1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
;; A positional derivative package for Maxima.
;; Copyright (C) 2002, 2008, Barton Willis
;; Maxima pdiff is free software; you can redistribute it and/or
;; modify it under the terms of the GNU General Public License,
(in-package :maxima)
($put '$pdiff 1.4 '$version)
;; Required for wxMaxima display--I switched from ((%pderivop) ...) to (($pderivop) ...).
(setf (get '$pderivop 'wxxml) 'wxxml-pderivop)
;; When use_pdiff is true, use positional derivatives for unknown
;; non-subscripted functions. By unknown function, I mean a function that
;; is not bound to a formula and that has a derivative that is not known
;; to Maxima. Let's default $use_pdiff to false.
(defmvar $use_pdiff nil)
(setf $use_pdiff t)
(defmvar $commute_partial_derivatives t)
;; Return the number of arguments (arity) for f; when the arity is
;; unknown or the arity is variable (for example addition), return false.
;; To attempt to find the arity, we check if f is a user-defined function
;; (examine the $functions list), check if f has a gradef property, check
;; if f is a trig, inverse trig, log or abs function.
;; Subscripted functions aren't members of $functions; for this and
;; other reasons, we disallow subscripted functions from being
;; positionally differentiated.
(defun get-number-args (f)
(let ((z (cdar (member f (cdr $functions) :key #'caar))))
(cond ((and z (every #'symbolp z)) (length z))
((and (atom f) (or (trigp f) (arcp f) (memq f '(%log %gamma %erf %sqrt mabs)))) 1)
((memq f '($bessel_i $bessel_j $bessel_k $bessel_y)) 2)
((or (equal f "^") (equal f ".") (equal f "^^")) 2)
((and (op-equalp f 'lambda) (every #'symbolp (margs (second f))))
($length (second f)))
((and (symbolp f) (get f 'grad)) (length (first (get f 'grad))))
((eq t ($constantp f)) 'constant-function)
(t nil))))
;; pderivop(f,n1,n2,...np) returns the function whose formula is
;; (x1,x2,...,xn) --> diff(f(x1,x2,..xn),x1,n1,x2,n2,...). The
;; pderivop function allows the user to do things like
;;
;; (c1) tellsimpafter(pderivop(f,1)(a),1);
;; (c2) tellsimpafter(pderivop(f,2)(a),1);
;; (c3) diff(f(x),x,2) + diff(f(x),x);
;;
;; (d3) f (x) + f (x)
;; (2) (1)
;; (c4) subst(a,x,%);
;; (d4) 2
;; And
;; (c5) g(x) := x^2;
;; (c6) pderivop(g,1);
;; (c7) ev(%);
;; (d7) lambda([i54924], 2 i54924)
;; (c8) apply(%,[z]);
;;
;; (d8) 2 z
(defprop $pderivop simp-pderivop operators)
(defun simp-pderivop (x yy z)
(declare (ignore yy))
(let ((f (simplifya (cadr x) z))
(n (mapcar #'(lambda (s) (simplifya s z)) (cddr x)))
(gen-args nil)
(nbr-args))
(setq nbr-args (get-number-args f))
(cond ((eq nbr-args 'constant-function)
(cond ((some #'(lambda (s) (and (integerp s) (> s 0))) n)
`((lambda simp) ((mlist) ((mlist) $x)) 0))
((every #'(lambda (s) (and (integerp s) (= s 0))) n)
`((lambda simp) ((mlist) ((mlist) $x)) ,f))
(t `(($pderivop simp) ,f ,@n))))
;; When every derivative is 0 (this includes the case that there are no derivatives),
;; return f (even when f is not a function---for example pderivop(a < b) --> a < b).
((every #'(lambda (s) (equal 0 s)) n) f)
((integerp nbr-args)
(if (not (= nbr-args (length n)))
(merror "~:M expected ~:M derivative argument(s), but it received ~:M" f nbr-args (length n))
(progn
(dotimes (i nbr-args)
(push (gensym) gen-args))
(push '(mlist) gen-args)
(setq f ($apply f gen-args))
(setq gen-args (cdr gen-args))
(setq f (apply '$diff (cons f (mapcan #'list gen-args n))))
`((lambda) ((mlist) ,@gen-args) ,f))))
;; pderivop(pderivop(m1,m2,...mk),n1,n2,...,nk) --> pderivop(m1+n1,m2+n2,...mk+nk),
;; provided all the m1..nk are explicit nonnegative integers. I could allow declared
;; integers, I suppose. Also, I could give an error when the number of positional
;; derivatives aren't equal--for example pderivop(pderivop(f,1,2),3).
