1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on September, 20 2006 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
Karl Berry <karl@freefriends.org>
Olaf Bachmann <obachman@mathematik.uni-kl.de>
and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>
-->
<head>
<title>Maxima Manual: </title>
<meta name="description" content="Maxima Manual: ">
<meta name="keywords" content="Maxima Manual: ">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
color: black;
background: white;
margin-left: 8%;
margin-right: 13%;
}
h1
{
margin-left: +8%;
font-size: 150%;
font-family: sans-serif
}
h2
{
font-size: 125%;
font-family: sans-serif
}
h3
{
font-size: 100%;
font-family: sans-serif
}
h2,h3,h4,h5,h6 { margin-left: +4%; }
div.textbox
{
border: solid;
border-width: thin;
/* width: 100%; */
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em
}
div.titlebox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(200,255,255);
font-family: sans-serif
}
div.synopsisbox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(255,220,255);
/*background: rgb(200,255,255); */
/* font-family: fixed */
}
pre.example
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 1em;
padding-right: 1em;
background: rgb(247,242,180); /* kind of sandy */
/* background: rgb(200,255,255); */ /* sky blue */
font-family: "Lucida Console", monospace
}
div.spacerbox
{
border: none;
padding-top: 2em;
padding-bottom: 2em
}
div.image
{
margin: 0;
padding: 1em;
text-align: center;
}
-->
</style>
<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Top"></a>
<a name="SEC_Top"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="settitle">Maxima Manual
</h1>
<p>Maxima is a computer algebra system, implemented in Lisp.
</p>
<p>Maxima is derived from the Macsyma system,
developed at MIT in the years 1968 through 1982 as part of Project MAC.
MIT turned over a copy of the Macsyma source code to the Department of Energy
in 1982; that version is now known as DOE Macsyma.
A copy of DOE Macsyma was maintained by Professor William F. Schelter
of the University of Texas from 1982 until his death in 2001.
In 1998, Schelter obtained permission from the Department of Energy
to release the DOE Macsyma source code under the GNU Public License,
and in 2000 he initiated the Maxima project at SourceForge to maintain
and develop DOE Macsyma, now called Maxima.
</p>
<table class="menu" border="0" cellspacing="0">
<p>Maxima infrastructure
</p>
<tr><td align="left" valign="top"><a href="maxima_1.html#SEC1">1. Introduction to Maxima</a></td><td> </td><td align="left" valign="top"> Sample Maxima sessions.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_2.html#SEC2">2. Bug Detection and Reporting</a></td><td> </td><td align="left" valign="top"> Finding and reporting bugs in Maxima.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_3.html#SEC5">3. Help</a></td><td> </td><td align="left" valign="top"> Asking for help from within a Maxima session.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_4.html#SEC11">4. Command Line</a></td><td> </td><td align="left" valign="top"> Maxima command line syntax.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_5.html#SEC14">5. Operators</a></td><td> </td><td align="left" valign="top"> Operators used in Maxima expressions.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_6.html#SEC21">6. Expressions</a></td><td> </td><td align="left" valign="top"> Expressions in Maxima.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_7.html#SEC31">7. Simplification</a></td><td> </td><td align="left" valign="top"> Simplifying expressions.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_8.html#SEC33">8. Plotting</a></td><td> </td><td align="left" valign="top"> 2D and 3D graphical output.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_9.html#SEC35">9. Input and Output</a></td><td> </td><td align="left" valign="top"> File input and output.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_10.html#SEC40">10. Floating Point</a></td><td> </td><td align="left" valign="top"> Low level numerical routines.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_11.html#SEC42">11. Contexts</a></td><td> </td><td align="left" valign="top"> Sets of assumed facts.
