File: logic.lisp

package info (click to toggle)
maxima-sage 5.45.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 113,788 kB
  • sloc: lisp: 440,833; fortran: 14,665; perl: 14,369; tcl: 10,997; sh: 4,475; makefile: 2,520; ansic: 447; python: 262; xml: 59; awk: 37; sed: 17
file content (671 lines) | stat: -rw-r--r-- 20,337 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
#|
; logic.mac--Logic algebra package for Maxima CAS.
; Copyright (c) 2008--2009 Alexey Beshenov <al@beshenov.ru>.
;
; Version 2.11. Last modified 2009-01-07.
;
; logic.mac is free software; you can redistribute it and/or modify it
; under the terms of the GNU Lesser General Public License as published
; by the Free Software Foundation; either version 2.1 of the License,
; or (at your option) any later version.
;
; logic.mac is distributed in the hope that it will be useful, but
; WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
; General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with the logic.mac; see the file COPYING. If not, write to the
; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
; Boston, MA 02110-1301, USA.
|#


(defvar $logic_mac_version 2.11)

(defvar use-maxima-logic-operators t)

(if use-maxima-logic-operators
  (progn
    (defvar *not-op* 'mnot)
    ($texput "not" " \\neg " '$prefix)
    (defvar *and-op* 'mand)
    ($texput "and" " \\wedge " '$nary)
    (defvar *or-op* 'mor)
    ($texput "or" " \\vee " '$nary))
  (progn
    ($prefix "log-not" 70)
    (defvar *not-op* '$log-not)
    ($texput "log-not" " \\neg " '$prefix)
    ($nary "log-and" 65)
    (defvar *and-op* '$log-and)
    ($texput "log-and" " \\wedge " '$nary)
    ($nary "log-or" 60)
    (defvar *or-op* '$log-or)
    ($texput "log-or" " \\vee " '$nary)))

($nary "nand" 62)
(defvar *nand-op* '$nand)
($texput "nand" " \\mid " '$nary)

($nary "nor" 61)
(defvar *nor-op* '$nor)
($texput "nor" " \\downarrow " '$nary)

($infix "implies" 59)
(defvar *implies-op* '$implies)
($texput "implies" " \\rightarrow " '$infix)

($nary "eq" 58)
(defvar *eq-op* '$eq)
($texput "eq" " \\sim " '$nary)

($nary "xor" 58)
(defvar *xor-op* '$xor)
($texput "xor" " \\oplus " '$nary)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun get-maxima-operator (expr)
  (if (and (listp expr) expr (listp (car expr)) (car expr))
    (caar expr)
    nil))

(defun contains-operator (expr op)
  (let
    ((o (get-maxima-operator expr)) args)
    (setf args (if o (cdr expr) nil))
    (if
      (eq o op)
      t
      (member t (mapcar #'(lambda (e) (contains-operator e op)) args)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun replicate (n e)
  (if (and (integerp n) (>= n 0))
    (if (= n 0) nil (cons e (replicate (1- n) e)))
    (error "Invalid arguments to 'replicate'")))

(defun zip (l1 l2)
  (if (or (not (listp l1)) (not (listp l2)) (/= (length l1) (length l2)))
    (error "Invalid arguments to 'zip'"))
  (if (null l1)
    l1
    (cons (cons (car l1) (car l2)) (zip (cdr l1) (cdr l2)))))

(defun remove-nth (n l)
  (cond
    ((or (not (integerp n)) (< n 0)) (error "Invalid argumet to 'remove-nth'"))
    ((= n 0) (cdr l))
    (t (cons (car l) (remove-nth (1- n) (cdr l))))))

(defun multiset-to-hash (l)
  (mapcar
    #'(lambda (e) (list e (count e l :test 'equal)))
    (remove-duplicates l :test 'equal)))

(defun hash-to-multiset (h)
  (mapcan (lambda (he) (replicate (second he) (first he))) h))

(defun cancel-pairs-in-hash (h)
  (mapcar (lambda (he) (list (first he) (mod (second he) 2))) h))

(defun cancel-pairs (l)
  (hash-to-multiset (cancel-pairs-in-hash (multiset-to-hash l))))

(defun subst-recursive (expr pairs)
  (if pairs
    (let ((p (car pairs)))
      (subst (cdr p) (car p) (subst-recursive expr (cdr pairs))))
    expr))

