File: Command.texi

package info (click to toggle)
maxima 5.10.0-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 44,268 kB
  • ctags: 17,987
  • sloc: lisp: 152,894; fortran: 14,667; perl: 14,204; tcl: 10,103; sh: 3,376; makefile: 2,202; ansic: 471; awk: 7
file content (1048 lines) | stat: -rw-r--r-- 35,953 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
@menu
* Introduction to Command Line::
* Definitions for Command Line::
@end menu

@node Introduction to Command Line, Definitions for Command Line, Command Line, Command Line
@section Introduction to Command Line

@c NEEDS EXAMPLES
@c THIS ITEM IS VERY IMPORTANT !!
@deffn {Operator} '
The single quote operator @code{'} prevents evaluation.

Applied to a symbol,
the single quote prevents evaluation of the symbol.

Applied to a function call,
the single quote prevents evaluation of the function call,
although the arguments of the function are still evaluated (if evaluation is not otherwise prevented).
The result is the noun form of the function call.

Applied to a parenthesized expression,
the single quote prevents evaluation of all symbols and function calls in the expression.
@c DUNNO IF THESE EXAMPLES ARE STILL NEEDED -- COVERED BY ITEMS UNDER "Examples"
E.g., @code{'(f(x))} means do not evaluate the expression @code{f(x)}.
@code{'f(x)} (with the single quote applied to @code{f} instead of @code{f(x)})
means return the noun form of @code{f} applied to @code{[x]}.

The single quote does not prevent simplification.

When the global flag @code{noundisp} is @code{true},
nouns display with a single quote.
This switch is always @code{true} when displaying function definitions.

See also the quote-quote operator @code{''} and @code{nouns}.

Examples:

Applied to a symbol,
the single quote prevents evaluation of the symbol.

@c ===beg===
@c aa: 1024;
@c aa^2;
@c 'aa^2;
@c ''%;
@c ===end===
@example
(%i1) aa: 1024;
(%o1)                         1024
(%i2) aa^2;
(%o2)                        1048576
(%i3) 'aa^2;
                                 2
(%o3)                          aa
(%i4) ''%;
(%o4)                        1048576
@end example

Applied to a function call,
the single quote prevents evaluation of the function call.
The result is the noun form of the function call.

@c ===beg===
@c x0: 5;
@c x1: 7;
@c integrate (x^2, x, x0, x1);
@c 'integrate (x^2, x, x0, x1);
@c %, nouns;
@c ===end===
@example
(%i1) x0: 5;
(%o1)                           5
(%i2) x1: 7;
(%o2)                           7
(%i3) integrate (x^2, x, x0, x1);
                               218
(%o3)                          ---
                                3
(%i4) 'integrate (x^2, x, x0, x1);
                             7
                            /
                            [   2
(%o4)                       I  x  dx
                            ]
                            /
                             5
(%i5) %, nouns;
                               218
(%o5)                          ---
                                3
@end example

Applied to a parenthesized expression,
the single quote prevents evaluation of all symbols and function calls in the expression.

@c ===beg===
@c aa: 1024;
@c bb: 19;
@c sqrt(aa) + bb;
@c '(sqrt(aa) + bb);
@c ''%;
@c ===end===
@example
(%i1) aa: 1024;
(%o1)                         1024
(%i2) bb: 19;
(%o2)                          19
(%i3) sqrt(aa) + bb;
(%o3)                          51
(%i4) '(sqrt(aa) + bb);
(%o4)                     bb + sqrt(aa)
(%i5) ''%;
(%o5)                          51
@end example

The single quote does not prevent simplification.

@c ===beg===
@c sin (17 * %pi) + cos (17 * %pi);
@c '(sin (17 * %pi) + cos (17 * %pi));
@c ===end===
@example
(%i1) sin (17 * %pi) + cos (17 * %pi);
(%o1)                          - 1
(%i2) '(sin (17 * %pi) + cos (17 * %pi));
(%o2)                          - 1
@end example

@end deffn

@deffn {Operator} ''
The quote-quote operator @code{'@w{}'} (two single quote marks) modifies evaluation in input expressions.

Applied to a general expression @var{expr}, quote-quote causes the value of @var{expr}
to be substituted for @var{expr} in the input expression.

Applied to the operator of an expression,
quote-quote changes the operator from a noun to a verb (if it is not already a verb).

The quote-quote operator is applied by the input parser;
it is not stored as part of a parsed input expression.
The quote-quote operator is always applied as soon as it is parsed,
and cannot be quoted.
Thus quote-quote causes evaluation when evaluation is otherwise suppressed,
such as in function definitions, lambda expressions, and expressions quoted by single quote @code{'}.

Quote-quote is recognized by @code{batch} and @code{load}.

