1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
;; Copyright 2005, 2006, 2021 by Barton Willis
;; This is free software; you can redistribute it and/or
;; modify it under the terms of the GNU General Public License,
;; http://www.gnu.org/copyleft/gpl.html.
;; This software has NO WARRANTY, not even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
($put '$lu 3 '$version)
;; Return the i,j entry of the Maxima matrix m. The rows of m have been permuted according
;; to the Maxima list p.
(defun m-elem (m p i j)
(if (arrayp m) (aref m (aref p i) j) (nth j (nth (nth i p) m))))
;; Set the i j entry of the Maxima matrix or an array to x.
(defun setmatelem (m x i j)
(if (arrayp m) (setf (aref m i j) x) (setf (nth j (nth i m)) x)))
;; Return m[perm[i], k] - sum(m[perm[i],s] * m[perm[s],k],s,0,n)
(defun partial-matrix-prod (m p i k n fadd fsub fmult add-id fname)
(cond ((eq fname '$floatfield)
(partial-matrix-prod-float m p i k n))
((eq fname '$complexfield)
(partial-matrix-prod-complex-float m p i k n))
(t
(let ((l (aref p i)))
(loop for s from 0 to n do
(setq add-id (funcall fadd add-id (funcall fmult (aref m l s) (aref m (aref p s) k)))))
(setf (aref m l k) (funcall fsub (aref m l k) add-id))))))
(defun partial-matrix-prod-float (m p i k n)
(let ((add-id 0.0))
(declare (type flonum add-id))
(let ((l (aref p i)))
(loop for s from 0 to n do
(setq add-id (+ add-id (* (aref m l s) (aref m (aref p s) k)))))
(setf (aref m l k) (- (aref m l k) add-id)))))
(defun partial-matrix-prod-complex-float (m p i k n)
(let ((add-id 0.0))
(let ((l (aref p i)))
(loop for s from 0 to n do
(setq add-id (+ add-id (* (aref m l s) (aref m (aref p s) k)))))
(setf (aref m l k) (- (aref m l k) add-id)))))
;; Return the infinity norm (the largest row sum) of the r by c array mat. The function
;; fn coerces matrix elements into flonum floats. The argument 'mat' is a Maxima
;; style matrix; thus mat = (($matrix) ((mlist) a b c) etc).
(defun array-infinity-norm (mat fn)
(reduce #'max (mapcar #'(lambda (s) (reduce #'+ s))
(array-to-row-list mat #'(lambda (s) (abs (funcall fn s)))))))
(defun $lu_factor (mat &optional (fld '$generalring))
($require_nonempty_matrix mat '$first '$lu_factor)
($require_square_matrix mat '$first '$lu_factor)
(setq fld ($require_ring fld '$second '$lu_factor))
(let* ((c ($length mat)) (perm (make-array c)) (cnd) (fn))
;(setq mat (full-matrix-map (mring-maxima-to-mring fld) mat))
(setq mat (maxima-to-array mat (mring-maxima-to-mring fld)))
(decf c)
(loop for i from 0 to c do (setf (aref perm i) i))
;; When the matrix elements can be converted to CL floats, find
;; the infinity norm of m. The norm is used to bound the condition
;; number.
(cond ((not (eq nil (mring-coerce-to-lisp-float fld)))
(setq fn (mring-coerce-to-lisp-float fld))
(setq cnd (array-infinity-norm mat fn)))
(t (setq cnd 0.0)))
(lu-factor mat perm c fld cnd)))
(defun $get_lu_factors (x)
(let ((mat ($first x)) (mp) (p ($second x)) (perm) (r) (c) (id) (lower) (upper) (zero))
(setq r ($matrix_size mat))
(setq c ($second r))
(setq r ($first r))
(setq id ($args ($identfor mat)))
(loop for i from 1 to c do
(push (nth (nth i p) id) perm)
(push (nth (nth i p) mat) mp))
(setq perm (reverse perm))
(setq mp (reverse mp))
(push '($matrix) perm)
(push '($matrix) mp)
(setq lower (copy-tree mp))
(setq upper (copy-tree mp))
(setq id ($identfor ($first ($first mat))))