(defun disjoin-list (pred lst)
  (if (null lst)
    '(nil nil)
    (let ((dl (disjoin-list pred (cdr lst))))
      (if (funcall pred (car lst))
        (list (cons (car lst) (first dl)) (second dl))
        (list (first dl) (cons (car lst) (second dl)))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; t or nil
(defun booleanp (x)
  (or (eq x t) (eq x nil)))

(defun logic-sort-comparator (x y)
  (cond
    ((and (not (booleanp x)) (booleanp y)) t)
    ((and (booleanp x) (not (booleanp y))) nil)
    ((and (not (listp x)) (listp y)) nil)
    ((and (listp x) (not (listp y))) t)
    ((and (listp x) (listp y) (< (length x) (length y))) nil)
    ((and (listp x) (listp y) (> (length x) (length y))) t)
    (t ($orderlessp x y))))

(defun sort-symbols (seq)
  (sort seq 'logic-sort-comparator))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; op (x_1, ..., f(y_1, ..., y_m), ..., x_n) =>
;                                         op (x_1, ..., y_1, ..., y_m, ..., x_n)
(defun flatten-nested (args op)
  (let
    ((nested-exprs nil)
     (other nil))
    (loop while args do
      (if
        (eq (get-maxima-operator (car args)) op)
        (setq nested-exprs (cons (car args) nested-exprs))
        (setq other (cons (car args) other)))
      (setq args (cdr args)))
    (setq
      nested-exprs
      (mapcar #'(lambda (e) (flatten-nested (cdr e) op)) nested-exprs))
    (if nested-exprs
      (append other (apply 'append nested-exprs))
      other)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Logic functions

; Implication
(defun simp-implies (x y)
  (cond
    ((eq x nil) t)
    ((and (eq x t) (eq y t)) t)
    ((and (eq x t) (eq y nil)) nil)
    (t (list (list *implies-op* 'simp) x y))))

; Webb-operation or Peirce arrow (Quine's dagger, NOR)
(defun simp-nor (&rest args)
  (if
    (member t args)
    (return-from simp-nor nil))
  (setf args (remove-duplicates (remove nil args) :test 'equal))
  (cond
    ((null args) t)
    ((eql (length args) 1) (simp-not (car args)))
    (t (cons (list *nor-op* 'simp) (sort-symbols args)))))

; Sheffer stroke (alternative denial, NAND)
(defun simp-nand (&rest args)
  (if
    (member nil args)
    (return-from simp-nand t))
  (setf args (remove-duplicates (remove t args) :test 'equal))
  (cond
    ((null args) nil)
    ((eql (length args) 1) (simp-not (car args)))
    (t (cons (list *nand-op* 'simp) (sort-symbols args)))))

; Equivalence
(defun simp-eq (&rest args)
  (setf args (cancel-pairs (remove t (flatten-nested args *eq-op*))))
  (cond
    ((null args) t)
    ((eql (length args) 1) (car args))
    (t (cons (list *eq-op* 'simp) (sort-symbols args)))))

; Sum modulo 2 (exclusive or)
(defun simp-xor (&rest args)
  (setf args (cancel-pairs (remove nil (flatten-nested args *xor-op*))))
  (cond
    ((null args) nil)
    ((eql (length args) 1) (car args))
    (t (cons (list *xor-op* 'simp) (sort-symbols args)))))

; returns t if args = (... x ... not x ...)
; used in simp-and and simp-or
(defun x-not-x (args)
  (let
    ((neg
       (disjoin-list
         #'(lambda (e) (eq (get-maxima-operator e) *not-op*)) args)))
    (not
      (null
        (intersection
          (mapcar 'cadr (first neg)) (second neg) :test 'equal)))))

; Logical AND (conjunction)
(defun simp-and (&rest args)
  (setf args (flatten-nested args *and-op*))
  (if
    (member nil args)
    (return-from simp-and nil))
  (setf args (remove-duplicates (remove t args) :test 'equal))
  (cond
    ((null args) t)
    ((eql (length args) 1) (car args))
    (t
      (if (x-not-x args)
        nil
        (cons (list *and-op* 'simp) (sort-symbols args))))))

; Logical OR (disjunction)
(defun simp-or (&rest args)
  (setf args (flatten-nested args *or-op*))
  (if
    (member t args)
    (return-from simp-or t))
  (setf args (remove-duplicates (remove nil args) :test 'equal))
  (cond
    ((null args) nil)
    ((eql (length args) 1) (car args))
    (t
      (if (x-not-x args)
        t
        (cons (list *or-op* 'simp) (sort-symbols args))))))