See also the single-quote operator @code{'} and @code{nouns}.

Examples:

Applied to a general expression @var{expr}, quote-quote causes the value of @var{expr}
to be substituted for @var{expr} in the input expression.

@c ===beg===
@c expand ((a + b)^3);
@c [_, ''_];
@c [%i1, ''%i1];
@c [aa : cc, bb : dd, cc : 17, dd : 29];
@c foo_1 (x) := aa - bb * x;
@c foo_1 (10);
@c ''%;
@c ''(foo_1 (10));
@c foo_2 (x) := ''aa - ''bb * x;
@c foo_2 (10);
@c [x0 : x1, x1 : x2, x2 : x3];
@c x0;
@c ''x0;
@c '' ''x0;
@c ===end===
@example
(%i1) expand ((a + b)^3);
                     3        2      2      3
(%o1)               b  + 3 a b  + 3 a  b + a
(%i2) [_, ''_];
                         3    3        2      2      3
(%o2)     [expand((b + a) ), b  + 3 a b  + 3 a  b + a ]
(%i3) [%i1, ''%i1];
                         3    3        2      2      3
(%o3)     [expand((b + a) ), b  + 3 a b  + 3 a  b + a ]
(%i4) [aa : cc, bb : dd, cc : 17, dd : 29];
(%o4)                   [cc, dd, 17, 29]
(%i5) foo_1 (x) := aa - bb * x;
(%o5)                 foo_1(x) := aa - bb x
(%i6) foo_1 (10);
(%o6)                      cc - 10 dd
(%i7) ''%;
(%o7)                         - 273
(%i8) ''(foo_1 (10));
(%o8)                         - 273
(%i9) foo_2 (x) := ''aa - ''bb * x;
(%o9)                 foo_2(x) := cc - dd x
(%i10) foo_2 (10);
(%o10)                        - 273
(%i11) [x0 : x1, x1 : x2, x2 : x3];
(%o11)                    [x1, x2, x3]
(%i12) x0;
(%o12)                         x1
(%i13) ''x0;
(%o13)                         x2
(%i14) '' ''x0;
(%o14)                         x3
@end example

Applied to the operator of an expression,
quote-quote changes the operator from a noun to a verb (if it is not already a verb).

@c ===beg==
@c sin (1);
@c ''sin (1);
@c declare (foo, noun);
@c foo (x) := x - 1729;
@c foo (100);
@c ''foo (100);
@c ===end==
@example
(%i1) sin (1);
(%o1)                        sin(1)
(%i2) ''sin (1);
(%o2)                    0.8414709848079
(%i3) declare (foo, noun);
(%o3)                         done
(%i4) foo (x) := x - 1729;
(%o4)                 ''foo(x) := x - 1729
(%i5) foo (100);
(%o5)                       foo(100)
(%i6) ''foo (100);
(%o6)                        - 1629
@end example

The quote-quote operator is applied by the input parser;
it is not stored as part of a parsed input expression.

@c ===beg===
@c [aa : bb, cc : dd, bb : 1234, dd : 5678];
@c aa + cc;
@c display (_, op (_), args (_));
@c ''(aa + cc);
@c display (_, op (_), args (_));
@c ===end===
@example
(%i1) [aa : bb, cc : dd, bb : 1234, dd : 5678];
(%o1)                 [bb, dd, 1234, 5678]
(%i2) aa + cc;
(%o2)                        dd + bb
(%i3) display (_, op (_), args (_));
                           _ = cc + aa

                         op(cc + aa) = +

                    args(cc + aa) = [cc, aa]

(%o3)                         done
(%i4) ''(aa + cc);
(%o4)                         6912
(%i5) display (_, op (_), args (_));
                           _ = dd + bb

                         op(dd + bb) = +

                    args(dd + bb) = [dd, bb]

(%o5)                         done
@end example

Quote-quote causes evaluation when evaluation is otherwise suppressed,
such as in function definitions, lambda expressions, and expressions quoted by single quote @code{'}.

@c ===beg===
@c foo_1a (x) := ''(integrate (log (x), x));
@c foo_1b (x) := integrate (log (x), x);
@c dispfun (foo_1a, foo_1b);
@c integrate (log (x), x);
@c foo_2a (x) := ''%;
@c foo_2b (x) := %;
@c dispfun (foo_2a, foo_2b);
@c F : lambda ([u], diff (sin (u), u));
@c G : lambda ([u], ''(diff (sin (u), u)));
@c '(sum (a[k], k, 1, 3) + sum (b[k], k, 1, 3));
@c '(''(sum (a[k], k, 1, 3)) + ''(sum (b[k], k, 1, 3)));
@c ===end===
@example
(%i1) foo_1a (x) := ''(integrate (log (x), x));
(%o1)               foo_1a(x) := x log(x) - x
(%i2) foo_1b (x) := integrate (log (x), x);
(%o2)           foo_1b(x) := integrate(log(x), x)
(%i3) dispfun (foo_1a, foo_1b);
(%t3)               foo_1a(x) := x log(x) - x

