File: lu.lisp

package info (click to toggle)
maxima-sage 5.45.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 113,788 kB
  • sloc: lisp: 440,833; fortran: 14,665; perl: 14,369; tcl: 10,997; sh: 4,475; makefile: 2,520; ansic: 447; python: 262; xml: 59; awk: 37; sed: 17
file content (312 lines) | stat: -rw-r--r-- 12,159 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
;;  Copyright 2005, 2006, 2021 by Barton Willis

;;  This is free software; you can redistribute it and/or
;;  modify it under the terms of the GNU General Public License,
;;  http://www.gnu.org/copyleft/gpl.html.

;; This software has NO WARRANTY, not even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

($put '$lu 3 '$version)
	
;; Return the i,j entry of the Maxima matrix m. The rows of m have been permuted according
;; to the Maxima list p.

(defun m-elem (m p i j)
  (if (arrayp m) (aref m (aref p i) j) (nth j (nth (nth i p) m))))

;; Set the i j entry of the Maxima matrix or an array to x.

(defun setmatelem (m x i j) 
  (if (arrayp m) (setf (aref m i j) x) (setf (nth j (nth i m)) x)))

;; Return m[perm[i], k] - sum(m[perm[i],s] * m[perm[s],k],s,0,n)

(defun partial-matrix-prod (m p i k n fadd fsub fmult add-id fname)
  (cond ((eq fname '$floatfield)
	 (partial-matrix-prod-float m p i k n))
	((eq fname '$complexfield)
	 (partial-matrix-prod-complex-float m p i k n))
	(t
	 (let ((l (aref p i)))
	   (loop for s from 0 to n do
	     (setq add-id (funcall fadd add-id (funcall fmult (aref m l s) (aref m (aref p s) k)))))
	   (setf (aref m l k) (funcall fsub (aref m l k) add-id))))))

(defun partial-matrix-prod-float (m p i k n)
  (let ((add-id 0.0))
    (declare (type flonum add-id))
    (let ((l (aref p i)))
      (loop for s from 0 to n do
      	(setq add-id (+ add-id (* (aref m l s) (aref m (aref p s) k)))))
        (setf (aref m l k) (- (aref m l k) add-id)))))

(defun partial-matrix-prod-complex-float (m p i k n)
  (let ((add-id 0.0))
    (let ((l (aref p i)))
      (loop for s from 0 to n do
      	(setq add-id (+ add-id (* (aref m l s) (aref m (aref p s) k)))))
        (setf (aref m l k) (- (aref m l k) add-id)))))

;; Return the infinity norm (the largest row sum) of the r by c array mat. The function
;; fn coerces matrix elements into flonum floats. The argument 'mat' is a Maxima
;; style matrix; thus mat = (($matrix) ((mlist) a b c) etc).

(defun array-infinity-norm (mat fn)
  (reduce #'max (mapcar #'(lambda (s) (reduce #'+ s)) 
			(array-to-row-list mat #'(lambda (s) (abs (funcall fn s)))))))

(defun $lu_factor (mat &optional (fld '$generalring))
  ($require_nonempty_matrix mat '$first '$lu_factor)
  ($require_square_matrix mat '$first '$lu_factor)
  (setq fld ($require_ring fld '$second '$lu_factor))
  
  (let* ((c ($length mat)) (perm (make-array c)) (cnd) (fn))
    ;(setq mat (full-matrix-map (mring-maxima-to-mring fld) mat))
    (setq mat (maxima-to-array mat (mring-maxima-to-mring fld)))
    
    (decf c)
    (loop for i from 0 to c do (setf (aref perm i) i))   
    
    ;; When the matrix elements can be converted to CL floats, find
    ;; the infinity norm of m. The norm is used to bound the condition
    ;; number.

