File: nfloat.lisp

package info (click to toggle)
maxima-sage 5.45.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 113,788 kB
  • sloc: lisp: 440,833; fortran: 14,665; perl: 14,369; tcl: 10,997; sh: 4,475; makefile: 2,520; ansic: 447; python: 262; xml: 59; awk: 37; sed: 17
file content (380 lines) | stat: -rw-r--r-- 14,256 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
;;  Copyright 2009 by Barton Willis

;;  This is free software; you can redistribute it and/or
;;  modify it under the terms of the GNU General Public License,
;;  http://www.gnu.org/copyleft/gpl.html.

;; This software has NO WARRANTY, not even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

;; The last time I tried, the file "hypergeometric.lisp" must be loaded before compiling nfloat; so

;(eval-when (compile) 
;  ($load "hypergeometric.lisp"))

(in-package :maxima)


(in-package #-gcl #:bigfloat #+gcl "BIGFLOAT")

;; Each member of the CL list l is a two member list (running error form).
(defun running-error-plus (l)
  (let ((acc 0) (err 0))
    (dolist (lk l)
      (setq acc (+ acc (first lk)))
      (setq err (+ err (second lk) (abs acc))))
    (list acc err)))

;;(%i20) ah * lh * (1 + eps);
;;(%o20) ah*(eps+1)*lh
;;(%i21) %-a*l;
;;(%o21) ah*(eps+1)*lh-a*l
;;(%i22) subst([a = ah-e,l = lh-w],%);
;;(%o22) ah*(eps+1)*lh-(ah-e)*(lh-w)
;;(%i23) expand(%);
;;(%o23) -e*w+ah*w+ah*eps*lh+e*lh

(defun running-error-prod (l)
  (let ((acc 1) (err 0) (z))
    (dolist (lk l)
      (setq z acc)
      (setq acc (* acc (first lk)))
      (setq err (+ (* err (abs (first lk))) (* (abs z) (abs (second lk))))))
    (list acc err)))

;; (%i1) (a+ae*eps)*(1+eps)/(b+be*eps)-a/b$
;; (%i2) expand(limit(%/eps,eps,0))$
;; (%i3) expand(ratsubst(Q,a/b,%))$
;; (%i4) map('abs,%)$
;; (%i5) facsum(%,abs(Q));
;; (%o5) ((abs(be)+abs(b))*abs(Q)+abs(ae))/abs(b)
	
(defun running-error-quotient (l)
  (let* ((a (first l)) (b (second l)) (s))
    (setq s (/ (first a) (first b)))
    (list s (+ (* (abs s) (+ 1 (abs (/ (second b) (first b))))) (abs (/ (second a) (first b)))))))

;; unary negation.	 
(defun running-error-negate (x)
  (setq x (first x))
  (list (- (first x)) (second x)))

;;(%i46) (x*(1+ex))^(n *(1+en));
;;(%o46) ((ex+1)*x)^((en+1)*n)
;;(%i47) taylor(%,[ex,en],0,1);
;;(%o47) x^n+(x^n*n*ex+x^n*n*log(x)*en)+...
;;(%i48) factor(%);
;;(%o48) x^n*(en*n*log(x)+ex*n+1)

(defun running-error-expt (l)
  (let* ((s) (x (first l)) (n (second l)) (ex) (en))
    (setq ex (second x))
    (setq en (second n))
    (setq x (first x))
    (setq n (first n))
    (setq s (bigfloat::expt x n))
    (list s (+ (abs (* s en n (log x))) (abs (* s ex n))))))

;; sqrt(x + ex) = sqrt(x)+(sqrt(x)*ex)/(2*x)+... = sqrt(x) + ex / (2 * sqrt(x)) + ...
(defun running-error-sqrt (x)
  (setq x (first x))
  (let ((s (sqrt (first x))))
    (list s (abs (/ (second x) (* 2 s))))))

;; log(x + ex) = log(x) + ex / x + ... 
(defun running-error-log (x)
  (setq x (first x))
  (list (log (first x)) (abs (/ (second x) (first x)))))

(defun psi0 (x)
  (bigfloat (maxima::$rectform (maxima::mfuncall 'maxima::$bfpsi0 (maxima::$bfloat (maxima::to x))
						 maxima::$fpprec))))

(defun gamma (x)
  (bigfloat (maxima::$bfloat (maxima::take '(maxima::%gamma) (maxima::to x)))))

;; gamma(x + ex) = gamma(x) + ex * gamma(x) * psi[0](x) + ..
(defun running-error-gamma (x)
  (setq x (first x))
  (let ((s (gamma (first x))))
    (list s (abs (* s (second x) (psi0 (first x)))))))

(defun running-error-hypergeometric (a b x subs bits)
  (let ((dig) (d) (f))
    
    ;; To do this correctly, we'd need the partial derivatives of the hypergeometric functions
    ;; with respect the the parameters. Ouch!