(%t4)           foo_1b(x) := integrate(log(x), x)

(%o4)                      [%t3, %t4]
(%i4) integrate (log (x), x);
(%o4)                     x log(x) - x
(%i5) foo_2a (x) := ''%;
(%o5)               foo_2a(x) := x log(x) - x
(%i6) foo_2b (x) := %;
(%o6)                    foo_2b(x) := %
(%i7) dispfun (foo_2a, foo_2b);
(%t7)               foo_2a(x) := x log(x) - x

(%t8)                    foo_2b(x) := %

(%o8)                      [%t7, %t8]
(%i8) F : lambda ([u], diff (sin (u), u));
(%o8)             lambda([u], diff(sin(u), u))
(%i9) G : lambda ([u], ''(diff (sin (u), u)));
(%o9)                  lambda([u], cos(u))
(%i10) '(sum (a[k], k, 1, 3) + sum (b[k], k, 1, 3));
(%o10)         sum(b , k, 1, 3) + sum(a , k, 1, 3)
                    k                  k
(%i11) '(''(sum (a[k], k, 1, 3)) + ''(sum (b[k], k, 1, 3)));
(%o11)             b  + a  + b  + a  + b  + a
                    3    3    2    2    1    1
@end example

@end deffn

@c end concepts Command Line
@node Definitions for Command Line,  , Introduction to Command Line, Command Line
@section Definitions for Command Line

@c NEEDS WORK, ESPECIALLY EXAMPLES
@deffn {Function} alias (@var{new_name_1}, @var{old_name_1}, ..., @var{new_name_n}, @var{old_name_n})
provides an
alternate name for a (user or system) function, variable, array, etc.
Any even number of arguments may be used.

@end deffn

@defvr {Option variable} debugmode
Default value: @code{false}

When a Maxima error occurs, Maxima will start the debugger if @code{debugmode} is @code{true}.
The user may enter commands to examine the call stack, set breakpoints, step
through Maxima code, and so on. See @code{debugging} for a list of debugger commands.

Enabling @code{debugmode} will not catch Lisp errors.
@c DO WE WANT TO SAY MORE ABOUT DEBUGGING LISP ERRORS ???
@c I'M NOT CONVINCED WE WANT TO OPEN THAT CAN OF WORMS !!!

@end defvr

@c NEEDS CLARIFICATION
@c VERY IMPORTANT !!
@deffn {Function} ev (@var{expr}, @var{arg_1}, ..., @var{arg_n})
Evaluates the expression @var{expr} in the environment
specified by the arguments @var{arg_1}, ..., @var{arg_n}.
The arguments are switches (Boolean flags), assignments, equations, and functions.
@code{ev} returns the result (another expression) of the evaluation.

The evaluation is carried out in steps, as follows.

@enumerate
@item
First the environment is set up by scanning the arguments which may
be any or all of the following.