    (cond ((not (eq nil (mring-coerce-to-lisp-float fld)))
	   (setq fn (mring-coerce-to-lisp-float fld))
	   (setq cnd (array-infinity-norm mat fn)))
	  (t (setq cnd 0.0)))
    (lu-factor mat perm c fld cnd)))

(defun $get_lu_factors (x)
  (let ((mat ($first x)) (mp) (p ($second x)) (perm) (r) (c) (id) (lower) (upper) (zero))
 
    (setq r ($matrix_size mat))
    (setq c ($second r))
    (setq r ($first r))
    (setq id ($args ($identfor mat)))
    (loop for i from 1 to c do
      (push (nth (nth i p) id) perm)
      (push (nth (nth i p) mat) mp))
    (setq perm (reverse perm))
    (setq mp (reverse mp))
    (push '($matrix) perm)
    (push '($matrix) mp)

    (setq lower (copy-tree mp))
    (setq upper (copy-tree mp))
    (setq id ($identfor ($first ($first mat))))
    (setq zero ($zerofor ($first ($first mat))))
    (loop for i from 1 to r do
      (loop for j from 1 to c do
	(if (= i j) (setmatelem lower id i j))
	(if (> i j) (setmatelem upper zero i j))
	(if (< i j) (setmatelem lower zero i j))))	
    `((mlist) ,($transpose perm) ,lower ,upper)))
        
(defun lu-factor (m perm c fld &optional (cnd 1.0))
  (let ((pos) (kp1) (mx) (lb) (ub) (save) (fname (mring-name fld)) 
	(add-id (funcall (mring-add-id fld))))
    (flet
	((fzerop (a) (funcall (mring-fzerop fld) a))
	 (fadd (a b) (funcall (mring-add fld) a b))
	 (fsub (a b) (funcall (mring-sub fld) a b))
	 (fabs (a) (funcall (mring-abs fld) a))
	 (fmult (a b) (funcall (mring-mult fld) a b))
	 (fdiv (a b) (funcall (mring-div fld) a b))
	 (fgreat (a b) (funcall (mring-great fld) a b)))
      
  (loop for k from 0 to c do 
	  (loop for i from k to c  do (partial-matrix-prod m perm i k (- k 1) 
							 #'fadd #'fsub #'fmult add-id fname))
	  (setq mx (fabs (m-elem m perm k k)))
	  (setq pos k)
	  (loop for s from k to c do
	    (if (fgreat (fabs (m-elem m perm s k)) mx) (setq pos s mx (fabs (m-elem m perm s k)))))

  	(setq save (aref perm k))
	  (setf (aref perm k) (aref perm pos))
	  (setf (aref perm pos) save)

  	(setq kp1 (+ 1 k))
	  (loop for i from kp1 to c do
	      (when (not (fzerop (m-elem m perm k k)))
	          (setmatelem m (fdiv (m-elem m perm i k) (m-elem m perm k k)) (aref perm i) k)
	          (partial-matrix-prod m perm k i (- k 1) #'fadd #'fsub #'fmult add-id fname))))
      
      (cond ((not (eq nil (mring-coerce-to-lisp-float fld)))
	     (multiple-value-setq (lb ub) (mat-cond-by-lu m perm c (mring-coerce-to-lisp-float fld)))
	     (setq m (array-to-maxima-matrix m (mring-mring-to-maxima fld)))
	     (setq lb ($limit (mul lb cnd)))
	     (setq ub ($limit (mul ub cnd)))
	     (setq perm (array-to-maxima-list perm #'(lambda (s) (+ s 1))))
	     `((mlist) ,m ,perm ,(mring-name fld) ,lb ,ub))
	    (t 
	     (setq perm (array-to-maxima-list perm #'(lambda (s) (+ s 1))))
	     (setq m (array-to-maxima-matrix m (mring-mring-to-maxima fld)))
	     `((mlist) ,m ,perm ,(mring-name fld)))))))
      
;; The first argument should be a matrix in packed LU form. The Maxima list perm
;; specifies the true row ordering. When r is false, reflect the matrix horizontally
;; and vertically.

