1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
|
@c end concepts Number Theory
@menu
* Definitions for Number Theory::
@end menu
@node Definitions for Number Theory, , Number Theory, Number Theory
@section Definitions for Number Theory
@deffn {Function} bern (@var{n})
Returns the @var{n}'th Bernoulli number for integer @var{n}.
@c WELL, ACTUALLY bern SIMPLIFIES, LIKE FACTORIAL -- DO WE WANT TO GET INTO THAT ???
@c OR JUST PRETEND IT'S "RETURNED" ???
Bernoulli numbers equal to zero are suppressed if @code{zerobern} is @code{false}.
See also @code{burn}.
@example
(%i1) zerobern: true$
(%i2) map (bern, [0, 1, 2, 3, 4, 5, 6, 7, 8]);
1 1 1 1 1
(%o2) [1, - -, -, 0, - --, 0, --, 0, - --]
2 6 30 42 30
(%i3) zerobern: false$
(%i4) map (bern, [0, 1, 2, 3, 4, 5, 6, 7, 8]);
1 1 1 5 691 7 3617 43867
(%o4) [1, - -, -, - --, --, - ----, -, - ----, -----]
2 6 30 66 2730 6 510 798
@end example
@end deffn
@deffn {Function} bernpoly (@var{x}, @var{n})
Returns the @var{n}'th Bernoulli polynomial in the
variable @var{x}.
@end deffn
@deffn {Function} bfzeta (@var{s}, @var{n})
Returns the Riemann zeta function for the argument @var{s}.
The return value is a big float (bfloat);
@var{n} is the number of digits in the return value.
@code{load ("bffac")} loads this function.
@end deffn
@deffn {Function} bfhzeta (@var{s}, @var{h}, @var{n})
Returns the Hurwitz zeta function for the arguments @var{s} and @var{h}.
The return value is a big float (bfloat);
@var{n} is the number of digits in the return value.
The Hurwitz zeta function is defined as
@example
sum ((k+h)^-s, k, 0, inf)
@end example
@code{load ("bffac")} loads this function.
@end deffn
@deffn {Function} binomial (@var{x}, @var{y})
The binomial coefficient @code{@var{x}!/(@var{y}! (@var{x} - @var{y})!)}.
If @var{x} and @var{y} are integers, then the numerical value of the binomial
coefficient is computed.
If @var{y}, or @var{x - y}, is an integer,
the binomial coefficient is expressed as a polynomial.
Examples:
@c ===beg===
@c binomial (11, 7);
@c 11! / 7! / (11 - 7)!;
@c binomial (x, 7);
@c binomial (x + 7, x);
@c binomial (11, y);
@c ===end===
@example
(%i1) binomial (11, 7);
(%o1) 330
(%i2) 11! / 7! / (11 - 7)!;
(%o2) 330
(%i3) binomial (x, 7);
(x - 6) (x - 5) (x - 4) (x - 3) (x - 2) (x - 1) x
(%o3) -------------------------------------------------
5040
(%i4) binomial (x + 7, x);
(x + 1) (x + 2) (x + 3) (x + 4) (x + 5) (x + 6) (x + 7)
(%o4) -------------------------------------------------------
5040
(%i5) binomial (11, y);
(%o5) binomial(11, y)
@end example
@end deffn
@deffn {Function} burn (@var{n})
Returns the @var{n}'th Bernoulli number for integer @var{n}.
@code{burn} may be more efficient than @code{bern} for large, isolated @var{n}
(perhaps @var{n} greater than 105 or so), @c CLAIM MADE IN bffac.usg !!!
as @code{bern} computes all the Bernoulli numbers up to index @var{n} before returning.
@c STATEMENTS ABOUT TIMING NEED VERIFICATION !!!
@c CAN'T VERIFY NOW AS burn IS BROKEN IN 5.9.1 AND CVS BUILD AT PRESENT !!!
@c (BERN(402) takes about 645 secs vs 13.5 secs for BURN(402).