@itemize @bullet
@item
@code{simp} causes @var{expr} to be simplified regardless of the setting of the
switch @code{simp} which inhibits simplification if @code{false}.
@item
@code{noeval} supresses the evaluation phase of @code{ev} (see step (4) below).
This is useful in conjunction with the other switches and in causing
@var{expr} to be resimplified without being reevaluated.
@item
@code{nouns} causes the evaluation of noun forms
(typically unevaluated functions such as @code{'integrate} or @code{'diff})
in @var{expr}.
@item
@code{expand} causes expansion.
@item
@code{expand (@var{m}, @var{n})} causes expansion, setting the values of @code{maxposex} and
@code{maxnegex} to @var{m} and @var{n} respectively.
@item
@code{detout} causes any matrix inverses computed in @var{expr} to have their
determinant kept outside of the inverse rather than dividing through
each element.
@item
@code{diff} causes all differentiations indicated in @var{expr} to be performed.
@item
@code{derivlist (@var{x}, @var{y}, @var{z}, ...)} causes only differentiations with respect to
the indicated variables.
@item
@code{float} causes non-integral rational numbers to be converted to floating
point.
@item
@code{numer} causes some mathematical functions (including exponentiation)
with numerical arguments to be evaluated in floating point.  It causes
variables in @var{expr} which have been given numervals to be replaced by
their values.  It also sets the @code{float} switch on.
@item
@code{pred} causes predicates (expressions which evaluate to @code{true} or @code{false})
to be evaluated.
@item
@code{eval} causes an extra post-evaluation of @var{expr} to occur. (See step (5)
below.)
@code{eval} may occur multiple times.
For each instance of @code{eval}, the expression is evaluated again.
@item
@code{A} where @code{A} is an atom declared to be an evaluation flag (see @code{evflag})
causes @code{A} to be bound to
@code{true} during the evaluation of @var{expr}.
@item
@code{V: expression} (or alternately @code{V=expression}) causes @code{V} to be bound to the
value of @code{expression} during the evaluation of @var{expr}.  Note that if @code{V} is a
Maxima option, then @code{expression} is used for its value during the
evaluation of @var{expr}.  If more than one argument to @code{ev} is of this type
then the binding is done in parallel.  If @code{V} is a non-atomic expression
then a substitution rather than a binding is performed.
@item
@code{F} where @code{F}, a function name, has been declared to be an evaluation function (see @code{evfun})
causes @code{F}
to be applied to @var{expr}.
@item
Any other function names (e.g., @code{sum}) cause evaluation of occurrences
of those names in @var{expr} as though they were verbs.
@item
In addition a function occurring in @var{expr} (say @code{F(x)}) may be defined
locally for the purpose of this evaluation of @var{expr} by giving
@code{F(x) := expression} as an argument to @code{ev}.
@item
If an atom not mentioned above or a subscripted variable or
subscripted expression was given as an argument, it is evaluated and
if the result is an equation or assignment then the indicated binding
or substitution is performed.  If the result is a list then the
members of the list are treated as if they were additional arguments
given to @code{ev}. This permits a list of equations to be given (e.g. @code{[X=1, Y=A**2]})
or a list of names of equations (e.g., @code{[%t1, %t2]} where @code{%t1} and
@code{%t2} are equations) such as that returned by @code{solve}.
@end itemize

The arguments of @code{ev} may be given in any order with the exception of
substitution equations which are handled in sequence, left to right,
and evaluation functions which are composed, e.g., @code{ev (@var{expr}, ratsimp, realpart)} is
handled as @code{realpart (ratsimp (@var{expr}))}.

The @code{simp}, @code{numer}, @code{float}, and @code{pred} switches may also be set locally in a
block, or globally in Maxima so that they will
remain in effect until being reset.

If @var{expr} is a canonical rational expression (CRE),
then the expression returned by @code{ev} is also a CRE,
provided the @code{numer} and @code{float} switches are not both @code{true}.

@item
During step (1), a list is made of the non-subscripted
variables appearing on the left side of equations in the arguments or in
the value of some arguments if the value is an equation.  The variables
(subscripted variables which do not have associated array
functions as well as non-subscripted variables) in the expression @var{expr} are
replaced by their global values, except for those appearing in this
list.  Usually, @var{expr} is just a label or @code{%}
(as in @code{%i2} in the example below), so this
step simply retrieves the expression named by the label, so that @code{ev}
may work on it.

@item
If any substitutions are indicated by the arguments, they are
carried out now.

@item
The resulting expression is then re-evaluated (unless one of
the arguments was @code{noeval}) and simplified according to the arguments.  Note that
any function calls in @var{expr} will be carried out after the variables in
it are evaluated and that @code{ev(F(x))} thus may behave like @code{F(ev(x))}.

@item
For each instance of @code{eval} in the arguments, steps (3) and (4) are repeated.
@end enumerate

                     Examples

@example
(%i1) sin(x) + cos(y) + (w+1)^2 + 'diff (sin(w), w);
                                     d                    2
(%o1)              cos(y) + sin(x) + -- (sin(w)) + (w + 1)
                                     dw
(%i2) ev (%, sin, expand, diff, x=2, y=1);
                          2
(%o2)           cos(w) + w  + 2 w + cos(1) + 1.909297426825682
@end example

An alternate top level syntax has been provided for @code{ev}, whereby one
may just type in its arguments, without the @code{ev()}.  That is, one may
write simply

@example
@var{expr}, @var{arg_1}, ..., @var{arg_n}
@end example

This is not permitted as part of
another expression, e.g., in functions, blocks, etc.

Notice the parallel binding process in the following example.

@example
(%i3) programmode: false;
(%o3)                                false
(%i4) x+y, x: a+y, y: 2;
(%o4)                              y + a + 2
(%i5) 2*x - 3*y = 3$
(%i6) -3*x + 2*y = -4$
(%i7) solve ([%o5, %o6]);
Solution

                                          1
(%t7)                               y = - -
                                          5

                                         6
(%t8)                                x = -
                                         5
(%o8)                            [[%t7, %t8]]
(%i8) %o6, %o8;
(%o8)                              - 4 = - 4
(%i9) x + 1/x > gamma (1/2);
                                   1
(%o9)                          x + - > sqrt(%pi)
                                   x
(%i10) %, numer, x=1/2;
(%o10)                      2.5 > 1.772453850905516
(%i11) %, pred;
(%o11)                               true
@end example

@end deffn

@defvr {Property} evflag
When a symbol @var{x} has the @code{evflag} property,
the expressions @code{ev(@var{expr}, @var{x})} and @code{@var{expr}, @var{x}}
(at the interactive prompt) are equivalent to @code{ev(@var{expr}, @var{x} = true)}.
That is, @var{x} is bound to @code{true} while @var{expr} is evaluated.

