1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
@menu
* Introduction to interpol::
* Definitions for interpol::
@end menu
@node Introduction to interpol, Definitions for interpol, interpol, interpol
@section Introduction to interpol
Package @code{interpol} defines de Lagrangian, the linear and the cubic
splines methods for polynomial interpolation.
For comments, bugs or suggestions, please contact me at @var{'mario AT edu DOT xunta DOT es'}.
@node Definitions for interpol, , Introduction to interpol, interpol
@section Definitions for interpol
@deffn {Function} lagrange (@var{points})
@deffnx {Function} lagrange (@var{points}, @var{option})
Computes the polynomial interpolation by the Lagrangian method. Argument @var{points} must be either:
@itemize @bullet
@item
a two column matrix, @code{p:matrix([2,4],[5,6],[9,3])},
@item
a list of pairs, @code{p: [[2,4],[5,6],[9,3]]},
@item
a list of numbers, @code{p: [4,6,3]}, in which case the abscissas will be assigned automatically to 1, 2, 3, etc.
@end itemize
In the first two cases the pairs are ordered with respect to the first coordinate before making computations.
With the @var{option} argument it is possible to select the name for the independent variable, which is @code{'x} by default; to define another one, write something like @code{varname='z}.
Examples:
@example
(%i1) load("interpol")$
(%i2) p:[[7,2],[8,2],[1,5],[3,2],[6,7]]$
(%i3) lagrange(p);
4 3 2
73 x - 1402 x + 8957 x - 21152 x + 15624
(%o3) -------------------------------------------
420
(%i4) f(x):=''%;
4 3 2
73 x - 1402 x + 8957 x - 21152 x + 15624
(%o4) f(x) := -------------------------------------------
420
(%i5) /* Evaluate the polynomial at some points */
map(f,[2.3,5/7,%pi]);
919062
(%o5) [- 1.567535000000005, ------,
84035
4 3 2
73 %pi - 1402 %pi + 8957 %pi - 21152 %pi + 15624
---------------------------------------------------]
420
(%i6) %,numer;
(%o6) [- 1.567535000000005, 10.9366573451538,
2.89319655125692]
(%i7) /* Plot the polynomial together with points */
plot2d([f(x),[discrete,p]],[x,0,10],
[gnuplot_curve_styles,
["with lines","with points pointsize 3"]])$
(%i8) /* Change variable name */
lagrange(p, varname=w);
4 3 2
73 w - 1402 w + 8957 w - 21152 w + 15624
(%o8) -------------------------------------------
420
@end example
@end deffn
@deffn {Function} charfun2 (@var{x}, @var{a}, @var{b})
Returns @code{true} if number @var{x} belongs to the interval @math{[a, b)}, and @code{false} otherwise.
@end deffn
@deffn {Function} linearinterpol (@var{points})
@deffnx {Function} linearinterpol (@var{points}, @var{option})
Computes the polynomial interpolation by the linear method. Argument @var{points} must be either:
@itemize @bullet
@item
a two column matrix, @code{p:matrix([2,4],[5,6],[9,3])},
@item
a list of pairs, @code{p: [[2,4],[5,6],[9,3]]},
@item
a list of numbers, @code{p: [4,6,3]}, in which case the abscissas will be assigned automatically to 1, 2, 3, etc.
@end itemize
In the first two cases the pairs are ordered with respect to the first coordinate before making computations.
With the @var{option} argument it is possible to select the name for the independent variable, which is @code{'x} by default; to define another one, write something like @code{varname='z}.
