1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
/*
test_powerseries.mac
Tests for the powerseries() function
*/
kill(all);
done$
/*
Basic identities
*/
powerseries(a, x, 0);
a$
powerseries(x, x, 0);
x$
/* Check that we get an error if the variable is a non-symbol atom */
errcatch(powerseries(x, 0, 0));
[]$
errcatch(powerseries(x, "foo", 0));
[]$
/* Check we distribute over bags */
niceindices(powerseries([sin(x), cos(x)], x, 0));
''(niceindices([powerseries(sin(x), x, 0), powerseries(cos(x), x, 0)]))$
/* Check we distribute over sum() and product() */
niceindices(powerseries(sum(f(x,i), i, 0, inf), x, 0));
''(niceindices(sum(powerseries(f(x,i), x, 0), i, 0, inf)));
niceindices(powerseries(product(f(x,i), i, 0, inf), x, 0));
''(niceindices(product(powerseries(f(x,i), x, 0), i, 0, inf)));
/* Check that we can expand with respect to a non-atomic expression
(or at least check that we do something vaguely sensible) */
niceindices(powerseries(sin(x^2), x^2, 0) - powerseries(sin(x^2), x, 0));
0$
/* Check that sums get expanded sanely (in SP1) */
niceindices(powerseries(a + sin(x), x, 0) - powerseries(sin(x), x, 0));
a$
/* An element of the transformation dictionary for special trig sums in SP1 */
niceindices(powerseries (1+tan(x)^2, x, 0) - powerseries(sec(x)^2, x, 0));
0$
/* Check that constant factors get pulled out (in SP1TIMES) */
niceindices(powerseries(a*sin(x), x, 0) - a*powerseries(sin(x), x, 0));
0$
/* ... even if they aren't atoms. */
niceindices(powerseries((a+b)*sin(x), x, 0) - (a+b)*powerseries(sin(x), x, 0));
0$
/* "Atomic" factors also get pulled out */
niceindices(powerseries(x*sin(x), x, 0) - x*powerseries(sin(x), x, 0));
0$
/* Check that we evaluate powerseries at inf and minf sensibly */
powerseries(1/x, x, inf);
1/x$
powerseries(1/x, x, minf);
1/x$
/*
Exponentiation of a sum is dealt with in SRBINEXPAND, which has to
cope with various possibilities depending on how much we know about
which terms are nonzero.
*/
powerseries(x^y^z, x, 0);
x^y^z$
(declare([int, posint], integer),
assume(posint > 0),
assume(pos > 0),
assume(notequal(nz, 0)),
assume(equal(zero, 0)), 0);
0$
powerseries((x^y+1)^zero, x, 0);
1$
powerseries((zero*x + 2)^y, x, 0);
2^y$
powerseries((x + zero)^y, x, 0);
x^y$
niceindices(powerseries((nz + 1)^n, nz, 0));
'sum(nz^i/beta(i+1, n-i+1), i, 0, inf)/(n+1)$
niceindices(powerseries((nz + 1)^posint, nz, 0));
'sum(nz^i/beta(i+1, posint-i+1), i, 0, posint)/(posint+1)$
niceindices(powerseries((nz + 1)^k, nz, 0));
'sum(nz^i/beta(i+1, k-i+1), i, 0, inf)/(k+1)$
niceindices(powerseries((x + 1)^k, x, 0));
1 + 'sum(x^i/beta(i+1, k-i+1), i, 1, inf)/(k+1)$
niceindices(powerseries((x + u)^posint, x, 0));
('sum(x^i*u^(posint-i)/beta(i+1, posint-i+1),
i, 0, posint-1) / (posint+1)) + x^posint$
powerseries((x + y)^k, x, 0);
'powerseries((x + y)^k, x, 0)$
/* Some more white-box tests, based on the structure of SRATEXPND */
/* If the numerator is monomial, factor it out and recurse */
niceindices(powerseries(a*x^u/(1+x), x, 0) - a*x^u*powerseries(1/(1+x), x, 0));
0$
/* If the denominator is free of x and the numerator is a polynomial,
return the quotient */
powerseries((x^2 + x + 1)/(a + b + c), x, 0);
(x^2 + x + 1)/(a + b + c)$
/*
If the denominator is free of y, but the numerator is sufficiently
gnarly, we give up. (Obviously, it would be nice to do better here!)
*/
powerseries((x+x^(1+y)+1)/(2+y), x, 0);
powerseries((x+x^(1+y)+1)/(2+y), x, 0)$
/*
Another gnarly example we can't deal with. We can't use partial
fraction expansion because we don't know that k < 2 (and, even if we
did, I don't know how we'd parametrise the result on k).