The expression @code{declare(@var{x}, evflag)}
gives the @code{evflag} property to the variable @var{x}.

The flags which have the @code{evflag} property by default are the following:
@c FOLLOWING LIST CONSTRUCTED FROM LIST UNDER (prog1 '(evflag properties) ...)
@c NEAR LINE 2649 OF mlisp.lisp AT PRESENT (2004/11).
@code{algebraic},
@code{cauchysum},
@code{demoivre},
@code{dotscrules},
@code{%emode},
@code{%enumer},
@code{exponentialize},
@code{exptisolate},
@code{factorflag},
@code{float},
@code{halfangles},
@code{infeval},
@code{isolate_wrt_times},
@code{keepfloat},
@code{letrat},
@code{listarith},
@code{logabs},
@code{logarc},
@code{logexpand},
@code{lognegint},
@code{lognumer},
@code{m1pbranch},
@code{numer_pbranch},
@code{programmode},
@code{radexpand},
@code{ratalgdenom},
@code{ratfac},
@code{ratmx},
@code{ratsimpexpons},
@code{simp},
@code{simpsum},
@code{sumexpand}, and
@code{trigexpand}.

Examples:

@c ===beg===
@c sin (1/2);
@c sin (1/2), float;
@c sin (1/2), float=true;
@c simp : false;
@c 1 + 1;
@c 1 + 1, simp;
@c simp : true;
@c sum (1/k^2, k, 1, inf);
@c sum (1/k^2, k, 1, inf), simpsum;
@c declare (aa, evflag);
@c if aa = true then YES else NO;
@c if aa = true then YES else NO, aa;
@c ===end===
@example
(%i1) sin (1/2);
                                 1
(%o1)                        sin(-)
                                 2
(%i2) sin (1/2), float;
(%o2)                   0.479425538604203
(%i3) sin (1/2), float=true;
(%o3)                   0.479425538604203
(%i4) simp : false;
(%o4)                         false
(%i5) 1 + 1;
(%o5)                         1 + 1
(%i6) 1 + 1, simp;
(%o6)                           2
(%i7) simp : true;
(%o7)                         true
(%i8) sum (1/k^2, k, 1, inf);
                            inf
                            ====
                            \     1
(%o8)                        >    --
                            /      2
                            ====  k
                            k = 1
(%i9) sum (1/k^2, k, 1, inf), simpsum;
                                 2
                              %pi
(%o9)                         ----
                               6
(%i10) declare (aa, evflag);
(%o10)                        done
(%i11) if aa = true then YES else NO;
(%o11)                         NO
(%i12) if aa = true then YES else NO, aa;
(%o12)                         YES
@end example

@end defvr

@defvr {Property} evfun
When a function @var{F} has the @code{evfun} property,
the expressions @code{ev(@var{expr}, @var{F})} and @code{@var{expr}, @var{F}}
(at the interactive prompt)
are equivalent to @code{@var{F}(ev(@var{expr}))}.

If two or more @code{evfun} functions @var{F}, @var{G}, etc., are specified,
the functions are applied in the order that they are specified.

The expression @code{declare(@var{F}, evfun)}
gives the @code{evfun} property to the function @var{F}.

The functions which have the @code{evfun} property by default are the following:
@c FOLLOWING LIST CONSTRUCTED FROM LIST UNDER (prog1 '(evfun properties) ...)
@c NEAR LINE 2643 IN mlisp.lisp AT PRESENT (2004/11).
@code{bfloat},
@code{factor},
@code{fullratsimp},
@code{logcontract},
@code{polarform},
@code{radcan},
@code{ratexpand},
@code{ratsimp},
@code{rectform},
@code{rootscontract},
@code{trigexpand}, and
@code{trigreduce}.