@c The time to compute @code{bern} is approximately exponential,
@c while the time to compute @code{burn} is approximately cubic.
@c But if next you do BERN(404), it only takes 12 secs,
@c since BERN remembers all in an array, whereas BURN(404) will take
@c maybe 14 secs or maybe 25, depending on whether Maxima needs to
@c BFLOAT a better value of %PI.)
@code{burn} exploits the observation that (rational) Bernoulli numbers can be
approximated by (transcendental) zetas with tolerable efficiency.
@code{load ("bffac")} loads this function.
@end deffn
@deffn {Function} cf (@var{expr})
Converts @var{expr} into a continued fraction.
@var{expr} is an expression
comprising continued fractions and square roots of integers.
Operands in the expression may be combined with arithmetic operators.
Aside from continued fractions and square roots,
factors in the expression must be integer or rational numbers.
Maxima does not know about operations on continued fractions outside of @code{cf}.
@code{cf} evaluates its arguments after binding @code{listarith} to @code{false}.
@code{cf} returns a continued fraction, represented as a list.
A continued fraction @code{a + 1/(b + 1/(c + ...))}
is represented by the list @code{[a, b, c, ...]}.
The list elements @code{a}, @code{b}, @code{c}, ... must evaluate to integers.
@var{expr} may also contain @code{sqrt (n)} where @code{n} is an integer.
In this case @code{cf} will give as many
terms of the continued fraction as the value of the variable
@code{cflength} times the period.
A continued fraction can be evaluated to a number
by evaluating the arithmetic representation
returned by @code{cfdisrep}.
See also @code{cfexpand} for another way to evaluate a continued fraction.
See also @code{cfdisrep}, @code{cfexpand}, and @code{cflength}.
Examples:
@itemize @bullet
@item
@var{expr} is an expression comprising continued fractions and square roots of integers.
@example
(%i1) cf ([5, 3, 1]*[11, 9, 7] + [3, 7]/[4, 3, 2]);
(%o1) [59, 17, 2, 1, 1, 1, 27]
(%i2) cf ((3/17)*[1, -2, 5]/sqrt(11) + (8/13));
(%o2) [0, 1, 1, 1, 3, 2, 1, 4, 1, 9, 1, 9, 2]
@end example
@item
@code{cflength} controls how many periods of the continued fraction
are computed for algebraic, irrational numbers.
@example
(%i1) cflength: 1$
(%i2) cf ((1 + sqrt(5))/2);
(%o2) [1, 1, 1, 1, 2]
(%i3) cflength: 2$
(%i4) cf ((1 + sqrt(5))/2);
(%o4) [1, 1, 1, 1, 1, 1, 1, 2]
(%i5) cflength: 3$
(%i6) cf ((1 + sqrt(5))/2);
(%o6) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]
@end example
@item
A continued fraction can be evaluated by evaluating the arithmetic representation
returned by @code{cfdisrep}.
@example
(%i1) cflength: 3$
(%i2) cfdisrep (cf (sqrt (3)))$
(%i3) ev (%, numer);
(%o3) 1.731707317073171
@end example
@item
Maxima does not know about operations on continued fractions outside of @code{cf}.
@example
(%i1) cf ([1,1,1,1,1,2] * 3);
(%o1) [4, 1, 5, 2]
(%i2) cf ([1,1,1,1,1,2]) * 3;
(%o2) [3, 3, 3, 3, 3, 6]
@end example
@end itemize
@end deffn
@c NEEDS CLARIFICATION -- MAKE EXPLICIT HOW list IS RELATED TO a, b, c, ...
@c ALSO, CAN list CONTAIN ANYTHING OTHER THAN LITERAL INTEGERS ??
@deffn {Function} cfdisrep (@var{list})
Constructs and returns an ordinary arithmetic expression
of the form @code{a + 1/(b + 1/(c + ...))}
from the list representation of a continued fraction @code{[a, b, c, ...]}.