((and (op-equalp f '$pderivop)
$commute_partial_derivatives
(every #'(lambda (s) (and (integerp s) (> s -1))) n)
(every #'(lambda (s) (and (integerp s) (> s -1))) (cdr (margs f)))
(= (length n) (- (length (margs f)) 1)))
`(($pderivop simp) ,(cadr f) ,@(mapcar #'(lambda (a b) (add a b)) (cddr f) n)))
(t `(($pderivop simp) ,f ,@n)))))
;; Extension to mapply1:
(setf (get '$pderivop 'mapply1-extension) 'mapply-pdiff)
(defun mapply-pdiff (fn args fnname form)
(declare (ignore fnname form))
(if (and $use_pdiff (eq (mop fn) '$pderivop))
(cond ((equal (length (cddr fn)) (length args))
`((mqapply simp) ,fn ,@args))
(t
(merror "The function ~:M expected ~:M argument(s), but it received ~:M"
(cadr fn) (length (cddr fn)) (length args))))
nil))
;; Extension to sdiffgrad
(defun sdiffgrad-pdiff (e x)
(let ((args) (fun (caar e)) (de) (n) (d-order))
(labels ((pderivop (f x n) (simplify `((mqapply) (($pderivop) ,f ,@n) ,@x)))
(incf-ith (i e)
(let ((k (nth i e)) (q (copy-list e)))
(setf (nth i q) (add 1 k))
q))
(i-list (i n) (incf-ith i (make-list n :initial-element 0))))
(cond ((and $use_pdiff (eq fun 'mqapply) (eq (caaadr e) '$pderivop))
(setq args (cddr e))
(setq fun (cadadr e))
(setq de 0)
(setq n (length args))
(setq d-order (cddadr e))
(dotimes (i n de)
(setq de (add de (mul ($diff (nth i args) x) (pderivop fun args (incf-ith i d-order)))))))
;; We disallow positional derivatives of subscripted functions and lambda forms.
((and $use_pdiff (null (zl-get fun 'grad)) (not ($subvarp (cadr e)))
(not (memq fun '(mlessp mleqp mequal mgeqp mgreaterp mcond lambda))))
(setq args (cdr e))
(setq fun (caar e))
(setq de 0)
(setq n (length args))
(dotimes (i n de)
(setq de (add de (mul ($diff (nth i args) x) (pderivop fun args (i-list i n)))))))
(t nil)))))
;; Display support for positional derivatives. Indicate the derivative order
;; with a subscript surrounded by parenthesis.
(setf (get '$pderivop 'dimension) 'dimension-pderiv)
(defun dimension-pderiv (form result)
(setq form (cdr form))
(setq form `(( ,(car form) simp array) (("") ,@(cdr form))))
(dimension-array form result))
;; Extend tex to handle positional derivatives. Depending on the values of
;; the option variables $tex_uses_prime_for_derivatives
;; and $tex_uses_named_subscripts_for_derivatives, derivatives can
;; tex as superscripted primes, subscripted variable names, or
;; parenthesis surrounded subscripts that indicate the derivative order.
(defmvar $tex_uses_prime_for_derivatives nil)
(defmvar $tex_prime_limit 3)
(defmvar $tex_uses_named_subscripts_for_derivatives nil)
(defmvar $tex_diff_var_names (list '(mlist) '$x '$y '$z))
(setf (get '$pderivop 'tex) 'tex-pderivop)
;; Examples
;; 1. $tex_uses_prime_for_derivatives is true,
;; (c1) tex(diff(f(x),x));
;; $$f^{\prime}(x)$$
;; (c2) tex(diff(f(x),x,2));
;; $$f^{\prime\prime}(x)$$
;; (c4) tex(diff(f(x),x,4));
;; $$f^{(4)}(x)$$
;; In the last example, the derivative order exceeds $tex_prime_limit,
;; so the derivative is indicated as shown in (c4).