Examples:

@c ===beg===
@c x^3 - 1;
@c x^3 - 1, factor;
@c factor (x^3 - 1);
@c cos(4 * x) / sin(x)^4;
@c cos(4 * x) / sin(x)^4, trigexpand;
@c cos(4 * x) / sin(x)^4, trigexpand, ratexpand;
@c ratexpand (trigexpand (cos(4 * x) / sin(x)^4));
@c declare ([F, G], evfun);
@c (aa : bb, bb : cc, cc : dd);
@c aa;
@c aa, F;
@c F (aa);
@c F (ev (aa));
@c aa, F, G;
@c G (F (ev (aa)));
@c ===end===
@example
(%i1) x^3 - 1;
                              3
(%o1)                        x  - 1
(%i2) x^3 - 1, factor;
                                2
(%o2)                 (x - 1) (x  + x + 1)
(%i3) factor (x^3 - 1);
                                2
(%o3)                 (x - 1) (x  + x + 1)
(%i4) cos(4 * x) / sin(x)^4;
                            cos(4 x)
(%o4)                       --------
                               4
                            sin (x)
(%i5) cos(4 * x) / sin(x)^4, trigexpand;
                 4           2       2         4
              sin (x) - 6 cos (x) sin (x) + cos (x)
(%o5)         -------------------------------------
                                4
                             sin (x)
(%i6) cos(4 * x) / sin(x)^4, trigexpand, ratexpand;
                           2         4
                      6 cos (x)   cos (x)
(%o6)               - --------- + ------- + 1
                          2          4
                       sin (x)    sin (x)
(%i7) ratexpand (trigexpand (cos(4 * x) / sin(x)^4));
                           2         4
                      6 cos (x)   cos (x)
(%o7)               - --------- + ------- + 1
                          2          4
                       sin (x)    sin (x)
(%i8) declare ([F, G], evfun);
(%o8)                         done
(%i9) (aa : bb, bb : cc, cc : dd);
(%o9)                          dd
(%i10) aa;
(%o10)                         bb
(%i11) aa, F;
(%o11)                        F(cc)
(%i12) F (aa);
(%o12)                        F(bb)
(%i13) F (ev (aa));
(%o13)                        F(cc)
(%i14) aa, F, G;
(%o14)                      G(F(cc))
(%i15) G (F (ev (aa)));
(%o15)                      G(F(cc))
@end example

@end defvr
@c NEEDS WORK
@defvr {Option variable} infeval
Enables "infinite evaluation" mode.  @code{ev} repeatedly
evaluates an expression until it stops changing.  To prevent a
variable, say @code{X}, from being evaluated away in this mode, simply
include @code{X='X} as an argument to @code{ev}.  Of course expressions such as
@code{ev (X, X=X+1, infeval)} will generate an infinite loop.

@end defvr

@c REVIEW FOR ACCURACY AND COMPLETENESS
@c THIS ITEM IS VERY IMPORTANT !!
@c NEEDS EXAMPLES
@deffn {Function} kill (@var{a_1}, ..., @var{a_n})
@deffnx {Function} kill (labels)
@deffnx {Function} kill (inlabels, outlabels, linelabels)
@deffnx {Function} kill (@var{n})
@deffnx {Function} kill ([@var{m}, @var{n}])
@deffnx {Function} kill (values, functions, arrays, ...)
@deffnx {Function} kill (all)
@deffnx {Function} kill (allbut (@var{a_1}, ..., @var{a_n}))

Removes all bindings (value, function, array, or rule) from the arguments
@var{a_1}, ..., @var{a_n}.
An argument @var{a_k} may be a symbol or a single array element.
When @var{a_k} is a single array element, @code{kill} unbinds that element
without affecting any other elements of the array.

Several special arguments are recognized.
Different kinds of arguments
may be combined, e.g., @code{kill (inlabels, functions, allbut (foo, bar))}.

@code{kill (labels)} unbinds
all input, output, and intermediate expression labels created so far.
@code{kill (inlabels)} unbinds only input labels
which begin with the current value of @code{inchar}.
Likewise,
@code{kill (outlabels)} unbinds only output labels
which begin with the current value of @code{outchar},
and @code{kill (linelabels)} unbinds only intermediate expression labels
which begin with the current value of @code{linechar}.

@code{kill (@var{n})}, where @var{n} is an integer,
unbinds the @var{n} most recent input and output labels.

@code{kill ([@var{m}, @var{n}])} unbinds input and output labels @var{m} through @var{n}.

@code{kill (@var{infolist})}, where @var{infolist} is any item in @code{infolists}
(such as @code{values}, @code{functions}, or @code{arrays})
unbinds all items in @var{infolist}.
See also @code{infolists}.

@code{kill (all)} unbinds all items on all infolists.
@code{kill (all)} does not reset global variables to their default values;
see @code{reset} on this point.

@code{kill (allbut (@var{a_1}, ..., @var{a_n}))}
unbinds all items on all infolists except for @var{a_1}, ..., @var{a_n}.
@code{kill (allbut (@var{infolist}))} unbinds all items except for the ones on @var{infolist},
where @var{infolist} is @code{values}, @code{functions}, @code{arrays}, etc.