    (setq a (mapcar #'(lambda (s) (car (running-error-eval s subs bits))) (maxima::margs a)))
    (setq b (mapcar #'(lambda (s) (car (running-error-eval s subs bits))) (maxima::margs b)))
    (setq x (car (running-error-eval x subs bits)))
    (cond ((< (abs x) 0.99)
	   (multiple-value-setq (f d) (hypergeometric-by-series a b x))
	   (list f (* (abs f) (expt 10 (- d)))))
	  (t
	   (setq dig (ceiling (* bits #.(/ (log 2.0) (log 10.0)))))
	   (setq a (mapcar 'maxima::to a))
	   (setq b (mapcar 'maxima::to b))
	   (setq x (maxima::to x))
	   (multiple-value-setq (f d) (hypergeometric-float-eval a b x dig t))
	   (list f (* (abs f) (expt 10 (- d))))))))

(defun running-error-sum (l subs bits)
  (let ((sumand (first l))
	(v (second l))
	(lo (third l))
	(hi (fourth l))
	(acc 0) (err 0) (x) (q))

    (cond ((and (integerp lo) (integerp hi))
	   (maxima::while (<= lo hi)
	     (setq q (maxima::$sublis `((maxima::mlist) ((maxima::mequal) ,v ,lo)) sumand))
	     (setq q (maxima::simplify q))
	     (setq x (running-error-eval q subs bits))
	     (incf lo)
	     (setq acc (+ acc (first x)))
	     (setq err (+ err (second x) (abs acc))))
	   (list acc err))
	  (t (throw 'maxima::nfloat-nounform-return 'return-nounform)))))

(defun running-error-product (l subs bits)
  (let ((prodand (first l)) ;; a sum has a summand, so a product has a ...
	(v (second l))
	(lo (third l))
	(hi (fourth l))
	(acc 1) (err 0) (x))

    (cond ((and (integerp lo) (integerp hi))
	   (maxima::while (<= lo hi)
	     (setq x (maxima::$sublis `((maxima::mlist) ((maxima::mequal) ,v ,lo)) prodand))
	     (setq x (maxima::simplify x))
	     (setq x (running-error-eval x subs bits))
	     (incf lo)
	     (setq acc (* acc (first x)))
	     (setq err (+ err (second x) (abs acc))))
	   (list acc err))
	  (t (throw 'maxima::nfloat-nounform-return 'return-nounform)))))

(defun running-error-abs (l)
  (setq l (first l))
  (list (abs (first l)) (second l)))

(defun running-error-conjugate (l)
  (setq l (first l))
  (list (conjugate (first l)) (second l)))

;; untested!!!!!
(defun running-error-factorial (l)
  (setq l (first l))
  (if (integerp l)
      (list (maxima::take (list 'maxima::mfactorial) l) 0)
    (running-error-gamma (list (list (+ 1 (first l)) (second l))))))
	 
(defun running-error-atan2 (l)
  (let* ((y (first l))
	 (x (second l))
	 (d (/ 1 (+ (* (first x) (first x)) (* (first y) (first y))))))
    (list (atan (first y) (first x))
	  (* (+ (* (abs (second y)) (first x)) (* (abs (second x)) (first y))) d))))
    
(defun running-error-realpart (l)
  (setq l (first l))
  (list (realpart (first l)) (second l)))

(defun running-error-imagpart (l)
  (setq l (first l))
  (list (imagpart (first l)) (second l)))


;; For a similar hashtable mechanism, see trig.lisp.
(defvar *running-error-op* (make-hash-table :size 16)
  "Hash table mapping a maxima function to a corresponding Lisp
  function to evaluate the maxima function numerically using a running error.")

(setf (gethash 'maxima::mplus *running-error-op*) #'running-error-plus)
(setf (gethash 'maxima::mtimes *running-error-op*)  #'running-error-prod)
(setf (gethash 'maxima::mquotient *running-error-op*) #'running-error-quotient)
(setf (gethash 'maxima::mminus *running-error-op*) #'running-error-negate)
(setf (gethash 'maxima::mexpt *running-error-op*) #'running-error-expt)
(setf (gethash 'maxima::%sqrt *running-error-op*) #'running-error-sqrt)
(setf (gethash 'maxima::%log *running-error-op*) #'running-error-log)
(setf (gethash 'maxima::%gamma *running-error-op*) #'running-error-gamma)
(setf (gethash 'maxima::mabs *running-error-op*) #'running-error-abs)
(setf (gethash 'maxima::$cabs *running-error-op*) #'running-error-abs)
(setf (gethash 'maxima::$conjugate *running-error-op*) #'running-error-conjugate)
(setf (gethash 'maxima::mfactorial *running-error-op*) #'running-error-factorial)
(setf (gethash 'maxima::$atan2 *running-error-op*) #'running-error-atan2)
(setf (gethash 'maxima::$realpart *running-error-op*) #'running-error-realpart)
(setf (gethash 'maxima::$imagpart *running-error-op*) #'running-error-imagpart)