@example
(%i1) cf ([1, 2, -3] + [1, -2, 1]);
(%o1) [1, 1, 1, 2]
(%i2) cfdisrep (%);
1
(%o2) 1 + ---------
1
1 + -----
1
1 + -
2
@end example
@end deffn
@deffn {Function} cfexpand (@var{x})
Returns a matrix of the numerators and denominators of the
last (column 1) and next-to-last (column 2) convergents of the continued fraction @var{x}.
@example
(%i1) cf (rat (ev (%pi, numer)));
`rat' replaced 3.141592653589793 by 103993//33102 = 3.141592653011902
(%o1) [3, 7, 15, 1, 292]
(%i2) cfexpand (%);
[ 103993 355 ]
(%o2) [ ]
[ 33102 113 ]
(%i3) %[1,1]/%[2,1], numer;
(%o3) 3.141592653011902
@end example
@end deffn
@defvr {Option variable} cflength
Default value: 1
@code{cflength} controls the number of terms of the continued
fraction the function @code{cf} will give, as the value @code{cflength} times the
period. Thus the default is to give one period.
@example
(%i1) cflength: 1$
(%i2) cf ((1 + sqrt(5))/2);
(%o2) [1, 1, 1, 1, 2]
(%i3) cflength: 2$
(%i4) cf ((1 + sqrt(5))/2);
(%o4) [1, 1, 1, 1, 1, 1, 1, 2]
(%i5) cflength: 3$
(%i6) cf ((1 + sqrt(5))/2);
(%o6) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]
@end example
@end defvr
@deffn {Function} divsum (@var{n}, @var{k})
@deffnx {Function} divsum (@var{n})
@code{divsum (@var{n}, @var{k})} returns the sum of the divisors of @var{n}
raised to the @var{k}'th power.
@code{divsum (@var{n})} returns the sum of the divisors of @var{n}.
@example
(%i1) divsum (12);
(%o1) 28
(%i2) 1 + 2 + 3 + 4 + 6 + 12;
(%o2) 28
(%i3) divsum (12, 2);
(%o3) 210
(%i4) 1^2 + 2^2 + 3^2 + 4^2 + 6^2 + 12^2;
(%o4) 210
@end example
@end deffn
@deffn {Function} euler (@var{n})
Returns the @var{n}'th Euler number for nonnegative integer @var{n}.
For the Euler-Mascheroni constant, see @code{%gamma}.
@example
(%i1) map (euler, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
(%o1) [1, 0, - 1, 0, 5, 0, - 61, 0, 1385, 0, - 50521]
@end example
@end deffn
@defvr {Constant} %gamma
The Euler-Mascheroni constant, 0.5772156649015329 ....
@c DOUBTLESS THERE IS MORE TO SAY HERE.
@end defvr
@deffn {Function} factorial (@var{x})
Represents the factorial function. Maxima treats @code{factorial (@var{x})} the same as @code{@var{x}!}.
See @code{!}.
@end deffn
@deffn {Function} fib (@var{n})
Returns the @var{n}'th Fibonacci number.
@code{fib(0)} equal to 0 and @code{fib(1)} equal to 1,
and
@code{fib (-@var{n})} equal to @code{(-1)^(@var{n} + 1) * fib(@var{n})}.
After calling @code{fib},
@code{prevfib} is equal to @code{fib (@var{x} - 1)},
the Fibonacci number preceding the last one computed.
@example
(%i1) map (fib, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
(%o1) [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
@end example
@end deffn
@deffn {Function} fibtophi (@var{expr})
Expresses Fibonacci numbers in terms of the constant @code{%phi},
which is @code{(1 + sqrt(5))/2}, approximately 1.61803399.
@c SEEMS MISPLACED -- THIS WANTS TO BE UNDER %phi !!!
By default, Maxima does not know about @code{%phi}.
After executing @code{tellrat (%phi^2 - %phi - 1)} and @code{algebraic: true},
@code{ratsimp} can simplify some expressions containing @code{%phi}.