(defun m-elem-reflect (mat perm n r i j)
  (cond ((and r (= i j)) 1)
	;;(r (m-elem mat perm (+ n (- i) 1) (+ n (- j) 1)))
	(r (m-elem mat perm (+ n (- i)) (+ n (- j))))
	(t (m-elem mat perm i j))))

;; The first argument mat should be a matrix in the packed LU format. 
;; When l-or-u is lower, return the i,j element of the lower triangular
;; factor; when l-or-u is upper, return the j, i element of upper triangular
;; factor. The first argument mat should be a matrix in the packed LU format. 

(defun mat-cond-by-lu (mat perm n fn)
  (let ((lb0) (ub0) (lb1) (ub1))
    (multiple-value-setq (lb0 ub0) (triangular-mat-cond mat perm n fn t))
    (multiple-value-setq (lb1 ub1) (triangular-mat-cond mat perm n fn nil))
    (values ($limit (mul lb0 lb1)) ($limit (mul ub0 ub1)))))

;; Return lower and upper bounds for the infinity norm condition number of the lower or
;; upper triangular part of the matrix mat. The function fn coerces the matrix
;; elements to flonum floats.  When the matrix is singular, return infinity.
;; This code is based on pseudo-code (algorithm 2.1) in ``Survey of condition 
;; number estimation,'' by Nicholas J. Higham, SIAM Review, Vol. 29, No. 4, December,
;; 1987.  The lower and upper bounds can differ from the true value by arbitrarily 
;; large factors. 

(defun triangular-mat-cond (mat perm n fn r)
  (let ((z) (d-max 0.0) (z-max 0.0) (s) (d))
    (setq z (make-array (+ 1 n)))
   
    (catch 'singular
      (loop for i from n downto 0 do
	(setq d (abs (funcall fn (m-elem-reflect mat perm n r i i))))
	(if (= 0.0 d) (throw 'singular (values '$inf '$inf)) (setq d (/ 1 d)))
	(setq d-max (max d-max (abs (funcall fn d))))
	(setq s 1.0)
	(loop for j from (+ 1 i) to n do
	  (incf s (* (abs (funcall fn (m-elem-reflect mat perm n r i j))) (aref z j))))
	(setf (aref z i) (* d s))
	(setq z-max (max z-max (aref z i))))
      (values d-max z-max))))
      
(defun $lu_backsub(m b1)
  ($require_list m '$first '$lu_backsub)
  (when (< ($length m) 3) 
      (merror (intl:gettext "The first argument to 'lu_backsub' must be a list with at least 3 members")))
  
  (let* ((mat) (n) (r) (c) (bb) (acc) (perm) (id-perm) (b) 
	 (fld (get (mfuncall '$ev (fourth m)) 'ring)) (cc) 
	 (fadd (mring-add fld))
	 (fsub (mring-sub fld))
	 (fmult (mring-mult fld))
	 (fdiv (mring-rdiv fld))
	 (add-id (funcall (mring-add-id fld))))
    
    (setq mat (copy-tree ($first m)))
    (setq perm ($second m))
    (setq n ($matrix_size mat))
    (setq r ($first n))
    (setq c ($second n))
    
    (setq mat (matrix-map (mring-maxima-to-mring fld) mat))
    (setq b (copy-tree b1))
    (setq c ($second ($matrix_size mat)))
    
    (setq cc ($second ($matrix_size b)))
    (setq b (matrix-map (mring-maxima-to-mring fld) b))

    (setq bb (copy-tree b))
    (loop for i from 1 to r do
      (loop for j from 1 to cc do
	      (setmatelem bb (m-elem b perm i j) i j)))
    
    (setq id-perm (mfuncall '$makelist 'i 'i 1 r))