; Logical NOT (negation)
(defun simp-not (x)
  (cond
    ((eq (get-maxima-operator x) *not-op*) (cadr x))
    ((eq x nil) t)
    ((eq x t) nil)
    (t (list (list *not-op* 'simp) x))))

(defun apply-op (op args)
  (cond
    ((eq op *and-op*) (apply 'simp-and args))
    ((eq op *xor-op*) (apply 'simp-xor args))
    ((eq op *not-op*) (apply 'simp-not args))
    ((eq op *or-op*) (apply 'simp-or args))
    ((eq op *nor-op*) (apply 'simp-nor args))
    ((eq op *nand-op*) (apply 'simp-nand args))
    ((eq op *eq-op*) (apply 'simp-eq args))
    ((eq op *implies-op*) (apply 'simp-implies args))
    (t (cons (list op) args))))

(defun logic-simp (expr)
  (let
    ((op (get-maxima-operator expr)) args)
    (setf args (if op (mapcar 'logic-simp (cdr expr)) nil))
    (if op
      (apply-op op args)
      expr)))

(defun $logic_simp (expr) (logic-simp expr))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

#|
;
; (all-charfuns 1) => ((nil) (t))
;
; (all-charfuns 2) => ((nil nil) (nil t) (t nil) (t t))
;
; (all-charfuns 3) => ((nil nil nil) (nil nil t) (nil t nil) (nil t t)
;                      (t nil nil) (t nil t) (t t nil) (t t t))
;
; ...
;
|#

(defun all-charfuns (n)
  (if (not (and (integerp n) (>= n 1)))
    (error "Invalid argument to 'all-charfuns'"))
  (cond
    ((= n 1) '((nil) (t)))
    (t
      (let
        ((pre (all-charfuns (1- n))))
        (append
          (mapcar (lambda (l) (cons nil l)) pre)
          (mapcar (lambda (l) (cons t l)) pre))))))

; List of values for all-charfuns, 2^n elements
(defun characteristic-vector (expr &rest args)
  (if (null args)
    (setf args (list-of-variables expr)))
  (if (null args)
    (list expr)
    (let (vals (n (length args)))
      (setf vals (mapcar #'(lambda (l) (zip args l)) (all-charfuns n)))
      (mapcar #'(lambda (v) (logic-simp (subst-recursive expr v))) vals))))

(defun list-of-variables (expr)
  (sort-symbols (cdr ($listofvars expr))))

(defun $characteristic_vector (expr &rest args)
  (cons '(mlist simp) (apply 'characteristic-vector (cons expr args))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Conversion to the Zhegalkin basis {and, xor}
(defun zhegalkin-basis-substitute (expr)
  (let
    ((op (get-maxima-operator expr)) args)
    (setf args (if op (mapcar 'zhegalkin-basis-substitute (cdr expr)) nil))
    (cond
      ; not x => x xor t
      ((eq op *not-op*) (simp-xor (car args) t))
      ; x implies y => (x and y) xor x xor t
      ((eq op *implies-op*)
        (simp-xor (apply 'simp-and args) (first args) t))
      ; x1 nand x2 nand x3 ... nand xn => (x1 and x2 and x3 ... and xn) xor t
      ((eq op *nand-op*) (simp-xor (apply 'simp-and args) t))
      ; x nor y => (x or y) xor t
      ((eq op *nor-op*)
        (simp-xor
          (zhegalkin-basis-substitute (simp-or (first args) (second args)))
          t))
      ; x or y => (x and y) xor x xor y
      ((eq op *or-op*)
        (let (zhegform)
          (setf zhegform
            (simp-xor
              (simp-and (first args) (second args))
              (first args) (second args)))
          (setf args (cddr args))
          (loop while args do
            (setf zhegform
              (simp-xor
                (simp-and zhegform (car args))
                zhegform
                (car args)))
            (setf args (cdr args)))
          zhegform))
      ; a eq b => a xor b xor t
      ; a eq b eq c => a xor b xor c
      ; a eq b eq c eq d => a xor b xor c xor d xor t
      ; a eq b eq c eq d eq e => a xor b xor c xor d xor e
      ; ...
      ((eq op *eq-op*)
        (apply 'simp-xor
          (if (evenp (length args)) (cons t args) args)))
      (op (apply-op op args))
      (t expr))))