@example
(%i1) fibtophi (fib (n));
n n
%phi - (1 - %phi)
(%o1) -------------------
2 %phi - 1
(%i2) fib (n-1) + fib (n) - fib (n+1);
(%o2) - fib(n + 1) + fib(n) + fib(n - 1)
(%i3) ratsimp (fibtophi (%));
(%o3) 0
@end example
@end deffn
@deffn {Function} ifactors (@var{n})
For a positive integer @var{n} returns the factorization of @var{n}. If
@code{n=p1^e1..pk^nk} is the decomposition of @var{n} into prime
factors, ifactors returns @code{[[p1, e1], ... , [pk, ek]]}.
Factorization methods used are trial divisions by primes up to 9973,
Pollard's rho method and elliptic curve method.
@example
(%i1) ifactors(51575319651600);
(%o1) [[2, 4], [3, 2], [5, 2], [1583, 1], [9050207, 1]]
(%i2) apply("*", map(lambda([u], u[1]^u[2]), %));
(%o2) 51575319651600
@end example
@end deffn
@deffn {Function} inrt (@var{x}, @var{n})
Returns the integer @var{n}'th root of the absolute value of @var{x}.
@example
(%i1) l: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]$
(%i2) map (lambda ([a], inrt (10^a, 3)), l);
(%o2) [2, 4, 10, 21, 46, 100, 215, 464, 1000, 2154, 4641, 10000]
@end example
@end deffn
@deffn {Function} inv_mod (@var{n}, @var{m})
Computes the inverse of @var{n} modulo @var{m}.
@code{inv_mod (n,m)} returns @code{false},
if @var{n} is a zero divisor modulo @var{m}.
@example
(%i1) inv_mod(3, 41);
(%o1) 14
(%i2) ratsimp(3^-1), modulus=41;
(%o2) 14
(%i3) inv_mod(3, 42);
(%o3) false
@end example
@end deffn
@deffn {Function} jacobi (@var{p}, @var{q})
Returns the Jacobi symbol of @var{p} and @var{q}.
@example
(%i1) l: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]$
(%i2) map (lambda ([a], jacobi (a, 9)), l);
(%o2) [1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0]
@end example
@end deffn
@deffn {Function} lcm (@var{expr_1}, ..., @var{expr_n})
Returns the least common multiple of its arguments.
The arguments may be general expressions as well as integers.
@code{load ("functs")} loads this function.
@end deffn
@deffn {Function} minfactorial (@var{expr})
Examines @var{expr} for occurrences of two factorials
which differ by an integer.
@code{minfactorial} then turns one into a polynomial times the other.
@c I CAN'T TELL WHAT THIS IS SUPPOSED TO MEAN. !!!
@c minfactorial DOESN'T SEEM TO DO ANYTHING binomial DOESN'T DO BY ITSELF !!!
@c LOOKING AT THE minfactorial CODE DOESN'T HELP !!!
@c If exp involves binomial coefficients then they will be
@c converted into ratios of factorials.
@example
(%i1) n!/(n+2)!;
n!
(%o1) --------
(n + 2)!
(%i2) minfactorial (%);
1
(%o2) ---------------
(n + 1) (n + 2)
@end example
@end deffn
@deffn {Function} power_mod (@var{a}, @var{n}, @var{m})
Uses a modular algorithm to compute @code{a^n mod m}
where @var{a} and @var{n} are integers and @var{m} is a positive integer.
If @var{n} is negative, @code{inv_mod} is used to find the modular inverse.
@example
(%i1) power_mod(3, 15, 5);
(%o1) 2
(%i2) mod(3^15,5);
(%o2) 2
(%i3) power_mod(2, -1, 5);
(%o3) 3
(%i4) inv_mod(2,5);
(%o4) 3
@end example
@end deffn
@deffn {Function} next_prime (@var{n})
Returns the smallest prime bigger than @var{n}.
