 0) (z 1) (es 0) (ez 1) (n) (p) (q) (stop 20000) (dig))
    (setq n (* 2 (+ (length a) (length b) 1)))
    (while (and (< k stop) (/= s s0)) ;; (not (= s s0)))
      (setq s s0)
      (setq p (reduce #'* (mapcar #'(lambda (s) (+ s k)) a))) ;; p adds and p-1 multiplications
      (setq q (reduce #'* (mapcar #'(lambda (s) (+ s k)) b))) ;; q adds and q-1 multiplications
      (incf k)
      (setq z (* z (/ (* p x) (* q k))))
      ;;(setq ez (+ (* n (abs z)) ez))
      (setq ez (+ (* (abs (/ (* x p) (* q k))) ez) (* (abs z) n)))
      (setq s0 (+ s z))
      (setq es (+ es ez (abs s0))))
   
    ;;(print `(k = ,k))
    (if (>= k stop) (values nil nil) 
      (progn
	;; estimate number of correct digits:

	(setq dig (floor 
		   (*
		    (- (log (max (abs s) (epsilon x))) (log (* es (epsilon x))))
		    #.(/ (log 2) (log 10)))))

	;;(print "-----------")
	;;(maxima::displa `((maxima::mequal) k ,k))
	;;(maxima::displa `((maxima::mequal) xxx ,(maxima::to (epsilon x))))
	;;(maxima::displa `((maxima::mequal) es ,(maxima::$float (maxima::to es))))
	;;(maxima::displa `((maxima::mequal) s ,(maxima::$float (maxima::to s))))
	;;(maxima::displa `((maxima::mequal) dig ,(maxima::$float (maxima::to dig))))
	(values s dig)))))
 
(defun hypergeometric-poly-case (a b x)
  (let ((z 1) (s 1) (k 0) (p) (q))
    (while (not (zerop z))
      (setq p (reduce #'* (mapcar #'(lambda (s) (+ s k)) a)))
      (setq q (reduce #'* (mapcar #'(lambda (s) (+ s k)) b)))
      (incf k)
      (setq z (/ (* p x z) (* q k)))
      (setq s (+ z s)))
    s))

;; This function numerically evaluates pFq([a1,...,ap], [b1,....bq], x), where all the arguments
;; are Maxima expressions, not bigfloat objects.

(defun hypergeometric-float-eval (ma mb mx digits &optional (adjust-params t))
  (let ((a-len (length ma)) (b-len (length mb)) (f nil) (local-fpprec maxima::$fpprec) (d) (a) (b) (x))

    ;(maxima::displa `((maxima::mlist) ,@ma))
    ;(maxima::displa `((maxima::mlist) ,@mb))
    ;(maxima::displa `((maxima::mlist) ,mx))
    (setq a (mapcar #'bigfloat::to ma))
    (setq b (mapcar #'bigfloat::to mb))
    (setq x (bigfloat::to mx))
       
    ;; Special case 0f0, 1f0, 2f1 for |x| > 1, and pfq for |x| > 1 and p >= q + 1.
    ;; For a general hypergeometric, I don't know how to analytically continue, so in the last case, 
    ;; return false. 

    ;; In the general case, sum the hypergeometric series using a running error, recursing
    ;; on local-fpprec; bailout when local-fpprec exceeds 1000.

    (cond ((and (eql a-len 0) (eql b-len 0)) ;; special case 0f0
	   (values (0f0-numeric x) digits))

	  ((and (eql a-len 1) (eql b-len 0)) ;; special case 1f0
	   (values (1f0-numeric (first a) x) digits))

	  ((and (eql a-len 1) (integerp (first a)) (< (first a) 0) (eql b-len 1)) ;; special case 1f1
	   (maxima::bind-fpprec local-fpprec
	  			(multiple-value-setq (f d) (1f1-downward-recursion (first a) (first b) x)))
	   (values f d))
						
	  ;; Optionally do Kummer transformation--when is the Kummer transformation advantageous?
	  ;; I think the sum is ill-conditioned when realpart(x) < 0. Since x is a float, realpart
	  ;; should be quick.