*/
powerseries((x+1)^k/((x+2)*(x+3)), x, 0);
powerseries((x+1)^k/((x+2)*(x+3)), x, 0)$
/* The only way of getting a monomial denominator in sratexpnd is if
the numerator is a polynomial. If the denominator is a sum, we return the
sum of quotients: */
powerseries((x^2 + x + 1)/(a*x^2), x, 0);
1/a + 1/(a*x) + 1/(a*x^2)$
/* If the denominator isn't a sum, we just return the quotient of the
top and bottom. */
powerseries((1+x)^n/(a*x^2), x, 0);
(1+x)^n/(a*x^2)$
/* (I haven't yet managed to find an example that triggers the
SRATSUBST clause and doesn't yield a noun form) */
/* Partial fraction expansion */
niceindices(powerseries(1/((1-2*x)*(1-3*x)), x, 0));
'sum((3^(i+1) - 2^(i+1))*x^i, i, 0, inf)$
/*
Make sure we give up (rather than possibly recursing infinitely) in
the general case at the bottom of SRATEXPND.
*/
powerseries((x+2)*(x+3)^k/(x*(x+4)), x, 0);
powerseries((x+2)*(x+3)^k/(x*(x+4)), x, 0)$
/*
A complicated example of a partial fraction expansion. The expansion
into partial fractions is 1 + 2/(x+3) - 6/(x+4), and the terms then
expand into two infinite series and one constant term. This test
makes sure that we coalesce the two series properly (in PSP2FOLDSUM).
*/
factor(niceindices(powerseries((x+1)*(x+2)/((x+3)*(x+4)), x, 0)));
(sum(3^(-i-1)*(-1)^i*(4^(i+1)-3^(i+2))*x^i/4^i,i,0,inf)+2)/2$
/*
Make sure we successfully remove zero roots from the denominator
before trying to expand partial fractions.
*/
niceindices(powerseries((x+2)*(x+3)/(x^2*(x+1)^k), x, 0)*x^2 -
powerseries((x+2)*(x+3)/(x+1)^k, x, 0));
0$
/* Fixed in series.lisp rev 1.5, 04 Feb 2004.
First case returned second result */
niceindices(powerseries(1/sqrt(1 + x), x, 0));
1 + 2*'sum(x^i/beta(1/2-i,i+1),i,1,inf);
niceindices (powerseries(sqrt(1+x),x,0));
1 + 2*('sum(x^i/beta(3/2-i,i+1),i,1,inf))/3;
/* sf bug 1730044 - powerseries(1+x^n,x,0) wrong; see also #2764 power series of 1 + x^n */
powerseries(1+x^n, x, 0);
1+x^n$
(gensumnum : 0, declare(n, integer), powerseries(1/(1+x^n), x, 0));
'sum((-1)^i1*x^(i1*n),i1,0,inf)$
/* #2756 powerseries of constant plus power of linear */
(gensumnum : 0, powerseries(1 + (1-x)^(1/3),x,0));
(3*sum(((-1)^i1*x^i1)/beta(4/3-i1,i1+1),i1,1,inf))/4+2$
/* Examples from SF bug report [ 1722156 ] powerseries((x+1)/(1-2*x^2), x, 0);
* tnx Dan Gildea
*/
gensumnum : 0;
0;
/* two simple roots */
powerseries((1)/((1-2*x)*(1-3*x)), x, 0);
'sum((3^(i1+1)+(-2*2^i1))*x^i1,i1,0,inf);
/* fibonacci */
powerseries((1)/(1-x-x^2), x, 0);
-'sum((-2*(sqrt(5)-1)^(-i2-1)*2^i2/sqrt(5)
-2*(sqrt(5)+1)^(-i2-1)*(-2)^i2/sqrt(5))
*x^i2,i2,0,inf);
/* 1 1 2 2 4 4 8 8 */
factor(powerseries((1+x)/(1-2*x^2), x, 0));
/*
'sum( (-1*(1/-(1/sqrt(2)))*(1/sqrt(2)-1)*(1/-(4/sqrt(2)))*(1/-(1/sqrt(2)))^i3 +
-1*(1/(1/sqrt(2)))*(-1/sqrt(2)-1)*(1/(4/sqrt(2)))*(1/(1/sqrt(2)))^i3 ) * x^i3,i3,0,inf);
*/
'sum(2^(i3/2-3/2)*((sqrt(2)-1)*(-1)^i3+sqrt(2)+1)*x^i3,i3,0,inf);
/* multiple root */
powerseries((1+x)/(1-x)^2, x, 0);
'sum(2*(i4+1)*x^i4-x^i4,i4,0,inf);
/* numerator higher order poly than denom */
powerseries((1+x^3)/(1-x-x^2), x, 0);
-2*x
*'sum((-2*(sqrt(5)-1)^(-i5-1)*2^i5/sqrt(5)
-2*(sqrt(5)+1)^(-i5-1)*(-2)^i5/sqrt(5))
*x^i5,i5,0,inf)
-x+1;
/* zero root in denom */
powerseries((1)/((1-2*x)*(x)), x, 0);
('sum(2^i6*x^i6,i6,0,inf))/x;
/* one simple and one repeated root in denom */
powerseries((1+x+x^2)/((1-2*x)*(1+x)^2), x, 0);
'sum(7*2^i7*x^i7/9+(i7+1)*(-1)^i7*x^i7/3-(-1)^i7*x^i7/9,i7,0,inf);