@example
(%i1) next_prime(27);
(%o1) 29
@end example
@end deffn
@deffn {Function} partfrac (@var{expr}, @var{var})
Expands the expression @var{expr} in partial fractions
with respect to the main variable @var{var}. @code{partfrac} does a complete
partial fraction decomposition. The algorithm employed is based on
the fact that the denominators of the partial fraction expansion (the
factors of the original denominator) are relatively prime. The
numerators can be written as linear combinations of denominators, and
the expansion falls out.
@example
(%i1) 1/(1+x)^2 - 2/(1+x) + 2/(2+x);
2 2 1
(%o1) ----- - ----- + --------
x + 2 x + 1 2
(x + 1)
(%i2) ratsimp (%);
x
(%o2) - -------------------
3 2
x + 4 x + 5 x + 2
(%i3) partfrac (%, x);
2 2 1
(%o3) ----- - ----- + --------
x + 2 x + 1 2
(x + 1)
@end example
@end deffn
@c IS IT POSSIBLE TO MAKE A DECLARATION SUCH THAT primep RETURNS true ??
@deffn {Function} primep (@var{n})
Primality test. If @code{primep (n)} returns @code{false}, @var{n} is a
composite number and if it returns @code{true}, @var{n} is a prime number
with very high probability.
For @var{n} less than 341550071728321 a deterministic version of Miller-Rabin's
test is used. If @code{primep (n)} returns @code{true}, then @var{n} is a
prime number.
For @var{n} bigger than 34155071728321 @code{primep} uses
@code{primep_number_of_tests} Miller-Rabin's pseudo-primality tests
and one Lucas pseudo-primality test. The probability that @var{n} will
pass one Miller-Rabin test is less than 1/4. Using the default value 25 for
@code{primep_number_of_tests}, the probability of @var{n} beeing
composite is much smaller that 10^-15.
@end deffn
@defvr {Option variable} primep_number_of_tests
Default value: 25
Number of Miller-Rabin's tests used in @code{primep}.
@end defvr
@deffn {Function} prev_prime (@var{n})
Returns the greatest prime smaller than @var{n}.
@example
(%i1) prev_prime(27);
(%o1) 23
@end example
@end deffn
@deffn {Function} qunit (@var{n})
Returns the principal unit of the real quadratic number field
@code{sqrt (@var{n})} where @var{n} is an integer,
i.e., the element whose norm is unity.
This amounts to solving Pell's equation @code{a^2 - @var{n} b^2 = 1}.
@example
(%i1) qunit (17);
(%o1) sqrt(17) + 4
(%i2) expand (% * (sqrt(17) - 4));
(%o2) 1
@end example
@end deffn
@deffn {Function} totient (@var{n})
Returns the number of integers less than or equal to @var{n} which
are relatively prime to @var{n}.
@end deffn
@defvr {Option variable} zerobern
Default value: @code{true}
When @code{zerobern} is @code{false},
@code{bern} excludes the Bernoulli numbers which are equal to zero.
See @code{bern}.
@end defvr
@deffn {Function} zeta (@var{n})
Returns the Riemann zeta function if @var{x} is a negative integer, 0, 1,
or a positive even number,
and returns a noun form @code{zeta (@var{n})} for all other arguments,
including rational noninteger, floating point, and complex arguments.
See also @code{bfzeta} and @code{zeta%pi}.
@example
(%i1) map (zeta, [-4, -3, -2, -1, 0, 1, 2, 3, 4, 5]);
2 4
1 1 1 %pi %pi
(%o1) [0, ---, 0, - --, - -, inf, ----, zeta(3), ----, zeta(5)]
120 12 2 6 90
@end example
@end deffn
@defvr {Option variable} zeta%pi
Default value: @code{true}
When @code{zeta%pi} is @code{true}, @code{zeta} returns an expression
proportional to @code{%pi^n} for even integer @code{n}.
Otherwise, @code{zeta} returns a noun form @code{zeta (n)}
for even integer @code{n}.
@example
(%i1) zeta%pi: true$
(%i2) zeta (4);
4
%pi
(%o2) ----
90
(%i3) zeta%pi: false$
(%i4) zeta (4);
(%o4) zeta(4)
@end example
@end defvr
|