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Support for specific areas of mathematics
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_12.html#SEC44">12. Polynomials</a></td><td> </td><td align="left" valign="top"> Standard forms for polynomials, and
functions operating on them.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_13.html#SEC47">13. Constants</a></td><td> </td><td align="left" valign="top"> Numerical constants.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_14.html#SEC49">14. Logarithms</a></td><td> </td><td align="left" valign="top"> Manipulation of expressions involving
logarithms.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_15.html#SEC51">15. Trigonometric</a></td><td> </td><td align="left" valign="top"> Manipulating expressions with trig and
inverse trig functions.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_16.html#SEC54">16. Special Functions</a></td><td> </td><td align="left" valign="top"> Special functions
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_17.html#SEC58">17. Elliptic Functions</a></td><td> </td><td align="left" valign="top"> Elliptic Functions and Integrals
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_18.html#SEC62">18. Limits</a></td><td> </td><td align="left" valign="top"> Limits of expressions.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_19.html#SEC64">19. Differentiation</a></td><td> </td><td align="left" valign="top"> Differential calculus.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_20.html#SEC66">20. Integration</a></td><td> </td><td align="left" valign="top"> Integral calculus.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_21.html#SEC72">21. Equations</a></td><td> </td><td align="left" valign="top"> Defining and solving equations.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_22.html#SEC74">22. Differential Equations</a></td><td> </td><td align="left" valign="top"> Defining and solving differential equations.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_23.html#SEC76">23. Numerical</a></td><td> </td><td align="left" valign="top"> Numerical integration, Fourier
transforms, etc.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_24.html#SEC81">24. Statistics</a></td><td> </td><td align="left" valign="top"> Statistical functions.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_25.html#SEC83">25. Arrays</a></td><td> </td><td align="left" valign="top"> Creating and working with arrays.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_26.html#SEC85">26. Matrices and Linear Algebra</a></td><td> </td><td align="left" valign="top"> Matrix operations.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_27.html#SEC91">27. Affine</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_28.html#SEC93">28. itensor</a></td><td> </td><td align="left" valign="top"> Indicial Tensor Manipulation.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_29.html#SEC108">29. ctensor</a></td><td> </td><td align="left" valign="top"> Component Tensor Manipulation.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_30.html#SEC122">30. atensor</a></td><td> </td><td align="left" valign="top"> Algebraic Tensor Manipulation.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_31.html#SEC125">31. Series</a></td><td> </td><td align="left" valign="top"> Taylor and power series.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_32.html#SEC128">32. Number Theory</a></td><td> </td><td align="left" valign="top"> Number theory.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_33.html#SEC130">33. Symmetries</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_34.html#SEC132">34. Groups</a></td><td> </td><td align="left" valign="top"> Abstract algebra.
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Advanced facilities and programming
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_35.html#SEC134">35. Runtime Environment</a></td><td> </td><td align="left" valign="top"> Customization of the Maxima environment.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_36.html#SEC138">36. Miscellaneous Options</a></td><td> </td><td align="left" valign="top"> Options with a global effect on Maxima.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_37.html#SEC142">37. Rules and Patterns</a></td><td> </td><td align="left" valign="top"> User defined pattern matching and
simplification rules.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_38.html#SEC145">38. Lists</a></td><td> </td><td align="left" valign="top"> Manipulation of lists.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_39.html#SEC148">39. Sets</a></td><td> </td><td align="left" valign="top"> Manipulation of sets.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_40.html#SEC155">40. Function Definition</a></td><td> </td><td align="left" valign="top"> Defining functions.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_41.html#SEC162">41. Program Flow</a></td><td> </td><td align="left" valign="top"> Defining Maxima programs.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_42.html#SEC165">42. Debugging</a></td><td> </td><td align="left" valign="top"> Debugging Maxima programs.