	  ;; The adjust-params argument should prevent an infinite loop (transform --> untransform ...)
	  ;; In this case, an infinite loop shouldn't happen even without the adjust-param scheme.

 
	  ((and adjust-params 
		(eql a-len 1) 
		(eql b-len 1)
		(< (realpart x) 0))
	   (let ((f) (d))
	     (multiple-value-setq (f d) (hypergeometric-float-eval 
					 (list (maxima::sub (car mb) (car ma))) 
					 mb (maxima::neg mx) digits nil))
	     (values (* (exp x) f) d)))
	  	  
	  ;; analytic continuation for 2f1;
	  ((and (eql a-len 2) (eql b-len 1) adjust-params)
	   (2f1-numeric (car ma) (cadr ma) (car mb) mx digits))
	  
	  ((or (< a-len (+ b-len 1)) (in-unit-circle-p x) (eq 'maxima::polynomial 
							      (maxima::classify-hypergeometric ma mb mx)))

	   ;; recurse on local-fpprec; bailout when local-fpprec exceeds $max_fpprec.
	 
	   (while (and (or (null f) (< d digits)) (< local-fpprec maxima::$max_fpprec))
	     (maxima::bind-fpprec local-fpprec
				  (multiple-value-setq (f d) (hypergeometric-by-series a b x))
				  (setq a (mapcar #'(lambda (s) (bigfloat::to (maxima::$bfloat s))) ma))
				  (setq b (mapcar #'(lambda (s) (bigfloat::to (maxima::$bfloat s))) mb))
				  (setq x (bigfloat::to (maxima::$bfloat mx)))
				  ;(print "----------")
				  ;(print `(fpprec = ,local-fpprec))
				  ;(print `(d = ,d))
				  ;(print `(digits = ,digits))
				  ;(incf local-fpprec (+ (- digits d) 10))))
				  (setq local-fpprec (* 2 local-fpprec))))
	   
	   (if (>= local-fpprec maxima::$max_fpprec) 
	       (progn
		 (maxima::mtell "Exceeded maximum allowed fpprec.~%")
		 (values nil nil))
	     (values f d))))))

(defun in-unit-circle-p (x)
  (< (abs x) 1))

;; Compute f11(a,b,x) using downward recursion (A&S 13.4.1). The first argument must be a negative integer:
;;
;;    f <-- (k * fo + (2 * k + x) * fm1)/(b-k)
;;

;; I think this is faster than the power series summation--it might be useful for orthogonal polynomials.
(defun 1f1-downward-recursion (a b x)
  (let ((fo 1) (fm1 (- 1 (/ x b))) (f) (k -1) (efo 0) (efm1 0) (ef 0))
    (declare (type fixnum k))
    (setq k -1)
    (cond ((eql a 0) (values fo 0))
	  ((eql a -1) (values fm1 0))
	  (t
	   (setq x (- x b))
	   (while (>= k a)
	     (setq f (/ (- (* k fo) (* (+ (* 2 k) x) fm1)) (- b k)))
	     (setq ef 
		   (+
		    (/ (+ (* k efo) 
			  (* (abs (+ (* 2 k) x))) (+ efm1 (* 2 fm1))
			  (* k fo))		
		       (abs (- b k)))
		    (* 3 (abs f))))

	     (setq fo fm1)
	     (setq efo efm1)
	     (setq fm1 f)
	     (setq efm1 ef)
	     (decf k))
	   (values fo efo)))))
	 
(in-package :maxima)

(defun float-or-bigfloat-p (x)
  (or (floatp x) ($bfloatp x)))

;; Return true iff it is possible to evaluate hypergeometric(a,b,x) using (exact)
;; rational arithmetic. Thus (1) x and every member of a and b (Common Lisp lists) must be
;; a $ratnump and (2) some member of a must be an explicit negative integer. When $numer
;; is true, never do exact rational evaluation? (Likely when $numer is true, we'll never
;; get here anyway?)