; acts like Maxima "expand" on ordinary polynomial ring,
; but on Zhegalkin polynomials
(defun zhegalkin-basis-expand (expr)
  (let
    ((op (get-maxima-operator expr)) args)
    (setf args (if op (mapcar 'zhegalkin-basis-expand (cdr expr)) nil))
    (cond
      ((eq op *and-op*)
        (let
          ((xor-expression
             (find-if
               (lambda (e) (eq (get-maxima-operator e) *xor-op*))
               (cdr expr))))
          (if xor-expression
            (let
              ((xor-args (cdr xor-expression))
               (and-args
                 (remove xor-expression (cdr expr) :test 'equal)))
              (zhegalkin-basis-expand
                (apply 'simp-xor
                  (mapcar
                    (lambda (e) (apply 'simp-and (cons e and-args)))
                    xor-args))))
            expr)))
      ((eq op *xor-op*) (apply 'simp-xor args))
      (t expr))))

(defun $zhegalkin_form (expr)
  (zhegalkin-basis-expand (zhegalkin-basis-substitute expr)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun $logic_equiv (expr1 expr2)
  (equal
    ($zhegalkin_form expr1)
    ($zhegalkin_form expr2)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun subst-not (expr)
  (let
    ((op (get-maxima-operator expr)))
    (if op
      (cons (list op) (mapcar 'subst-not (cdr expr)))
      (simp-not expr))))

; f^* (x_1, ..., x_n) = not f (not x_1, ..., not x_n)
(defun $dual_function (expr)
  (logic-simp (simp-not (subst-not expr))))

; f = f^*
(defun $self_dual (expr)
  ($logic_equiv expr ($dual_function expr)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun closed-under (expr x)
  (let
    (val n (args (list-of-variables expr)))
    (setf n (length args))
    (setf val (zip args (replicate n x)))
    (eq (logic-simp (subst-recursive expr val)) x)))

; f (nil, ..., nil) = nil
(defun $closed_under_f (expr)
  (closed-under expr nil))

; f (t, ..., t) = t
(defun $closed_under_t (expr)
  (closed-under expr t))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun $monotonic (expr &rest args)
  (let
    (prev-value (charvec (apply 'characteristic-vector (cons expr args))))
    (if charvec
      (progn
        (setf prev-value (car charvec))
        (setf charvec (cdr charvec))
        (loop while charvec do
          (if
            (and
              (eq (car charvec) nil)
              (eq prev-value t))
            (return-from $monotonic nil))
          (setf prev-value (car charvec))
          (setf charvec (cdr charvec)))
        t)
      t)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun $linear (expr)
  (not (contains-operator ($zhegalkin_form expr) *and-op*)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Post's theorem

(defun post-table (&rest expressions)
  (mapcar
    (lambda (fn) (mapcar fn expressions))
    '($self_dual $closed_under_f $closed_under_t $linear $monotonic)))

(defun functionally-complete (table)
  (if
    (null table)
    (return-from functionally-complete nil))
  (loop while table do
    (if
      (not (member nil (car table)))
      (return-from functionally-complete nil))
    (setf table (cdr table)))
  t)

(defun $functionally_complete (&rest expressions)
  (functionally-complete (apply 'post-table expressions)))

; Basis is a complete system without redundant functions
(defun $logic_basis (&rest expressions)
  (let
    ((table (apply 'post-table expressions))
     (n (length expressions)))
    (if (functionally-complete table)
      (if (= n 1)
        (return-from $logic_basis t))
      (return-from $logic_basis nil))
    (loop for i from 0 to (1- n) do
      (if
        (functionally-complete
          (mapcar (lambda (e) (remove-nth i e)) table))
        (return-from $logic_basis nil)))
    t))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Logic differentiation

#|
;
;                               dy
;   (1)                        --- = false
;                              dx
;
; where y is a variable which not depends on x.
;
;
;                               dx
;   (2)                        --- = true
;                              dx
;
;
;              d
;   (3)       --- [x  and ... and x ] = x  and x  ... and x
;             dx    1              n     2      3          n
;               1
;
;
;                     d             df     dg
;   (4)              -- [g xor f] = -- xor --
;                    dx             dx     dx
;
;
; TODO: higher orders / mixed
;
|#

