File: maxima_16.html

package info (click to toggle)
maxima 5.10.0-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 44,268 kB
  • ctags: 17,987
  • sloc: lisp: 152,894; fortran: 14,667; perl: 14,204; tcl: 10,103; sh: 3,376; makefile: 2,202; ansic: 471; awk: 7
file content (876 lines) | stat: -rw-r--r-- 32,778 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on September, 20 2006 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
            Karl Berry  <karl@freefriends.org>
            Olaf Bachmann <obachman@mathematik.uni-kl.de>
            and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>

-->
<head>
<title>Maxima Manual: 16. Special Functions</title>

<meta name="description" content="Maxima Manual: 16. Special Functions">
<meta name="keywords" content="Maxima Manual: 16. Special Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
    color: black;
    background: white; 
    margin-left: 8%;
    margin-right: 13%;
}

h1
{
    margin-left: +8%;
    font-size: 150%;
    font-family: sans-serif
}

h2
{
    font-size: 125%;
    font-family: sans-serif
}

h3
{
    font-size: 100%;
    font-family: sans-serif
}

h2,h3,h4,h5,h6 { margin-left: +4%; }

div.textbox
{
    border: solid;
    border-width: thin;
    /* width: 100%; */
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em
}

div.titlebox
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em;
    background: rgb(200,255,255);
    font-family: sans-serif
}

div.synopsisbox
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em;
     background: rgb(255,220,255);
    /*background: rgb(200,255,255); */
    /* font-family: fixed */
}

pre.example
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 1em;
    padding-right: 1em;
    background: rgb(247,242,180); /* kind of sandy */
    /* background: rgb(200,255,255); */ /* sky blue */
    font-family: "Lucida Console", monospace
}

div.spacerbox
{
    border: none;
    padding-top: 2em;
    padding-bottom: 2em
}

div.image
{
    margin: 0;
    padding: 1em;
    text-align: center;
}
-->
</style>

<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">

<a name="Special-Functions"></a>
<a name="SEC54"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="maxima_15.html#SEC53" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC55" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima_15.html#SEC51" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_17.html#SEC58" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="chapter"> 16. Special Functions </h1>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#SEC55">16.1 Introduction to Special Functions</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">  
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC56">16.2 specint</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">                     
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC57">16.3 Definitions for Special Functions</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">  
</td></tr>
</table>

<hr size="6">
<a name="Introduction-to-Special-Functions"></a>
<a name="SEC55"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC54" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC56" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC54" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC54" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_17.html#SEC58" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 16.1 Introduction to Special Functions </h2>


<hr size="6">
<a name="specint"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC55" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC57" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC54" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC54" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_17.html#SEC58" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>


<a name="SEC56"></a>
<h2 class="section"> 16.2 specint </h2>
<p><code>hypgeo</code> is a package for handling Laplace transforms of special functions.
<code>hyp</code> is a package for handling generalized Hypergeometric functions.
</p>
<p><code>specint</code> attempts to compute the definite integral
(over the range from zero to infinity) of an expression containing special functions.
When the integrand contains a factor <code>exp (-s t)</code>, 
the result is a Laplace transform.
</p>

<p>The syntax is as follows:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">specint (exp (-s*<var>t</var>) * <var>expr</var>, <var>t</var>);
</pre></td></tr></table>
<p>where <var>t</var> is the variable of integration
and <var>expr</var> is an expression containing special functions.
</p>
<p>If <code>specint</code> cannot compute the integral, the return value may
contain various Lisp symbols, including
<code>other-defint-to-follow-negtest</code>,
<code>other-lt-exponential-to-follow</code>,
<code>product-of-y-with-nofract-indices</code>, etc.; this is a bug.  
</p>

<p>Special function notation follows:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">bessel_j (index, expr)         Bessel function, 1st kind
bessel_y (index, expr)         Bessel function, 2nd kind
bessel_i (index, expr)         Modified Bessel function, 1st kind
bessel_k (index, expr)         Modified Bessel function, 2nd kind
%he[n] (z)                     Hermite polynomial (Nota bene: <code>he</code>, not <code>h</code>. See A&amp;S 22.5.18)
%p[u,v] (z)                    Legendre function
%q[u,v] (z)                    Legendre function, 2nd kind
hstruve[n] (z)                 Struve H function
lstruve[n] (z)                 Struve L function
%f[p,q] ([], [], expr)         Generalized Hypergeometric function
gamma()                        Gamma function
gammagreek(a,z)                Incomplete gamma function
gammaincomplete(a,z)           Tail of incomplete gamma function
slommel
%m[u,k] (z)                    Whittaker function, 1st kind
%w[u,k] (z)                    Whittaker function, 2nd kind
erfc (z)                       Complement of the erf function
ei (z)                         Exponential integral (?)
kelliptic (z)                  Complete elliptic integral of the first kind (K)
%d [n] (z)                     Parabolic cylinder function
</pre></td></tr></table>
<p><code>demo (&quot;hypgeo&quot;)</code> displays several examples of Laplace transforms computed by <code>specint</code>.
</p>
<p>This is a work in progress.  Some of the function names may change.
</p>
<hr size="6">
<a name="Definitions-for-Special-Functions"></a>
<a name="SEC57"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC56" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima_17.html#SEC58" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC54" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC54" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_17.html#SEC58" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 16.3 Definitions for Special Functions </h2>