;; 2. $tex_uses_named subscripts is true
;; (c1) tex_uses_prime_for_derivatives : false;
;; (c2) tex(diff(f(x),x));
;; $$f_{x}(x)$$
;; (c3) tex(diff(f(x),x,2));
;; $$f_{xx}(x)$$
;; (c4) tex(diff(f(y),y,2));
;; $$f_{xx}(y)$$
;; Although the function argument in (c4) is y, the derivative with
;; respect to the first argument is indicated by a subscript that is
;; the first element of tex_diff_var_names. A further example
;; (c5) tex_diff_var_names : [\a,\b,\c]$
;; (c6) tex(diff(f(x,y,z),x,1,y,1,z,1));
;; $$f_{abc}(x,y,z)$$
;; When the derivative order exceeds tex_prime_limit, we don't use named
;; subscripts for derivatives; otherwise, we could get ridiculously long
;; subscripts.
;; (c43) tex_prime_limit : 3;
;; (c44) tex(diff(f(x,y),x,1,y,1));
;; $$f_{xy}(x,y)$$
;; (c45) tex(diff(f(x,y),x,1066,y,1776));
;; $$f_{\left(1066,1776\right)}(x,y)$$
;; Finally, setting tex_uses_named subscripts and tex_uses_prime_for_derivatives
;; to false, derivatives are indicated with parenthesis surrounded
;; subscripts. There is one subscript for each function argument; when
;; the derivative order is zero, the subscript is zero.
;; (c11) tex_uses_prime_for_derivatives : false;
;; (c12) tex_uses_named_subscripts_for_derivatives : false;
;; (c13) tex(diff(f(a,b),a,2,b,1));
;; $$f_{\left(2,1\right)}(a,b)$$
;; (c14) tex(diff(f(a,b),a,0,b,1));
;; $$f_{\left(0,1\right)}(a,b)$$
;; (c15) tex(diff(f(x,y),x,0,y,1));
;; $$f_{\left(0,1\right)}(x,y)$$
(defun tex-pderivop (x l r)
;(print `(lop = ,lop rop = ,rop x = ,x r = ,r l = ,l))
(cond ((and $tex_uses_prime_for_derivatives (eql 3 (length x)))
(let* ((n (car (last x)))
(p))
(cond ((<= n $tex_prime_limit)
(setq p (make-list n :initial-element "\\prime")))
(t
(setq p (list "(" n ")"))))
;; We need to avoid double tex superscripts; when rop is mexpt, use parens.
(cond ((eq rop 'mexpt)
(append l (list "\\left(") (tex (cadr x) nil nil lop rop)
(list "^{") p (list "}") (list "\\right)") r))
(t
(append l (tex (cadr x) nil nil lop rop)
(list "^{") p (list "}") r)))))
((and $tex_uses_named_subscripts_for_derivatives
(< (apply #'+ (cddr x)) $tex_prime_limit))
(let ((n (cddr x))
(v (mapcar #'stripdollar (cdr $tex_diff_var_names)))
(p))
(cond ((> (length n) (length v))
(merror "Not enough elements in tex_diff_var_names to tex the expression")))
(dotimes (i (length n))
(setq p (append p (make-list (nth i n) :initial-element (nth i v)))))
(append l (tex (cadr x) nil nil lop rop) (list "_{") p (list "}") r)))
(t
(append l (tex (cadr x) nil nil lop rop) (list "_{")
(tex-matchfix (cons '(mprogn)
(cddr x)) nil nil) (list "}") r))))
;; Convert from positional derivatives to non-positional derivatives.
(defun $convert_to_diff (e)
(setq e ($totaldisrep e))
(cond (($mapatom e) e)
((and (consp e) (eq (caar e) 'mqapply) (eq (caaadr e) '$pderivop))
(let ((f (second (second e)))
(n (rest (rest (second e))))
(v (rest (rest e)))
(g nil)
($use_pdiff nil)
(vk) (gk)
(at-list nil))
;; Work around bug in Clozure CL: https://github.com/Clozure/ccl/issues/109
;; If ever it's fixed, this conditionalization can be removed.
#+ccl (mapcar #'(lambda (vs) (declare (ignore vs)) (push (gensym) g)) v)
#-ccl (dolist (vs v) (declare (ignore vs)) (push (gensym) g))
(setq e (mapply f g nil))
(setq e (apply '$diff (cons e (mapcan #'list g n))))
(while v
(setq vk (pop v))
(setq gk (pop g))
(if (symbolp vk) (setq e ($substitute vk gk e)) (push (take '(mequal) gk vk) at-list)))
(if at-list ($at e (simplify (cons '(mlist) at-list))) e)))
(t (mapply (mop e) (mapcar #'$convert_to_diff (margs e)) nil))))
|