Examples:
@example
(%i1) load("interpol")$
(%i2) p: matrix([7,2],[8,3],[1,5],[3,2],[6,7])$
(%i3) linearinterpol(p);
(%o3) - ((9 x - 39) charfun2(x, minf, 3)
+ (30 - 6 x) charfun2(x, 7, inf)
+ (30 x - 222) charfun2(x, 6, 7)
+ (18 - 10 x) charfun2(x, 3, 6))/6
(%i4) f(x):=''%;
(%o4) f(x) := - ((9 x - 39) charfun2(x, minf, 3)
+ (30 - 6 x) charfun2(x, 7, inf)
+ (30 x - 222) charfun2(x, 6, 7)
+ (18 - 10 x) charfun2(x, 3, 6))/6
(%i5) /* Evaluate the polynomial at some points */
map(f,[7.3,25/7,%pi]);
62 18 - 10 %pi
(%o5) [2.3, --, - -----------]
21 6
(%i6) %,numer;
(%o6) [2.3, 2.952380952380953, 2.235987755982988]
(%i7) /* Plot the polynomial together with points */
plot2d(['(f(x)),[discrete,args(p)]],[x,-5,20],
[gnuplot_curve_styles,
["with lines","with points pointsize 3"]])$
(%i8) /* Change variable name */
linearinterpol(p, varname='s);
(%o8) - ((9 s - 39) charfun2(s, minf, 3)
+ (30 - 6 s) charfun2(s, 7, inf)
+ (30 s - 222) charfun2(s, 6, 7)
+ (18 - 10 s) charfun2(s, 3, 6))/6
@end example
@end deffn
@deffn {Function} cspline (@var{points})
@deffnx {Function} cspline (@var{points}, @var{option1}, @var{option2}, ...)
Computes the polynomial interpolation by the cubic splines method. Argument @var{points} must be either:
@itemize @bullet
@item
a two column matrix, @code{p:matrix([2,4],[5,6],[9,3])},
@item
a list of pairs, @code{p: [[2,4],[5,6],[9,3]]},
@item
a list of numbers, @code{p: [4,6,3]}, in which case the abscissas will be assigned automatically to 1, 2, 3, etc.
@end itemize
In the first two cases the pairs are ordered with respect to the first coordinate before making computations.
There are three options to fit specific needs:
@itemize @bullet
@item
@code{'d1}, default @code{'unknown}, is the first derivative at @math{x_1}; if it is @code{'unknown}, the second derivative at @math{x_1} is made equal to 0 (natural cubic spline); if it is equal to a number, the second derivative is calculated based on this number.
@item
@code{'dn}, default @code{'unknown}, is the first derivative at @math{x_n}; if it is @code{'unknown}, the second derivative at @math{x_n} is made equal to 0 (natural cubic spline); if it is equal to a number, the second derivative is calculated based on this number.
@item
@code{'varname}, default @code{'x}, is the name of the independent variable.
@end itemize
Examples:
@example
(%i1) load("interpol")$
(%i2) p:[[7,2],[8,2],[1,5],[3,2],[6,7]]$
(%i3) /* Unknown first derivatives at the extremes
is equivalent to natural cubic splines */
cspline(p);
3 2
(%o3) ((3477 x - 10431 x - 18273 x + 74547)
3 2
charfun2(x, minf, 3) + (- 15522 x + 372528 x - 2964702 x
+ 7842816) charfun2(x, 7, inf)
3 2
+ (28290 x - 547524 x + 3475662 x - 7184700)
3 2
charfun2(x, 6, 7) + (- 6574 x + 80028 x - 289650 x
+ 345924) charfun2(x, 3, 6))/9864
(%i4) f(x):=''%$
(%i5) /* Some evaluations */
map(f,[2.3,5/7,%pi]), numer;
(%o5) [1.991460766423358, 5.823200187269904,
2.227405312429501]
(%i6) /* Plotting interpolating function */
plot2d(['(f(x)),[discrete,p]],[x,0,10],
[gnuplot_curve_styles,
["with lines","with points pointsize 3"]])$
(%i7) /* New call, but giving values at the derivatives */
cspline(p,d1=0,dn=0);
3 2
(%o7) ((17541 x - 102933 x + 153243 x + 33669)
3 2
charfun2(x, minf, 3) + (- 55692 x + 1280916 x - 9801792 x
+ 24990624) charfun2(x, 7, inf)
3 2
+ (65556 x - 1265292 x + 8021664 x - 16597440)
3 2
charfun2(x, 6, 7) + (- 15580 x + 195156 x - 741024 x
+ 927936) charfun2(x, 3, 6))/20304
(%i8) /* Defining new interpolating function */
g(x):=''%$
(%i9) /* Plotting both functions together */
plot2d(['(f(x)),'(g(x)),[discrete,p]],[x,0,10],
[gnuplot_curve_styles,
["with lines","with lines","with points pointsize 3"]])$
@end example
@end deffn
|