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Additional packages
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_43.html#SEC169">43. augmented_lagrangian</a></td><td> </td><td align="left" valign="top"> augmented_lagrangian package.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_44.html#SEC171">44. bode</a></td><td> </td><td align="left" valign="top"> Bode gain and phase plots.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_45.html#SEC173">45. cholesky</a></td><td> </td><td align="left" valign="top"> Cholesky decomposition.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_46.html#SEC175">46. descriptive</a></td><td> </td><td align="left" valign="top"> Descriptive statistics.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_47.html#SEC181">47. diag</a></td><td> </td><td align="left" valign="top"> Jordan matrices.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_48.html#SEC183">48. distrib</a></td><td> </td><td align="left" valign="top"> Probability distributions.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_49.html#SEC187">49. dynamics</a></td><td> </td><td align="left" valign="top"> Graphics for dynamical systems and fractals.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_50.html#SEC190">50. eval_string</a></td><td> </td><td align="left" valign="top"> Maxima expressions as strings.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_51.html#SEC192">51. f90</a></td><td> </td><td align="left" valign="top"> Maxima to fortran translator.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_52.html#SEC194">52. ggf</a></td><td> </td><td align="left" valign="top"> Generating function of sequences.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_53.html#SEC196">53. impdiff</a></td><td> </td><td align="left" valign="top"> Implicit derivatives.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_54.html#SEC198">54. interpol</a></td><td> </td><td align="left" valign="top"> Interpolation package.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_55.html#SEC201">55. lindstedt</a></td><td> </td><td align="left" valign="top"> Lindstedt package.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_56.html#SEC203">56. linearalgebra</a></td><td> </td><td align="left" valign="top"> Functions for linear algebra.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_57.html#SEC206">57. lsquares</a></td><td> </td><td align="left" valign="top"> Least squares.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_58.html#SEC208">58. makeOrders</a></td><td> </td><td align="left" valign="top"> Polynomial utility.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_59.html#SEC210">59. mnewton</a></td><td> </td><td align="left" valign="top"> Newton's method.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_60.html#SEC212">60. numericalio</a></td><td> </td><td align="left" valign="top"> Reading and writing files.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_61.html#SEC215">61. opsubst</a></td><td> </td><td align="left" valign="top"> Substitutions utility.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_62.html#SEC217">62. orthopoly</a></td><td> </td><td align="left" valign="top"> Orthogonal polynomials.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_63.html#SEC226">63. plotdf</a></td><td> </td><td align="left" valign="top"> Direction fields plots.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_64.html#SEC229">64. simplex</a></td><td> </td><td align="left" valign="top"> Linear programming.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_65.html#SEC232">65. simplification</a></td><td> </td><td align="left" valign="top"> Simplification rules and functions.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_66.html#SEC242">66. solve_rec</a></td><td> </td><td align="left" valign="top"> Linear recurrences.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_67.html#SEC245">67. stirling</a></td><td> </td><td align="left" valign="top"> Stirling formula.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_68.html#SEC247">68. stringproc</a></td><td> </td><td align="left" valign="top"> String processing.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_69.html#SEC252">69. unit</a></td><td> </td><td align="left" valign="top"> Units and dimensions package.
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_70.html#SEC255">70. zeilberger</a></td><td> </td><td align="left" valign="top"> Functions for hypergeometric summation.
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Index
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_71.html#SEC263">71. Indices</a></td><td> </td><td align="left" valign="top"> Index.
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
--- The Detailed Node Listing ---
Introduction
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_1.html#SEC1">1. Introduction to Maxima</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Help
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_3.html#SEC6">3.1 Introduction to Help</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_3.html#SEC7">3.2 Lisp and Maxima</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_3.html#SEC8">3.3 Garbage Collection</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_3.html#SEC9">3.4 Documentation</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_3.html#SEC10">3.5 Definitions for Help</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Command Line
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_4.html#SEC12">4.1 Introduction to Command Line</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_4.html#SEC13">4.2 Definitions for Command Line</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Operators
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_5.html#SEC15">5.1 nary</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_5.html#SEC16">5.2 nofix</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_5.html#SEC17">5.3 operator</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_5.html#SEC18">5.4 postfix</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_5.html#SEC19">5.5 prefix</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_5.html#SEC20">5.6 Definitions for Operators</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Expressions
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_6.html#SEC22">6.1 Introduction to Expressions</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_6.html#SEC23">6.2 Assignment</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_6.html#SEC24">6.3 Complex</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_6.html#SEC28">6.7 Inequality</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_6.html#SEC29">6.8 Syntax</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_6.html#SEC30">6.9 Definitions for Expressions</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Simplification
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_7.html#SEC32">7.1 Definitions for Simplification</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Plotting
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_8.html#SEC34">8.1 Definitions for Plotting</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Input and Output
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_9.html#SEC36">9.1 Introduction to Input and Output</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_9.html#SEC37">9.2 Comments</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_9.html#SEC38">9.3 Files</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_9.html#SEC39">9.4 Definitions for Input and Output</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Floating Point
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_10.html#SEC41">10.1 Definitions for Floating Point</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Contexts