(defun use-rational-hypergeometric-numerical-eval (a b x)
  (and (not $numer)
       (complex-number-p x '$ratnump)
       (every #'(lambda (s) (complex-number-p s '$ratnump)) a)
       (every #'(lambda (s) (complex-number-p s '$ratnump)) b)
       (some #'(lambda (s) (and (integerp s) (< s 0))) a)))

;; Evaluate hypergeometric(a,b,x) using (exact) rational arithmetic. Here a 
;; and b are Common Lisp lists. Don't call this function without first 
;; checking that use-rational-hypergeometric-numerical-eval returns true.
;; These are all polynomial cases, so we don't need any analytic continuations.

(defun rational-hypergeometric-numerical-eval (a b x)
  (setq a (mapcar #'(lambda (s) (bigfloat::to s)) a))
  (setq b (mapcar #'(lambda (s) (bigfloat::to s)) b))
  (setq x (bigfloat::to x))
  (maxima::to (bigfloat::hypergeometric-poly-case a b x)))

;; Return float if hypergeometric(a,b,x) should evaluate to a double float (real or 
;; complex; return bigfloat if it should evaluate to a bigfloat (real or complex); otherwise
;; return false.

(defun use-float-hypergeometric-numerical-eval (a b x)

  ;; float, complex float, bigfloat, and complex bigfloat; this is a great deal of 
  ;; stuff to check. When $numer is true, everybody must be a $numberp for numerical
  ;; evaluation; when numer is false, everybody must be a $numberp and somebody must 
  ;;be a float.

  (if (and (every #'(lambda (s) (complex-number-p s '$numberp)) a)
	   (every #'(lambda (s) (complex-number-p s '$numberp)) b)
	   (complex-number-p x '$numberp)
	   (or
	    $numer
	    (not (every #'(lambda (s) (complex-number-p s '$ratnump)) a))
	    (not (every #'(lambda (s) (complex-number-p s '$ratnump)) b))
	    (not (complex-number-p x '$ratnump))))

       ;; When everybody is a float or rational, the return type is float; otherwise bigfloat.
      (if (and
	   (every #'(lambda (s) (complex-number-p s 'float-or-rational-p)) a)
	   (every #'(lambda (s) (complex-number-p s 'float-or-rational-p)) b)
	   (complex-number-p x 'float-or-rational-p))
	  'float 'bigfloat) nil))
   
;; Evaluate pFq(a,b,x) using floating point arithmetic. Coerce the returned value 
;; to the type described by return-type.

;; When there is a double float overflow, ignore-errors should return nil. After that, we'll
;; try again with a bigfloat.
			 
(defun hypergeometric-float-eval (a b z digits return-type)
  (let ((d) (x))
    (multiple-value-setq (x d) (ignore-errors (bigfloat::hypergeometric-float-eval a b z digits)))

    (cond ((and (null x) (eq return-type 'float))
	   (number-coerce 
	    (hypergeometric-float-eval (mapcar '$bfloat a) 
				       (mapcar '$bfloat b) 
				       ($bfloat z) 
				       digits
				       'bigfloat) 1.0))

	  ((or (null x) (null d)) nil)
	  
	  ((eq return-type 'float)
	   ($float (maxima::to x)))

	  ((eq return-type 'bigfloat)
	   ($bfloat (maxima::to x)))

	  ;; Unused hypergeometric-float-eval doesn't return rational
	  ;; ((eq return-type 'rational)
	  ;;  ($rationalize (maxima::to x)))
	  
	  ;; This should not happen.
	  (t (maxima::to x)))))

(defun hypergeometric-poly-case (a b x)
  (let ((n nil) (z 1) (s 1) (p) (q) (cf 1))
    
    ;; Determine how many terms to sum
    (cond ((and ($taylorp x) (eql 0 ($second ($first ($taylorinfo x))))
		(integerp ($third ($first ($taylorinfo x)))))
	   (setq n ($third ($first ($taylorinfo x)))))
	  
	  ((some #'(lambda (s) (and (integerp s) (<= s 0))) a)
	   (dolist (ak a)
	     (if (and (integerp ak) (< ak 0)) (setq n (if (null n) ak (max n ak)))))
	   (setq n (- n)))
	  (t (setq n nil)))

    (if ($ratp x) (setq s ($rat 1) z ($rat 1)))

    ;; Expand to a polynomial when n is an integer and either 
    ;;  (1) x and each member of a and b are complex numbers, 
    ;;  (2) n < $expop or $expand_hypergeometric 
    ;;  (3) x is a CRE expression.
        
