File: variational_method.dem

package info (click to toggle)
maxima-sage 5.45.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 113,788 kB
  • sloc: lisp: 440,833; fortran: 14,665; perl: 14,369; tcl: 10,997; sh: 4,475; makefile: 2,520; ansic: 447; python: 262; xml: 59; awk: 37; sed: 17
file content (113 lines) | stat: -rw-r--r-- 3,365 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
/* Use the variational method to estimate the eigenvalues of

   -f'' + (x^2 + epsilon * x^4) * f = mu * f

for epsilon near zero.  The hamiltonian is   
*/

ham (e)  := -diff(e, x, 2) + (x^2  + epsilon * x^4 ) * e;

/*  Assume a trial solution psi that is a linear combination of n+1 even 
order Hermite polynomials times a Gaussian function. We'll need to
assign a value to n, load orthopoly, and assign psi.
*/

n : 3;

if get('orthopoly,'version) = 'false then load("orthopoly")$

psi : sum(c[2*k] * hermite(2*k,x) * exp(-x^2 / 2),k,0,n) / %pi^(1/4)$

/*  The denominator %pi^(1/4) makes the computation easier. Let
vars be a list of the unknown c's.  Although the c's really aren't
positive, we'll set assume_pos to true; doing so prevents 
Maxima from asking lots of questions about the signs of the
c's.
*/

vars : makelist(c[ 2*i ],i,0,n)$

assume_pos : true;

/* Define the L2 inner product with the match fix operator
<< , >>. Everything is  real, so we don't need a conjugate.
*/

matchfix("<<", ">>")$

"<<" (f, g) := integrate(expand (f * g), x,-inf, inf)$

/*  Minimize << psi, ham(psi) >> subject to the constraint 
<< psi, psi >> =1; let mu be the Lagrange multiplier.
*/

min_this : << psi, ham(psi) >> - mu * << psi, psi >>;

eqs : makelist(diff(min_this,vars[ i ]),i,1,n+1)$

/* The equations are linear and homogeneous in the c's.  Demand
that the coefficient matrix is singular.
*/
m_det : determinant(coefmatrix(eqs, vars))$
m_det : ratsimp(m_det)$

/* Solve for mu as power series in epsilon.  Thus assume
mu = cf[ 0] + cf[1] * epsilon + ... + cf[solve_ord] epsilon^solve_ord.
*/

solve_ord : 3;
pows : makelist(epsilon^i,i,0,solve_ord)$
unks : makelist(cf[ i ],i,0,solve_ord)$
eq : ev(m_det, mu = unks . pows)$
eq : taylor(eq, epsilon, 0, solve_ord)$
eq : expand(eq)$
eq : makelist(coeff(eq,epsilon,i),i,0,solve_ord)$
ans : algsys(eq, unks)$

for i : 1 thru length(ans) do (
       ans[ i ] : map(rhs, ans[ i ]) . pows)$

ans : reverse(ans);

/* Look at the solution graphically.*/

plot2d(ans, [epsilon,0,0.25]);

/*  Let's solve the equations using allroots instead of the series method. */

f(x,k) := part(sort(map('rhs, allroots(subst('epsilon=x,m_det)))),k);

/* Compare the allroots solution to the series solution. */

plot2d([ans[1], '(f(epsilon,1))], [epsilon,0.0,0.4]);
plot2d([ans[2], '(f(epsilon,2))], [epsilon,0.0,0.4]);
plot2d([ans[3], '(f(epsilon,3))], [epsilon,0.0,0.4]);
plot2d([ans[4], '(f(epsilon,4))], [epsilon,0.0,0.4]);

plot2d(['(f(epsilon,1)),'(f(epsilon,2)),'(f(epsilon,3)),'(f(epsilon,4))],[epsilon,0,0.4]);

remfunction(ham,"<<",f);
remvalue(n,psi,vars,min_this,eqs,m_det,solve_ord,pows,unks,eq,ans);
assume_pos : false;


/* Let's apply a variational method to the potential x^2 / 2 + x^4. We'll assume
a trial wavefuction of the form qo * exp(-%alpha * abs(x)^(2*n) / 2) where the
parameters are %alpha and n. See "Post-Gaussian variational method for quantum anharmonic
oscillator," by Akihiro Ogura." */

kill(all)$
assume(qo > 0, %alpha > 0, n > 1/2)$
f : qo * exp(-%alpha * abs(x)^(2*n) / 2);
1 = integrate(f^2,x,minf,inf);
solve(%,qo);
f : subst(second(%), f);
v : x^2 / 2 + x^4$
ham(f) := -diff(f,x,2) / 2 + v * f$
energy : integrate(f * ham(f),x,minf,inf);
eqs : [diff(energy,n), diff(energy,%alpha)]$
load(mnewton)$
newtonepsilon : 1.0e-15$
sol : mnewton(eqs,[n,%alpha],[1.1, 2.0]);
subst(sol, energy);