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_11.html#SEC43">11.1 Definitions for Contexts</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Polynomials
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_12.html#SEC45">12.1 Introduction to Polynomials</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_12.html#SEC46">12.2 Definitions for Polynomials</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Constants
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_13.html#SEC48">13.1 Definitions for Constants</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Logarithms
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_14.html#SEC50">14.1 Definitions for Logarithms</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Trigonometric
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_15.html#SEC52">15.1 Introduction to Trigonometric</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_15.html#SEC53">15.2 Definitions for Trigonometric</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Special Functions
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_16.html#SEC55">16.1 Introduction to Special Functions</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_16.html#SEC56">16.2 specint</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_16.html#SEC57">16.3 Definitions for Special Functions</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Elliptic Functions
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_17.html#SEC59">17.1 Introduction to Elliptic Functions and Integrals</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_17.html#SEC60">17.2 Definitions for Elliptic Functions</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_17.html#SEC61">17.3 Definitions for Elliptic Integrals</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Limits
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_18.html#SEC63">18.1 Definitions for Limits</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Differentiation
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_19.html#SEC65">19.1 Definitions for Differentiation</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Integration
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_20.html#SEC67">20.1 Introduction to Integration</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_20.html#SEC68">20.2 Definitions for Integration</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Equations
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_21.html#SEC73">21.1 Definitions for Equations</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Differential Equations
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_22.html#SEC75">22.1 Definitions for Differential Equations</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Numerical
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_23.html#SEC77">23.1 Introduction to Numerical</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_23.html#SEC78">23.2 Fourier packages</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_23.html#SEC79">23.3 Definitions for Numerical</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_23.html#SEC80">23.4 Definitions for Fourier Series</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Statistics
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_24.html#SEC82">24.1 Definitions for Statistics</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Arrays
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_25.html#SEC84">25.1 Definitions for Arrays</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Matrices and Linear Algebra
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_26.html#SEC86">26.1 Introduction to Matrices and Linear Algebra</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_26.html#SEC87">26.1.1 Dot</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_26.html#SEC88">26.1.2 Vectors</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_26.html#SEC89">26.1.3 eigen</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_26.html#SEC90">26.2 Definitions for Matrices and Linear Algebra</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Affine
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_27.html#SEC92">27.1 Definitions for Affine</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
itensor
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_28.html#SEC94">28.1 Introduction to itensor</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_28.html#SEC97">28.2 Definitions for itensor</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
ctensor
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_29.html#SEC109">29.1 Introduction to ctensor</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_29.html#SEC110">29.2 Definitions for ctensor</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
atensor
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_30.html#SEC123">30.1 Introduction to atensor</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_30.html#SEC124">30.2 Definitions for atensor</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Series
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_31.html#SEC126">31.1 Introduction to Series</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_31.html#SEC127">31.2 Definitions for Series</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Number Theory
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_32.html#SEC129">32.1 Definitions for Number Theory</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Symmetries
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_33.html#SEC131">33.1 Definitions for Symmetries</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Groups
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_34.html#SEC133">34.1 Definitions for Groups</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Runtime Environment
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_35.html#SEC135">35.1 Introduction for Runtime Environment</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_35.html#SEC136">35.2 Interrupts</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_35.html#SEC137">35.3 Definitions for Runtime Environment</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Miscellaneous Options
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_36.html#SEC139">36.1 Introduction to Miscellaneous Options</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_36.html#SEC140">36.2 Share</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_36.html#SEC141">36.3 Definitions for Miscellaneous Options</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Rules and Patterns
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_37.html#SEC143">37.1 Introduction to Rules and Patterns</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_37.html#SEC144">37.2 Definitions for Rules and Patterns</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Lists
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_38.html#SEC146">38.1 Introduction to Lists</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_38.html#SEC147">38.2 Definitions for Lists</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Sets
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_39.html#SEC149">39.1 Introduction to Sets</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_39.html#SEC154">39.2 Definitions for Sets</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Function Definition
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_40.html#SEC156">40.1 Introduction to Function Definition</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_40.html#SEC157">40.2 Function</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_40.html#SEC160">40.3 Macros</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_40.html#SEC161">40.4 Definitions for Function Definition</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Program Flow