(setq zero ($zerofor ($first ($first mat))))
(loop for i from 1 to r do
(loop for j from 1 to c do
(if (= i j) (setmatelem lower id i j))
(if (> i j) (setmatelem upper zero i j))
(if (< i j) (setmatelem lower zero i j))))
`((mlist) ,($transpose perm) ,lower ,upper)))
(defun lu-factor (m perm c fld &optional (cnd 1.0))
(let ((pos) (kp1) (mx) (lb) (ub) (save) (fname (mring-name fld))
(add-id (funcall (mring-add-id fld))))
(flet
((fzerop (a) (funcall (mring-fzerop fld) a))
(fadd (a b) (funcall (mring-add fld) a b))
(fsub (a b) (funcall (mring-sub fld) a b))
(fabs (a) (funcall (mring-abs fld) a))
(fmult (a b) (funcall (mring-mult fld) a b))
(fdiv (a b) (funcall (mring-div fld) a b))
(fgreat (a b) (funcall (mring-great fld) a b)))
(loop for k from 0 to c do
(loop for i from k to c do (partial-matrix-prod m perm i k (- k 1)
#'fadd #'fsub #'fmult add-id fname))
(setq mx (fabs (m-elem m perm k k)))
(setq pos k)
(loop for s from k to c do
(if (fgreat (fabs (m-elem m perm s k)) mx) (setq pos s mx (fabs (m-elem m perm s k)))))
(setq save (aref perm k))
(setf (aref perm k) (aref perm pos))
(setf (aref perm pos) save)
(setq kp1 (+ 1 k))
(loop for i from kp1 to c do
(when (not (fzerop (m-elem m perm k k)))
(setmatelem m (fdiv (m-elem m perm i k) (m-elem m perm k k)) (aref perm i) k)
(partial-matrix-prod m perm k i (- k 1) #'fadd #'fsub #'fmult add-id fname))))
(cond ((not (eq nil (mring-coerce-to-lisp-float fld)))
(multiple-value-setq (lb ub) (mat-cond-by-lu m perm c (mring-coerce-to-lisp-float fld)))
(setq m (array-to-maxima-matrix m (mring-mring-to-maxima fld)))
(setq lb ($limit (mul lb cnd)))
(setq ub ($limit (mul ub cnd)))
(setq perm (array-to-maxima-list perm #'(lambda (s) (+ s 1))))
`((mlist) ,m ,perm ,(mring-name fld) ,lb ,ub))
(t
(setq perm (array-to-maxima-list perm #'(lambda (s) (+ s 1))))
(setq m (array-to-maxima-matrix m (mring-mring-to-maxima fld)))
`((mlist) ,m ,perm ,(mring-name fld)))))))
;; The first argument should be a matrix in packed LU form. The Maxima list perm
;; specifies the true row ordering. When r is false, reflect the matrix horizontally
;; and vertically.
(defun m-elem-reflect (mat perm n r i j)
(cond ((and r (= i j)) 1)
;;(r (m-elem mat perm (+ n (- i) 1) (+ n (- j) 1)))
(r (m-elem mat perm (+ n (- i)) (+ n (- j))))
(t (m-elem mat perm i j))))
;; The first argument mat should be a matrix in the packed LU format.
;; When l-or-u is lower, return the i,j element of the lower triangular
;; factor; when l-or-u is upper, return the j, i element of upper triangular
;; factor. The first argument mat should be a matrix in the packed LU format.
(defun mat-cond-by-lu (mat perm n fn)
(let ((lb0) (ub0) (lb1) (ub1))
(multiple-value-setq (lb0 ub0) (triangular-mat-cond mat perm n fn t))
(multiple-value-setq (lb1 ub1) (triangular-mat-cond mat perm n fn nil))
(values ($limit (mul lb0 lb1)) ($limit (mul ub0 ub1)))))
;; Return lower and upper bounds for the infinity norm condition number of the lower or
;; upper triangular part of the matrix mat. The function fn coerces the matrix
;; elements to flonum floats. When the matrix is singular, return infinity.
;; This code is based on pseudo-code (algorithm 2.1) in ``Survey of condition
;; number estimation,'' by Nicholas J. Higham, SIAM Review, Vol. 29, No. 4, December,
;; 1987. The lower and upper bounds can differ from the true value by arbitrarily
;; large factors.