    (loop for q from 1 to cc do 
      (loop for i from 2 to c do
	(setq acc add-id)
	(loop for j from 1 to (- i 1) do
	  (setq acc (funcall fadd acc (funcall fmult (m-elem mat perm i j) (m-elem bb id-perm j q)))))
	(setmatelem bb (funcall fsub (m-elem bb id-perm i q) acc) i q)))
    
    (loop for q from 1 to cc do
      (loop for i from r downto 1 do
	(setq acc (m-elem bb id-perm i q))
	(loop for j from (+ 1 i) to c do
	  (setq acc (funcall fsub acc (funcall fmult (m-elem mat perm i j) (m-elem bb id-perm j q)))))
	(setmatelem bb (funcall fdiv acc (m-elem mat perm i i)) i q)))
    
    (setq bb (matrix-map (mring-mring-to-maxima fld) bb))
    bb))

(defun $invert_by_lu (m  &optional (fld '$generalring))
  ($require_square_matrix m '$first '$invert_by_lu)
  ($lu_backsub ($lu_factor m fld) ($identfor m)))
  					
;; Return a Lisp list of two elements, the determinant, and the inverse of M.
(defun invert-by-lu-with-determinant (m fld-name)
  (let*
   ((i ($identfor m))
    (m1 ($lu_factor m fld-name))
    (fld (get fld-name 'ring))
    (d (determinant-by-lu-factors m1 fld)))
   (list d ($lu_backsub m1 i))))
  					
(defun $determinant_by_lu (m &optional (fld-name '$generalring))
  ($require_square_matrix m '$first '$determinant_by_lu)
 
  (let ((fld ($require_ring fld-name '$second '$determinant_by_lu)))
    (setq m ($lu_factor m fld-name))
    (determinant-by-lu-factors m fld)))

;; Assume that M has already been factored by $LU_FACTOR
;; and FLD is some field (not a field name).
(defun determinant-by-lu-factors (m fld)
 
  (let* ((acc (funcall (mring-mult-id fld)))
	 (fmult (mring-mult fld))
	 (fconvert (mring-maxima-to-mring fld))
	 (n ($first ($matrix_size ($first m))))
	 (perm) (d))

    (setq perm ($second m))
   
    (setq m ($first m))
    (loop for i from 1 to n do
      (setq d (funcall fconvert (m-elem m perm i i)))
      ;;(if ($matrixp d) (setq d ($determinant_by_lu d fld)))
      (setq acc (funcall fmult acc d)))
    (bbsort1 (cdr perm))
    (funcall (mring-mring-to-maxima fld) (if sign (funcall (mring-negate fld) acc) acc))))

(defun $mat_cond (m p)
  ($require_square_matrix m '$first '$mat_cond)
  (mul (mfuncall '$mat_norm m p) (mfuncall '$mat_norm ($invert_by_lu m) p)))

(defun $linsolve_by_lu (m b &optional (fld '$generalring))
  ($require_square_matrix m '$first '$linsolve_by_lu)
  (setq b (if ($listp b) ($transpose b) b))
  ($require_matrix b '$second '$linsolve_by_lu)
  ($require_ring fld '$third '$linsolve_by_lu)
  (if (= ($second ($matrix_size m)) ($first ($matrix_size b))) t
    (merror (intl:gettext "Incompatible matrix sizes")))
  
  (setq m ($lu_factor m fld))
  `((mlist) ,($lu_backsub m b) ,(if (floatp ($last m)) ($last m) nil)))

(defun invertible-matrixp (mat fld)
  (let ((OK t) (n))
      (cond (($matrixp mat)
              (setq n ($matrix_size mat))
              (cond ((not (eql ($first n) ($second n))) ;nonsquare matrices aren't invertiable
                 nil)
              (t    
                (setq mat (fourth ($get_lu_factors ($lu_factor mat fld))))
                (setq n ($first n))
                (while (and OK (> n  0))
                  (setq OK (and OK (not ($zeromatrixp ($inpart mat n n)))))
                 (decf n 1))
                OK)))
            (t (not ($zeromatrixp mat))))))