1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
/*
plsquares.mac v1.1 for Maxima (tested with Maxima 5.9.0).
Multivariable polynomial adjustment of a data table by the "least squares"
method.
Usage:
plsquares(Mat, VarList, depvars, maxexpon, maxdegree);
Mat - a matrix containing the data.
VarList - list of variable names (one for each Mat column).
Use "-" instead of varnames to ignore Mat columns.
depvars - the name of a dependent variable or a list with one or more
names of dependent variables. The names must be in VarList.
maxexpon - optional maximum exponent for each independent variable.
Default: 1.
maxdegree - optional maximum polynomial degree (the sum of exponents of
each term will be equal or smaller than maxdegree).
If maxdgree = 0 then no limit is applied.
Default: maxexpon.
Examples:
The file "plsquares.dem" shows some usage examples.
Results:
- If depvars is the name of a dependent variable (not in a list),
plsquares returns the adjusted polynomial.
If depvars is a list of one or more dependent variables, plsquares
returns a list with the adjusted polynomial(s).
- The Determination Coefficients are displayed in order to inform about
the adjustment goodness (from 0:no correlation to 1:exact correlation).
These values are also stored in the global variable DETCOEF (a list if
depvars is a list).
Dependences:
makeOrders.mac
History:
2003-11 Salvador Bosch Pérez - version 1.1. Multiple dependent variables
(to return a list of polynomials). maxexpon and maxdegree are now
optional. Code more readable.
2003-10 Salvador Bosch Pérez - version 1.0 (not released)
Possible future improvements:
- Option to read the data from a file instead of from a matrix.
- Option to include a column with rows weights.
--
Copyright (C) 2003 Salvador Bosch Pérez
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
load("makeOrders")$ /* to obtain all the combinations of polynomial powers */
plsquares([ArgList]):=
block([nargs, Mat, VarList, depvars, maxexpon, maxdegree,
ndat, nvar, DepVarList, depvarncol, DepCols, PowersList, ncoef,
TransformedData, LinearSystem, DepSums, PolyCoef, PolyList,
idat, ivar, jvar, irow, icol, icoef, degreelimit],
/* Elaboration and depuration of the function arguments */
narg:length(ArgList),
if narg < 3 or narg > 5 then (
print("plsquares: bad number of function arguments (it's required 3, 4 or 5 arguments)."),
return(false)
),
Mat:ArgList[1],
VarList:ArgList[2],
depvars:ArgList[3],
if narg > 3 then maxexpon:ArgList[4]
else maxexpon:1,
if narg = 5 then maxdegree:ArgList[5]
else maxdegree:maxexpon,
ndat:length(Mat),
nvar:length(Mat[1]),
if atom(depvars) then DepVarList:[depvars]
else DepVarList:depvars,
ndepvar:length(DepVarList),
if length(VarList) # nvar then (
print("plsquares: incorrect number of variable names (", nvar,
"matrix columns but", length(VarList), "variable names)."),
return(false)
),
for ivar:ndepvar thru 1 step -1 do
if member(DepVarList[ivar], VarList) = false then (
print("plsquares: dependent variable", DepVarList[ivar], "isn't in",
VarList, "."),
DepVarList:delete(DepVarList[ivar], DepVarList),
ndepvar = ndepvar - 1
),
if ndepvar < 1 then (
print("plsquares: no dependent variables."),
return(false)
),
if maxexpon < 1 then (
print("plsquares: the maximum variable exponent must be greater than 0."),
return(false)
),
if maxdegree # 0 and maxdegree < maxexpon then (
print("plsquares: the maximum degree of the polynomial must not be smaller than",
maxexpon),
return(false)
),
for ivar:nvar thru 1 step -1 do
if VarList[ivar] = "-" then (
Mat:submatrix(Mat, ivar),
nvar:nvar - 1
),
VarList:delete("-", VarList),
for ivar:1 thru ndepvar do (
depvarncol:ev(for jvar:1 thru nvar do
if VarList[jvar] = DepVarList[ivar] then return(jvar)),
DepCols[ivar]:col(Mat, depvarncol),
VarList:delete(DepVarList[ivar], VarList),
Mat:submatrix(Mat, depvarncol),
nvar:nvar - 1
),
PowersList:makeOrders(VarList, makelist(maxexpon, i, 1, nvar)),
if maxdegree > 0 then (
degreelimit(l):=lsum(i,i,l)<=maxdegree,
PowersList:sublist(PowersList, degreelimit)
),
ncoef:length(PowersList),
if ndat < ncoef then (
print("plsquares: insufficient number of data rows (at least", ncoef,
"are required)."),
return(false)
),
apply(kill, VarList),
/* Preparation of the linear system */
LinearSystem:zeromatrix(ncoef, ncoef + ndepvar),
for idat:1 thru ndat do (
TransformedData:makelist(product(if PowersList[icoef][ivar] = 0 then 1
else Mat[idat,ivar]^PowersList[icoef][ivar],
ivar, 1, nvar),
icoef, 1, ncoef),
for irow:1 thru ncoef do (
for icol:1 thru ncoef do
LinearSystem[irow,icol]:LinearSystem[irow,icol] +
TransformedData[irow] * TransformedData[icol],
for ivar:1 thru ndepvar do
LinearSystem[irow, ncoef + ivar]:LinearSystem[irow, ncoef + ivar] +
DepCols[ivar][idat][1] * TransformedData[irow]
)
),
for ivar:1 thru ndepvar do
DepSums[ivar]:col(LinearSystem, ncoef+ivar), /* save this info before modifying it */
/* Calculation of polynomial coefficients by solving the linear system with
the Gauss method */
PolyCoef:zeromatrix(ndepvar, ncoef),
LinearSystem:ev(triangularize(LinearSystem), keepfloat:true),
if product(LinearSystem[icoef,icoef], icoef, 1, ncoef) = 0 then (
print("plsquares: insufficient number of independent data rows."),
return(false)
),
for ivar:1 thru ndepvar do (
for irow:ncoef thru 1 step -1 do (
PolyCoef[ivar,irow]:LinearSystem[irow,ncoef+ivar],
for icol:irow+1 thru ncoef do
PolyCoef[ivar,irow]:PolyCoef[ivar,irow] -
LinearSystem[irow,icol] * PolyCoef[ivar,icol],
PolyCoef[ivar,irow]:PolyCoef[ivar,irow] / LinearSystem[irow,irow]
)
),
/* Calculation and display of the determination coefficient(s) */
DETCOEF:makelist(1 -
(sum(DepCols[ivar][idat][1]^2, idat, 1, ndat) -
sum(PolyCoef[ivar,icoef] * DepSums[ivar][icoef][1],icoef,1,ncoef)) /
(sum(DepCols[ivar][idat][1]^2, idat, 1, ndat) -
sum(DepCols[ivar][idat][1],idat,1,ndat)^2 / ndat),
ivar, 1, ndepvar),
if atom(depvars) then DETCOEF:DETCOEF[1],
print(" Determination Coefficient for", depvars, "=", float(DETCOEF)),
/* Construction and return of the polynomial(s) */
PolyList:makelist(DepVarList[ivar]=
xthru(sum(PolyCoef[ivar,icoef] *
product(VarList[jvar]^PowersList[icoef][jvar],
jvar, 1 ,nvar),
icoef, 1, ncoef)),
ivar, 1, ndepvar),
if atom(depvars) then return(PolyList[1])
else return(PolyList)
)$
|