<dl>
<dt><u>Function:</u> <b>airy</b><i> (<var>x</var>)</i>
<a name="IDX512"></a>
</dt>
<dd><p>The Airy function Ai.
If the argument <var>x</var> is a number,
the numerical value of <code>airy (<var>x</var>)</code> is returned.
Otherwise, an unevaluated expression <code>airy (<var>x</var>)</code> is returned.
</p>
<p>The Airy equation <code>diff (y(x), x, 2) - x y(x) = 0</code> has two linearly independent
solutions, named <code>ai</code> and <code>bi</code>. This equation is very popular
as an approximation to more complicated problems in many mathematical
physics settings.
</p>
<p><code>load (&quot;airy&quot;)</code> loads the functions <code>ai</code>, <code>bi</code>, <code>dai</code>, and <code>dbi</code>.
</p>
<p>The <code>airy</code> package contains routines to compute
<code>ai</code> and <code>bi</code> and their derivatives <code>dai</code> and <code>dbi</code>. The result is
a floating point number if the argument is a number, and an
unevaluated expression otherwise.
</p>
<p>An error occurs if the argument is large
enough to cause an overflow in the exponentials, or a loss of 
accuracy in <code>sin</code> or <code>cos</code>. This makes the range of validity
about -2800 to 10^38 for <code>ai</code> and <code>dai</code>, and -2800 to 25 for <code>bi</code> and <code>dbi</code>.
</p>
<p>These derivative rules are known to Maxima:
</p><ul>
<li>
<code>diff (ai(x), x)</code> yields <code>dai(x)</code>,
</li><li>
<code>diff (dai(x), x)</code> yields <code>x ai(x)</code>,
</li><li>
<code>diff (bi(x), x)</code> yields <code>dbi(x)</code>,
</li><li>
<code>diff (dbi(x), x)</code> yields <code>x bi(x)</code>.
</li></ul>

<p>Function values are computed from the convergent Taylor series for <code>abs(<var>x</var>) &lt; 3</code>,
and from the asymptotic expansions for <code><var>x</var> &lt; -3</code> or <code><var>x</var> &gt; 3</code> as needed.
This results in only very minor numerical discrepancies at <code><var>x</var> = 3</code> and <code><var>x</var> = -3</code>.
For details, see Abramowitz and Stegun,
<i>Handbook of Mathematical Functions</i>, Section 10.4 and Table 10.11.
</p>
<p><code>ev (taylor (ai(x), x, 0, 9), infeval)</code> yields a
floating point Taylor expansions of the function <code>ai</code>.
A similar expression can be constructed for <code>bi</code>.
</p>
</dd></dl>


<dl>
<dt><u>Function:</u> <b>airy_ai</b><i> (<var>x</var>)</i>
<a name="IDX513"></a>
</dt>
<dd><p>The Airy function Ai, as defined in Abramowitz and Stegun,
<i>Handbook of Mathematical Functions</i>, Section 10.4. 
</p>
<p>The Airy equation <code>diff (y(x), x, 2) - x y(x) = 0</code> has two 
linearly independent solutions, <code>y = Ai(x)</code> and <code>y = Bi(x)</code>.
The derivative <code>diff (airy_ai(x), x)</code> is <code>airy_dai(x)</code>.
</p>
<p>If the argument <code>x</code> is a real or complex floating point 
number, the numerical value of <code>airy_ai</code> is returned 
when possible.
</p>
<p>See also <code>airy_bi</code>, <code>airy_dai</code>, <code>airy_dbi</code>.
</p></dd></dl>


<dl>
<dt><u>Function:</u> <b>airy_dai</b><i> (<var>x</var>)</i>
<a name="IDX514"></a>
</dt>
<dd><p>The derivative of the Airy function Ai <code>airy_ai(x)</code>. 
</p>
<p>See <code>airy_ai</code>.
</p></dd></dl>