(defun triangular-mat-cond (mat perm n fn r)
(let ((z) (d-max 0.0) (z-max 0.0) (s) (d))
(setq z (make-array (+ 1 n)))
(catch 'singular
(loop for i from n downto 0 do
(setq d (abs (funcall fn (m-elem-reflect mat perm n r i i))))
(if (= 0.0 d) (throw 'singular (values '$inf '$inf)) (setq d (/ 1 d)))
(setq d-max (max d-max (abs (funcall fn d))))
(setq s 1.0)
(loop for j from (+ 1 i) to n do
(incf s (* (abs (funcall fn (m-elem-reflect mat perm n r i j))) (aref z j))))
(setf (aref z i) (* d s))
(setq z-max (max z-max (aref z i))))
(values d-max z-max))))
(defun $lu_backsub(m b1)
($require_list m '$first '$lu_backsub)
(when (< ($length m) 3)
(merror (intl:gettext "The first argument to 'lu_backsub' must be a list with at least 3 members")))
(let* ((mat) (n) (r) (c) (bb) (acc) (perm) (id-perm) (b)
(fld (get (mfuncall '$ev (fourth m)) 'ring)) (cc)
(fadd (mring-add fld))
(fsub (mring-sub fld))
(fmult (mring-mult fld))
(fdiv (mring-rdiv fld))
(add-id (funcall (mring-add-id fld))))
(setq mat (copy-tree ($first m)))
(setq perm ($second m))
(setq n ($matrix_size mat))
(setq r ($first n))
(setq c ($second n))
(setq mat (matrix-map (mring-maxima-to-mring fld) mat))
(setq b (copy-tree b1))
(setq c ($second ($matrix_size mat)))
(setq cc ($second ($matrix_size b)))
(setq b (matrix-map (mring-maxima-to-mring fld) b))
(setq bb (copy-tree b))
(loop for i from 1 to r do
(loop for j from 1 to cc do
(setmatelem bb (m-elem b perm i j) i j)))
(setq id-perm (mfuncall '$makelist 'i 'i 1 r))
(loop for q from 1 to cc do
(loop for i from 2 to c do
(setq acc add-id)
(loop for j from 1 to (- i 1) do
(setq acc (funcall fadd acc (funcall fmult (m-elem mat perm i j) (m-elem bb id-perm j q)))))
(setmatelem bb (funcall fsub (m-elem bb id-perm i q) acc) i q)))
(loop for q from 1 to cc do
(loop for i from r downto 1 do
(setq acc (m-elem bb id-perm i q))
(loop for j from (+ 1 i) to c do
(setq acc (funcall fsub acc (funcall fmult (m-elem mat perm i j) (m-elem bb id-perm j q)))))
(setmatelem bb (funcall fdiv acc (m-elem mat perm i i)) i q)))
(setq bb (matrix-map (mring-mring-to-maxima fld) bb))
bb))
(defun $invert_by_lu (m &optional (fld '$generalring))
($require_square_matrix m '$first '$invert_by_lu)
($lu_backsub ($lu_factor m fld) ($identfor m)))
;; Return a Lisp list of two elements, the determinant, and the inverse of M.
(defun invert-by-lu-with-determinant (m fld-name)
(let*
((i ($identfor m))
(m1 ($lu_factor m fld-name))
(fld (get fld-name 'ring))
(d (determinant-by-lu-factors m1 fld)))
(list d ($lu_backsub m1 i))))
(defun $determinant_by_lu (m &optional (fld-name '$generalring))
($require_square_matrix m '$first '$determinant_by_lu)
(let ((fld ($require_ring fld-name '$second '$determinant_by_lu)))
(setq m ($lu_factor m fld-name))
(determinant-by-lu-factors m fld)))
;; Assume that M has already been factored by $LU_FACTOR
;; and FLD is some field (not a field name).
(defun determinant-by-lu-factors (m fld)
(let* ((acc (funcall (mring-mult-id fld)))
(fmult (mring-mult fld))
(fconvert (mring-maxima-to-mring fld))
(n ($first ($matrix_size ($first m))))
(perm) (d))
(setq perm ($second m))
(setq m ($first m))
(loop for i from 1 to n do
(setq d (funcall fconvert (m-elem m perm i i)))
;;(if ($matrixp d) (setq d ($determinant_by_lu d fld)))
(setq acc (funcall fmult acc d)))
(bbsort1 (cdr perm))
(funcall (mring-mring-to-maxima fld) (if sign (funcall (mring-negate fld) acc) acc))))
(defun $mat_cond (m p)
($require_square_matrix m '$first '$mat_cond)
(mul (mfuncall '$mat_norm m p) (mfuncall '$mat_norm ($invert_by_lu m) p)))
(defun $linsolve_by_lu (m b &optional (fld '$generalring))
($require_square_matrix m '$first '$linsolve_by_lu)
(setq b (if ($listp b) ($transpose b) b))
($require_matrix b '$second '$linsolve_by_lu)
($require_ring fld '$third '$linsolve_by_lu)
(if (= ($second ($matrix_size m)) ($first ($matrix_size b))) t
(merror (intl:gettext "Incompatible matrix sizes")))
(setq m ($lu_factor m fld))
`((mlist) ,($lu_backsub m b) ,(if (floatp ($last m)) ($last m) nil)))
(defun invertible-matrixp (mat fld)
(let ((OK t) (n))
(cond (($matrixp mat)
(setq n ($matrix_size mat))
(cond ((not (eql ($first n) ($second n))) ;nonsquare matrices aren't invertiable
nil)
(t
(setq mat (fourth ($get_lu_factors ($lu_factor mat fld))))
(setq n ($first n))
(while (and OK (> n 0))
(setq OK (and OK (not ($zeromatrixp ($inpart mat n n)))))
(decf n 1))
OK)))
(t (not ($zeromatrixp mat))))))
|