The memory taken up by a bound property is not released until all symbols
are unbound from it.
In particular, to release the memory taken up by the value of a symbol,
one unbinds the output label which shows the bound value, as well as unbinding the symbol itself.

@code{kill} quotes its arguments.
The quote-quote operator @code{'@w{}'} defeats quotation.

@code{kill (@var{symbol})} unbinds all properties of @var{symbol}.
In contrast, @code{remvalue}, @code{remfunction}, @code{remarray}, and @code{remrule}
unbind a specific property.

@code{kill} always returns @code{done}, even if an argument has no binding.

@end deffn

@deffn {Function} labels (@var{symbol})
@deffnx {System variable} labels
Returns the list of input, output, or intermediate expression labels which begin with @var{symbol}.
Typically @var{symbol} is the value of @code{inchar}, @code{outchar}, or @code{linechar}.
The label character may be given with or without a percent sign,
so, for example, @code{i} and @code{%i} yield the same result.

If no labels begin with @var{symbol}, @code{labels} returns an empty list.

The function @code{labels} quotes its argument.
The quote-quote operator @code{'@w{}'} defeats quotation.
For example,
@code{labels (''inchar)} returns the input labels which begin with the current input label character.

The variable @code{labels} is the list of input, output, and intermediate expression labels,
including all previous labels if @code{inchar}, @code{outchar}, or @code{linechar} were redefined.

By default, Maxima displays the result of each user input expression,
giving the result an output label.
The output display is suppressed by terminating the input with @code{$} (dollar sign)
instead of @code{;} (semicolon).
An output label is constructed and bound to the result, but not displayed,
and the label may be referenced in the same way as displayed output labels.
See also @code{%}, @code{%%}, and @code{%th}.

Intermediate expression labels can be generated by some functions.
The flag @code{programmode} controls whether @code{solve} and some other functions
generate intermediate expression labels instead of returning a list of expressions.
Some other functions, such as @code{ldisplay}, always generate intermediate expression labels.

See also @code{inchar}, @code{outchar}, @code{linechar}, and @code{infolists}.

@end deffn

@c EXPAND; SHOW WHAT HAPPENS WHEN linenum IS ASSIGNED A VALUE
@defvr {System variable} linenum
The line number of the current pair of input and output expressions.

@end defvr

@c NEEDS WORK
@defvr {System variable} myoptions
Default value: @code{[]}

@code{myoptions} is the list of all options ever reset by the user,
whether or not they get reset to their default value.

@end defvr

@defvr {Option variable} nolabels
Default value: @code{false}

When @code{nolabels} is @code{true},
input and output result labels
(@code{%i} and @code{%o}, respectively)
are displayed,
but the labels are not bound to results,
and the labels are not appended to the @code{labels} list.
Since labels are not bound to results,
garbage collection can recover the memory taken up by the results.

Otherwise input and output result labels are bound to results,
and the labels are appended to the @code{labels} list.

Intermediate expression labels (@code{%t}) are not affected by @code{nolabels};
whether @code{nolabels} is @code{true} or @code{false},
intermediate expression labels are bound and appended to the @code{labels} list.

See also @code{batch}, @code{load}, and @code{labels}.

@end defvr

@c NEEDS WORK
@defvr {Option variable} optionset
Default value: @code{false}

When @code{optionset} is @code{true}, Maxima prints out a
message whenever a Maxima option is reset.  This is useful if the
user is doubtful of the spelling of some option and wants to make sure
that the variable he assigned a value to was truly an option variable.

@end defvr

@deffn {Function} playback ()
@deffnx {Function} playback (@var{n})
@deffnx {Function} playback ([@var{m}, @var{n}])
@deffnx {Function} playback ([@var{m}])
@deffnx {Function} playback (input)
@deffnx {Function} playback (slow)
@deffnx {Function} playback (time)
@deffnx {Function} playback (grind)
Displays input, output, and intermediate expressions,
without recomputing them.
@code{playback} only displays the expressions bound to labels;
any other output (such as text printed by @code{print} or @code{describe}, or error messages)
is not displayed.
See also @code{labels}.

@code{playback} quotes its arguments.
The quote-quote operator @code{'@w{}'} defeats quotation.
@code{playback} always returns @code{done}.

@code{playback ()} (with no arguments) displays all input, output, and intermediate expressions
generated so far.
An output expression is displayed even if it was suppressed by the @code{$} terminator
when it was originally computed.

@code{playback (@var{n})} displays the most recent @var{n} expressions.
Each input, output, and intermediate expression counts as one.

@code{playback ([@var{m}, @var{n}])} displays input, output, and intermediate expressions
with numbers from @var{m} through @var{n}, inclusive.