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_41.html#SEC163">41.1 Introduction to Program Flow</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_41.html#SEC164">41.2 Definitions for Program Flow</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
Debugging
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_42.html#SEC168">42.3 Definitions for Debugging</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
augmented_lagrangian
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_43.html#SEC170">43.1 Definitions for augmented_lagrangian</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
bode
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_44.html#SEC172">44.1 Definitions for bode</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
cholesky
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_45.html#SEC174">45.1 Definitions for cholesky</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
descriptive
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_46.html#SEC176">46.1 Introduction to descriptive</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_46.html#SEC177">46.2 Definitions for data manipulation</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_46.html#SEC178">46.3 Definitions for descriptive statistics</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_46.html#SEC179">46.4 Definitions for specific multivariate descriptive statistics</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_46.html#SEC180">46.5 Definitions for statistical graphs</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
diag
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_47.html#SEC182">47.1 Definitions for diag</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
distrib
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_48.html#SEC184">48.1 Introduction to distrib</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_48.html#SEC185">48.2 Definitions for continuous distributions</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_48.html#SEC186">48.3 Definitions for discrete distributions</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
dynamics
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_49.html#SEC188">49.1 Introduction to dynamics</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_49.html#SEC189">49.2 Definitions for dynamics</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
eval_string
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_50.html#SEC191">50.1 Definitions for eval_string</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
f90
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_51.html#SEC193">51.1 Definitions for f90</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
ggf
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_52.html#SEC195">52.1 Definitions for ggf</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
impdiff
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_53.html#SEC197">53.1 Definitions for impdiff</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
interpol
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_54.html#SEC199">54.1 Introduction to interpol</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_54.html#SEC200">54.2 Definitions for interpol</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
lindstedt
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_55.html#SEC202">55.1 Definitions for lindstedt</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
linearalgebra
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_56.html#SEC204">56.1 Introduction to linearalgebra</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_56.html#SEC205">56.2 Definitions for linearalgebra</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
lsquares
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_57.html#SEC207">57.1 Definitions for lsquares</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
makeOrders
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_58.html#SEC209">58.1 Definitions for makeOrders</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
mnewton
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_59.html#SEC211">59.1 Definitions for mnewton</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
numericalio
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_60.html#SEC213">60.1 Introduction to numericalio</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_60.html#SEC214">60.2 Definitions for numericalio</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
opsubst
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_61.html#SEC216">61.1 Definitions for opsubst</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
orthopoly
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_62.html#SEC218">62.1 Introduction to orthogonal polynomials</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_62.html#SEC225">62.2 Definitions for orthogonal polynomials</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
plotdf
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_63.html#SEC227">63.1 Introduction to plotdf</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_63.html#SEC228">63.2 Definitions for plotdf</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
simplex
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_64.html#SEC230">64.1 Introduction to simplex</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_64.html#SEC231">64.2 Definitions for simplex</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
simplification
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_65.html#SEC233">65.1 Introduction to simplification</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_65.html#SEC234">65.2 Definitions for simplification</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
solve_rec
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_66.html#SEC243">66.1 Introduction to solve_rec</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_66.html#SEC244">66.2 Definitions for solve_rec</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
stirling
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_67.html#SEC246">67.1 Definitions for stirling</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
stringproc
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_68.html#SEC248">68.1 Introduction to string processing</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_68.html#SEC249">68.2 Definitions for input and output</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_68.html#SEC250">68.3 Definitions for characters</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_68.html#SEC251">68.4 Definitions for strings</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
unit
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_69.html#SEC253">69.1 Introduction to Units</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_69.html#SEC254">69.2 Definitions for Units</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
zeilberger
</pre></th></tr><tr><td align="left" valign="top"><a href="maxima_70.html#SEC256">70.1 Introduction to zeilberger</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="maxima_70.html#SEC260">70.2 Definitions for zeilberger</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><th colspan="3" align="left" valign="top"><pre class="menu-comment">
</pre></th></tr></table>
<hr size="1">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
<font size="-1">
This document was generated by <em>Robert Dodier</em> on <em>September, 20 2006</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
</font>
<br>
</p>
</body>
</html>
|