/* gcd of exps is two */
powerseries((1-x^2)/(1-4*x^2+x^4), x, 0);
'sum((-1*(1/(2-sqrt(3)))*(sqrt(3)-1)*(1/(2*(2-sqrt(3))-4))*(1/(2-sqrt(3)))^i8 +
-1*(1/(sqrt(3)+2))*(-sqrt(3)-1)*(1/(2*(sqrt(3)+2)-4))*(1/(sqrt(3)+2))^i8 )*x^(2*i8),
i8, 0, inf);
/* #2750 powerseries(x^x,x,0) gives Lisp error */
powerseries(x^x, x, 0);
'powerseries(x^x, x, 0)$
sumcontract(intosum(powerseries(1+ (1-x)^(a),x,0) - powerseries((1-x)^(a),x,0)));
1$
/*
#2775: Don't expand a powerseries with log(ab)=log(a)+log(b) if a
is negative
(and also #2767)
*/
(gensumnum : 0, powerseries (log(2-x), x, 0));
log(2) - sum (2^(-i2-1)*x^(i2+1)/(i2+1), i2, 0, inf)$
/*
#2760: powerseries at minf
For an analytic function like this, the power series at minf should
match the power series at inf.
*/
block([inf_exp, minf_exp],
gensumnum : 0,
inf_exp: powerseries (1/(1+x), x, inf),
gensumnum : 0,
minf_exp: powerseries (1/(1+x), x, inf),
inf_exp - minf_exp);
0$
/* #2765: powerseries with non-integer order */
powerseries (diff (f(x), x, biggles), x, 0);
'powerseries (diff (f(x), x, biggles), x, 0)$
/* #2755: powerseries of natural exponential */
niceindices (powerseries (%e^x, x, 1));
sum (1/i!, i, 0, inf) * sum((x-1)^i/i!, i, 0, inf)$
/*
#2760
Make sure that we give up rather than trying to substitute an
arbitrary expression for an integration / differentiation variable
after expansion.
*/
powerseries(f(x), x, inf);
'powerseries(f(x), x, inf)$
/*
The test above gives up when it sees either an integral or a
derivative wrt the expansion variable as it's trying to substitute
answers back in. Make sure that we still allow either with respect
to some other variable. (Expand somewhere other than zero, otherwise
we skip the substitution step)
*/
factor(powerseries(integrate(f(x), x)*y, y, 1));
'integrate(f(x), x)*y$
niceindices(powerseries(log(sin(x)/x),x,0));
/*('sum((-1)^i1*2^(2*i1)*bern(2*i1)*x^(2*i1)/(i1*(2*i1)!),i1,1,inf))/2$*/
'sum((-1)^i*2^(2*i-1)*bern(2*i)*x^(2*i)/(i*(2*i)!),i,1,inf);
/*
Check that we don't substitute blindly into the bound variables in
at() expressions.
The powerseries expands the integral of f(x) by computing an
antiderivative of the power series of f(x). Since we don't know
anything about f, this contains terms like "at(diff(f(x), x, n),
x=0)". If we then substituted the endpoints blindly, we'd get an
error from substituting in a number as a differentiation variable.
*/
op(niceindices(powerseries(integrate(f(x), x, 0, y), y, 0)));
''(nounify('sum))$
/*
Check we get a noun form (rather than something exploding) when
expanding a known power series and then trying to substitute in some
arbitrary function. At the moment, we only support arguments that
are monomials (see SP2SUB in series.lisp).
*/
powerseries(sin(f(x)), x, 0);
powerseries(sin(f(x)), x, 0)$
/* Basic support for expanding log(1+x) */
factor(sumcontract(intosum(powerseries(log(x+1), x, 0) -
sum((-1)^(i+1)*x^i/i, i, 1, inf))));
0$
/* Check that we can expand log(1+a*x^k) for various a and k. */
niceindices(powerseries(log(1+a*x), x, 0));
-sum((-1)^i * a^i * x^i / i, i, 1, inf)$
niceindices(powerseries(log(1-a*x), x, 0));
-sum(a^i * x^i / i, i, 1, inf)$
/*
A particular example of a log expansion that didn't work when you
only allowed contents that SMONO accepted
*/
niceindices(powerseries(log(1-z*exp(-4)), z, 0));
-sum(exp(-4*i)*z^i/i, i, 1, inf)$
(kill(all), 0);
0$
|