(defun running-error-eval (e subs bits)
  (let ((f))
   
    (cond ((eq e 'maxima::$%i) 
	   (setq e (bigfloat::to (if (> bits #.(float-digits 1.0e0)) (maxima::$bfloat 1) (maxima::$float 1))))
	   (list (bigfloat::to 0 e) (abs e)))
	 
	  ((maxima::complex-number-p e #'(lambda (s) (or (maxima::$ratnump s) (maxima::$numberp s))))
	   (setq e (bigfloat::to (if (> bits #.(float-digits 1.0e0)) (maxima::$bfloat e) (maxima::$float e))))
	   (list e (abs e)))
	  
	  ((and (atom e) (maxima::mget e '$numer))
	   (running-error-eval (maxima::mget e 'maxima::$numer) '((mlist)) bits))

	  ((and (atom e) (get e 'maxima::sysconst))
	   (running-error-eval (maxima::$bfloat e) '((mlist)) bits))
	    
	  ((atom e) 
	   (setq e (maxima::$sublis subs e))
	   (if (maxima::complex-number-p e 'maxima::bigfloat-or-number-p)
	       (running-error-eval e nil bits)
	     (throw 'maxima::nfloat-nounform-return 'return-nounform)))

	  ;; Return a nounform for expressions (arrays, CRE expressions) that don't
	  ;; appear to be Maxima expressions of the form ((op) a1 a2 ...).
	  ((not (and (consp e) (consp (car e))))
	   (throw 'maxima::nfloat-nounform-return 'return-nounform))
	   
	  ;; Special case exp(x) (more efficient & accurate than sending this through mexpt).
	  ((and (eq 'maxima::mexpt (caar e)) (eq (second e) 'maxima::$%e))
	   (setq e (running-error-eval (third e) subs bits))
	   (let ((z (exp (first e))))
	     (list z (abs (* (second e) z)))))

	  ;; Special case x^n, where n is an integer. For this case, we do not want to 
	  ;; convert the integer to a float. This prevents some, but not all, semi-spurious
	  ;; nonzero imaginary parts for (negative real)^integer.
	  ((and (eq 'maxima::mexpt (caar e)) (integerp (third e)))
	   (running-error-expt (list (running-error-eval (second e) subs bits) (list (third e) 0))))
	 
	  ;; main function dispatch.
	  ((setq f (gethash (maxima::mop e) *running-error-op*))
	   ;(print `(e = ,e mop = ,(maxima::mop e)))
	   (setq e (mapcar #'(lambda (s) (running-error-eval s subs bits)) (maxima::margs e)))
	   (funcall f e))

	  ;; f(x + ex) = f(x) + ex * f'(x) + ... Functions without bigfloat 
	  ;; evaluation, for example the Bessel functions, need to be excluded.
	  ;; For now, this code rejects functions of two or more variables.
	  ((and (get (caar e) 'maxima::grad) (null (cdr (maxima::margs e)))
		(or (gethash (caar e) maxima::*big-float-op*) (maxima::trigp (caar e))
		    (maxima::arcp (caar e))))

	   (let ((x (running-error-eval (cadr e) subs bits)) (f) (df))
	     (setq f (maxima::take (list (caar e)) (maxima::to (first x))))
	     (setq df (get (caar e) 'maxima::grad))
	     (setq df (maxima::$rectform (maxima::$substitute f (caar df) (cadr df))))
	     (setq df (bigfloat::to df))
	     (list (bigfloat::to f) (* (second x) (abs df)))))

	  ;; special case hypergeometric
	  ((eq (caar e) 'maxima::$hypergeometric)
	   (running-error-hypergeometric (second e) (third e) (fourth e) subs bits))
	   
	  ;; special case sum.
	  ((or (eq (caar e) 'maxima::%sum) (eq (caar e) 'maxima::$sum))
	   (running-error-sum (cdr e) subs bits))

	  ;; special case product
	  ((or (eq (caar e) 'maxima::$product) (eq (caar e) 'maxima::%product))
	   (running-error-product (cdr e) subs bits))
	  