@code{playback ([@var{m}])} is equivalent to @code{playback ([@var{m}, @var{m}])};
this usually prints one pair of input and output expressions.

@code{playback (input)} displays all input expressions generated so far.

@code{playback (slow)} pauses between expressions
and waits for the user to press @code{enter}.
This behavior is similar to @code{demo}.
@c WHAT DOES THE FOLLOWING MEAN ???
@code{playback (slow)} is useful in conjunction with @code{save} or @code{stringout}
when creating a secondary-storage file in order to pick out useful expressions.

@code{playback (time)} displays the computation time for each expression.
@c DON'T BOTHER TO MENTION OBSOLETE OPTIONS !!!
@c The arguments @code{gctime} and @code{totaltime} have the same effect as @code{time}.

@code{playback (grind)} displays input expressions
in the same format as the @code{grind} function.
Output expressions are not affected by the @code{grind} option.
See @code{grind}.

Arguments may be combined, e.g.,
@code{playback ([5, 10], grind, time, slow)}.
@c APPEARS TO BE input INTERSECT (UNION OF ALL OTHER ARGUMENTS). CORRECT ???

@end deffn

@c NEEDS WORK ESPECIALLY EXAMPLES
@c WHOLE BUSINESS WITH PROPERTIES IS PRETTY CONFUSING, TRY TO CLEAR IT UP
@deffn {Function} printprops (@var{a}, @var{i})
@deffnx {Function} printprops ([@var{a_1}, ..., @var{a_n}], @var{i})
@deffnx {Function} printprops (all, @var{i})
Displays the property with the indicator @var{i}
associated with the atom @var{a}. @var{a} may also be a list of atoms or the atom
@code{all} in which case all of the atoms with the given property will be
used.  For example, @code{printprops ([f, g], atvalue)}.  @code{printprops} is for
properties that cannot otherwise be displayed, i.e. for
@code{atvalue}, @code{atomgrad}, @code{gradef}, and @code{matchdeclare}.

@end deffn

@defvr {Option variable} prompt
Default value: @code{_}

@code{prompt} is the prompt symbol of the @code{demo} function,
@code{playback (slow)} mode, and the Maxima break loop (as invoked by @code{break}).

@end defvr

@deffn {Function} quit ()
Terminates the Maxima session.
Note that the function must be invoked as @code{quit();} or @code{quit()$},
not @code{quit} by itself.

To stop a lengthy computation,
type @code{control-C}.
The default action is to return to the Maxima prompt.
If @code{*debugger-hook*} is @code{nil},
@code{control-C} opens the Lisp debugger.
See also @code{debugging}.

@end deffn

@deffn {Function} remfunction (@var{f_1}, ..., @var{f_n})
@deffnx {Function} remfunction (all)
Unbinds the function definitions of the symbols @var{f_1}, ..., @var{f_n}.
The arguments may be the names of ordinary functions (created by @code{:=} or @code{define})
or macro functions (created by @code{::=}).

@code{remfunction (all)} unbinds all function definitions.

@code{remfunction} quotes its arguments.

@code{remfunction} returns a list of the symbols for which the function definition was unbound.
@code{false} is returned in place of any symbol for which there is no function definition.

@end deffn

@deffn {Function} reset ()
Resets many global variables and options, and some other variables, to their default values.

@code{reset} processes the variables on the Lisp list @code{*variable-initial-values*}.
The Lisp macro @code{defmvar} puts variables on this list (among other actions).
Many, but not all, global variables and options are defined by @code{defmvar},
and some variables defined by @code{defmvar} are not global variables or options.

@end deffn

@defvr {Option variable} showtime
Default value: @code{false}

When @code{showtime} is @code{true}, the computation time and elapsed time is
printed with each output expression.

The computation time is always recorded,
so @code{time} and @code{playback} can display the computation time
even when @code{showtime} is @code{false}.

See also @code{timer}.

@end defvr

@c IS THIS ANY DIFFERENT FROM ASSIGNING A PROPERTY ??
@c THIS REALLY SEEMS LIKE A HACK
@deffn {Function} sstatus (@var{feature}, @var{package})
Sets the status of @var{feature} in @var{package}.
After @code{sstatus (@var{feature}, @var{package})} is executed,
@code{status (@var{feature}, @var{package})} returns @code{true}.
This can be useful for package writers, to
keep track of what features they have loaded in.

@end deffn

@c NEEDS EXPANSION, EXAMPLES
@deffn {Function} to_lisp ()
Enters the Lisp system under Maxima. @code{(to-maxima)} returns to Maxima.

@end deffn

@defvr {System variable} values
Initial value: @code{[]}

@code{values} is a list of all bound user variables (not Maxima options or switches).
The list comprises symbols bound by @code{:} , @code{::}, or @code{:=}.

@end defvr