    (if (and (integerp n) (or (and (complex-number-p x '$numberp) 
				   (every #'(lambda (s) (complex-number-p s '$numberp)) a)
				   (every #'(lambda (s) (complex-number-p s '$numberp)) b))
			      (or $expand_hypergeometric (< n $expop))
			      ($ratp x)))
	(dotimes (k n s)
	  (setq p (reduce #'mul (mapcar #'(lambda (s) (add s k)) a)))
	  (setq q (reduce #'mul (mapcar #'(lambda (s) (add s k)) b)))

	  ;; sigh..Maxima should (I think) return a rectangular form for
	  ;; complex number multiplication and division. But it doesn't. If 
	  ;; that changes, delete the next two lines.

	  (setq cf (mul cf (div p (mul q (+ k 1)))))
	  (if ($constantp cf) (setq cf ($rectform cf)))
	  (setq z (mul z x))
	  (setq s (add s (mul cf z))))
	 
      nil)))

(defun diff-hypergeometric (a b z x)
  (cond ((and ($freeof x a) ($freeof x b))
	 (setq a (margs a))
	 (setq b (margs b))
	 (let ((p (reduce #'mul a))
	       (q (reduce #'mul b)))
	   (setq a (simplify (cons '(mlist) (mapcar #'(lambda (s) (add 1 s)) a))))
	   (setq b (simplify (cons '(mlist) (mapcar #'(lambda (s) (add 1 s)) b))))
	   (mul ($diff z x) p (div 1 q) (take '($hypergeometric) a b z))))
	(t (merror "Maxima does not know the derivatives of the hypergeometric functions with respect to the parameters"))))


;; TeX hypergeometric([a],[b,c],x) as $$F\left( \begin{bmatrix}a\\b\;\,c\end{bmatrix} ,x\right)$$
;; For no good reason, I'm not so fond of pFq notation. Some newer references don't use
;; the pFq notation.

(defprop $hypergeometric tex-hypergeometric tex)

(defun tex-hypergeometric (x l r)
  (let ((p) (q) (wide-space ",\\;"))
    (setq p (tex-list (margs (cadr x)) nil nil wide-space))
    (setq q (tex-list (margs (caddr x)) nil nil wide-space))
    (setq p `(,@l "F\\left( \\left. \\begin{array}{c}" ,@p "\\\\" ,@q "\\end{array} \\right |,"))
    (tex (fourth x) p `("\\right)" ,@r) 'mparen 'mparen)))

;; Integral of hypergeometric(a,b,z)
;; 
;; Integrals and Series: Volume 3, More Special Functions
;; Prudnikov, A. P., Brychkov, Yu A., Gould, G. G., Marichev, O.I.
;; 
;;  /
;; [
;; I pFq((a_p);(b_q);c z) dz
;; ]
;; /
;;
;;     = z (p+1)F(q+1)((a_p),1;(b_q),2;c z)                 1.16.1.2
;;
;;        product((b_q - 1))
;;     =  ------------------ pFq((a_p)-1; (b_q)-1; c z)     1.16.1.3
;;        product((a_p - 1))

(defun hyp-integral-3 (a b z)
  "Integral of hypergeometric(a,b,z) wrt z"
  (let* (($listarith t)
	 (a-1 (add a -1))
         (b-1 (add b -1))
         (prod_b-1 (reduce #'mul (margs b-1)))
         (prod_a-1 (reduce #'mul (margs a-1))))
    (if (eql prod_a-1 0)
      (mul z (take '($hypergeometric) (append a '(1)) (append b '(2)) z))
      (mul prod_b-1 (inv prod_a-1) (take '($hypergeometric) a-1 b-1 z)))))

(putprop '$hypergeometric `((a b z) nil nil ,#'hyp-integral-3) 'integral)