	  ;; special case assignment
	  ((eq (caar e) 'maxima::msetq)
	   (maxima::mset (car e) (car (running-error-eval (cadr e) subs bits))))
	  
	  ;; Yes, via nformat, this can happen. Try, for example, nfloat('(a,b),[a=3,b=7]).
	  ((eq (caar e) 'maxima::mprogn)
	   (let ((q))
	     (setq e (cdr e))
	     (dolist (ek e q)
	       (setq q (running-error-eval ek subs bits)))))
	  
	  (t (throw 'maxima::nfloat-nounform-return 'return-nounform)))))

;; d * eps is a upper bound for how much e differs from its true value, where eps is
;; the machine epsilon.

;; First (log = natural log)
;;
;;    log10(x) = log(x) / log(10) and log2(x) = log(x) / log(2).
;; So
;;    log10(x) = log2(x) * (log(2) / log(10)).
;;
;; Second
;;     -log10(abs(d * eps / e)) = log10(abs(e)) - log10(abs(d)) - log10(eps),
;;                        = (log2(abs(e)) - log2(abs(d)) - log2(eps)) * (log(2) / log(10).

;; For log2 we use the binary exponent of the number. Common Lisp gives
;; (decode-float 0.0) --> 0.0 0 1.0, by the way.

(defun log10-relative-error (d e)
 
  (if (rationalp d) (setq d (bigfloat (maxima::$bfloat (maxima::to d)))))
  (if (rationalp e) (setq e (bigfloat (maxima::$bfloat (maxima::to e)))))

  (floor (* 
	  (-
	   (second (multiple-value-list (decode-float (abs e))))
	   (+
	    (second (multiple-value-list (decode-float (abs d))))
	    (second (multiple-value-list (decode-float (epsilon (abs d)))))))
	  #.(/ (log 2.0) (log 10.0)))))
    
(defun not-done (err f eps machine-eps)
  (> (* machine-eps err) (* eps (max (abs f) 1))))

;;(defmethod epsilon ((x integer)) 0)

(in-package :maxima)
		
(defun nfloat (e subs digits max-digits)
  (let ((z (list nil nil)) (dig digits) (eps) (machine-epsilon nil))
    (cond ((or (mbagp e) (mrelationp e) ($setp e))
	   (simplify (cons (list (caar e))
			   (mapcar #'(lambda (s) (nfloat s subs digits max-digits)) (margs e)))))
	  
	  (t
	   (catch 'nfloat-nounform-return
	     (setq e (nformat e))
	     (setq eps (expt 10.0 (- digits)))
	     (setq eps (/ eps (- 1 eps)))
	     (while (and (or (null (first z)) (bigfloat::not-done (second z) (first z) eps machine-epsilon))
			 (< digits max-digits))
	       (bind-fpprec digits 
			    (setq z (bigfloat::running-error-eval e subs fpprec))
			    (setq machine-epsilon 
				  (cond ((not (second z)) nil)
					((integerp (second z)) 0)
					(t (bigfloat::epsilon (second z)))))
					
			    (setq digits (* 2 digits))))
	     
	     (if (or (null (first z)) (>= digits max-digits))
		 (merror "Unable to evaluate to requested number of digits")
	       (maxima::bind-fpprec dig (values (maxima::to (first z)) (maxima::to (second z))))))))))

(setf (get '$nfloat 'operators) 'simp-nfloat)

(defun simp-nfloat (x yy z)
  (declare (ignore yy))
  (declare (special $max_fpprec))
  (pop x) ;; remove ($nfloat)
  (let*  ((e (if x (simpcheck (pop x) z) (wna-err '$nfloat)))
	  (subs (if x (simpcheck (pop x) z) (take '(mlist))))
	  (digits (if x (simpcheck (pop x) z) $fpprec))
	  (max-digits (if x (simpcheck (pop x) z) $max_fpprec))
	  (f))

    (cond ((and ($listp subs)
		(every #'(lambda (s) (and (mequalp s) (symbolp ($lhs s)) (complex-number-p ($rhs s) 'mnump)))
		       (cdr subs)))
	   (cond ((or (mbagp e) (mrelationp e) ($setp e))
		  (simplify (cons (list (caar e))
				  (mapcar #'(lambda (s) (take '($nfloat) s subs digits max-digits))
					  (margs e)))))
		 (t
		  (setq f (nfloat e subs digits max-digits))
		  (if (complex-number-p f 'bigfloat-or-number-p) f 
		    `(($nfloat simp) ,e ,subs ,digits ,$max_fpprec)))))
	  (t  `(($nfloat simp) ,e ,subs ,digits ,$max_fpprec)))))