(defun diff-zhegalkin-form (expr x)
  (let ((op (get-maxima-operator expr)))
    (cond
      ((null op) (eq expr x))
      ((eq op *xor-op*)
        (apply
          'simp-xor
          (mapcar #'(lambda (e) (diff-zhegalkin-form e x)) (cdr expr))))
      ((eq op *and-op*)
        (let ((args (cdr expr)))
          (if (member x args) (apply 'simp-and (remove x args)) nil)))
      (t (error "Not a Zhegalkin form in diff-zhegalkin-form: '~s'" expr)))))

(defun $logic_diff (expr x)
  (diff-zhegalkin-form ($zhegalkin_form expr) x))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Coversion to the Boolean basis {and, or, not}
(defun boolean-basis-substitute (expr)
  (let
    ((op (get-maxima-operator expr)) args)
    (setf args (if op (mapcar 'boolean-basis-substitute (cdr expr)) nil))
    (cond
      ; x implies y => (not x) or y
      ((eq op *implies-op*) (simp-or (simp-not (first args)) (second args)))
      ; x1 nand ... nand xn => not (x1 and ... and xn)
      ((eq op *nand-op*) (simp-not (apply 'simp-and args)))
      ; x1 nor ... not xn => not (x1 or ... or xn)
      ((eq op *nor-op*) (simp-not (apply 'simp-or args)))
      ; x eq b => ((not x) or y) and ((not y) or x)
      ((eq op *eq-op*)
        (let (boolform)
          (setf boolform
            (simp-and
              (simp-or (simp-not (first args)) (second args))
              (simp-or (simp-not (second args)) (first args))))
          (setf args (cddr args))
          (loop while args do
            (setf boolform
              (simp-and
                (simp-or (simp-not boolform) (car args))
                (simp-or (simp-not (car args)) boolform)))
            (setf args (cdr args)))
          boolform))
      ; x xor y => ((not x) and y) or ((not y) and x)
      ((eq op *xor-op*)
        (let (boolform)
          (setf boolform
            (simp-or
              (simp-and (simp-not (first args)) (second args))
              (simp-and (simp-not (second args)) (first args))))
          (setf args (cddr args))
          (loop while args do
            (setf boolform
              (simp-or
                (simp-and (simp-not boolform) (car args))
                (simp-and (simp-not (car args)) boolform)))
            (setf args (cdr args)))
          boolform))
      (op (apply-op op args))
      (t expr))))

(defun $boolean_form (expr)
  (boolean-basis-substitute expr))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; De Morgan's rules
(defun $demorgan (expr)
  (let
    ((op (get-maxima-operator expr)) args)
    (setf args (if op (mapcar '$demorgan (cdr expr)) nil))
    (cond
      ((eq op *not-op*)
        (let ((op-op (get-maxima-operator (car args))))
          (cond
            ((eq op-op *and-op*) (apply 'simp-or (mapcar 'simp-not (cdar args))))
            ((eq op-op *or-op*) (apply 'simp-and (mapcar 'simp-not (cdar args))))
            (t (apply 'simp-not args)))))
      ((null op) expr)
      (t (apply-op op args)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Perfect disjunctive normal forms

(defun elementary-conjunct-disjunct (vars-vals b)
  (if (null vars-vals)
    nil
    (cons
      (if (eq (cdar vars-vals) b)
        (caar vars-vals)
        (list (list *not-op* 'simp) (caar vars-vals)))
      (elementary-conjunct-disjunct (cdr vars-vals) b))))

(defun pdnf-pcnf (expr b)
  (let ((args (list-of-variables expr)))
    (if (null args)
      expr
      (let (vals (n (length args)) (result nil))
        (setf vals (mapcar #'(lambda (l) (zip args l)) (all-charfuns n)))
        (loop while vals do
          (if (eq (logic-simp (subst-recursive expr (car vals))) b)
            (setf result
              (cons
                (apply (if b 'simp-and 'simp-or)
                  (elementary-conjunct-disjunct (car vals) b))
                result)))
          (setf vals (cdr vals)))
        (apply  (if b 'simp-or 'simp-and) result)))))

; Perfect disjunctive normal form
(defun $pdnf (expr)
  (pdnf-pcnf expr t))

; Perfect conjunctive normal form
(defun $pcnf (expr)
  (pdnf-pcnf expr nil))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;