<dl>
<dt><u>Function:</u> <b>airy_bi</b><i> (<var>x</var>)</i>
<a name="IDX515"></a>
</dt>
<dd><p>The Airy function Bi, as defined in Abramowitz and Stegun,
<i>Handbook of Mathematical Functions</i>, Section 10.4, 
is the second solution of the Airy equation 
<code>diff (y(x), x, 2) - x y(x) = 0</code>.
</p>
<p>If the argument <code>x</code> is a real or complex floating point number,
the numerical value of <code>airy_bi</code> is returned when possible.
In other cases the unevaluated expression is returned.
</p>
<p>The derivative <code>diff (airy_bi(x), x)</code> is <code>airy_dbi(x)</code>.
</p>
<p>See <code>airy_ai</code>, <code>airy_dbi</code>.
</p></dd></dl>


<dl>
<dt><u>Function:</u> <b>airy_dbi</b><i> (<var>x</var>)</i>
<a name="IDX516"></a>
</dt>
<dd><p>The derivative of the Airy Bi function <code>airy_bi(x)</code>.
</p>
<p>See <code>airy_ai</code> and <code>airy_bi</code>.
</p></dd></dl>

<dl>
<dt><u>Function:</u> <b>asympa</b>
<a name="IDX517"></a>
</dt>
<dd><p><code>asympa</code> is a package for asymptotic analysis. The package contains
simplification functions for asymptotic analysis, including the &quot;big O&quot;
and &quot;little o&quot; functions that are widely used in complexity analysis and
numerical analysis.
</p>
<p><code>load (&quot;asympa&quot;)</code> loads this package.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>bessel</b><i> (<var>z</var>, <var>a</var>) </i>
<a name="IDX518"></a>
</dt>
<dd><p>The Bessel function of the first kind.
</p>
<p>This function is deprecated.  Write <code>bessel_j (<var>z</var>, <var>a</var>)</code> instead.
</p>
</dd></dl>


<dl>
<dt><u>Function:</u> <b>bessel_j</b><i> (<var>v</var>, <var>z</var>)</i>
<a name="IDX519"></a>
</dt>
<dd><p>The Bessel function of the first kind of order <em>v</em> and argument <em>z</em>.
</p>
<p><code>bessel_j</code> computes the array <code>besselarray</code> such that
<code>besselarray [i] = bessel_j [i + v - int(v)] (z)</code> for <code>i</code> from zero to <code>int(v)</code>.
</p>
<p><code>bessel_j</code> is defined as
</p><table><tr><td>&nbsp;</td><td><pre class="example">                inf
                ====       k  - v - 2 k  v + 2 k
                \     (- 1)  2          z
                 &gt;    --------------------------
                /        k! gamma(v + k + 1)
                ====
                k = 0
</pre></td></tr></table>

<p>although the infinite series is not used for computations.
</p>
</dd></dl>


<dl>
<dt><u>Function:</u> <b>bessel_y</b><i> (<var>v</var>, <var>z</var>)</i>
<a name="IDX520"></a>
</dt>
<dd><p>The Bessel function of the second kind of order <em>v</em> and argument <em>z</em>.
</p>
<p><code>bessel_y</code> computes the array <code>besselarray</code> such that
<code>besselarray [i] = bessel_y [i + v - int(v)] (z)</code> for <code>i</code> from zero to <code>int(v)</code>.
</p>
<p><code>bessel_y</code> is defined as
</p><table><tr><td>&nbsp;</td><td><pre class="example">              cos(%pi v) bessel_j(v, z) - bessel_j(-v, z)
              -------------------------------------------
                             sin(%pi v)
</pre></td></tr></table>

<p>when <em>v</em> is not an integer.  When <em>v</em> is an integer <em>n</em>,
the limit as <em>v</em> approaches <em>n</em> is taken.
</p>
</dd></dl>


<dl>
<dt><u>Function:</u> <b>bessel_i</b><i> (<var>v</var>, <var>z</var>)</i>
<a name="IDX521"></a>
</dt>
<dd><p>The modified Bessel function of the first kind of order <em>v</em> and argument <em>z</em>.
</p>
<p><code>bessel_i</code> computes the array <code>besselarray</code> such that
<code>besselarray [i] = bessel_i [i + v - int(v)] (z)</code> for <code>i</code> from zero to <code>int(v)</code>.
</p>
<p><code>bessel_i</code> is defined as
</p><table><tr><td>&nbsp;</td><td><pre class="example">                    inf
                    ====   - v - 2 k  v + 2 k
                    \     2          z
                     &gt;    -------------------
                    /     k! gamma(v + k + 1)
                    ====
                    k = 0
</pre></td></tr></table>

<p>although the infinite series is not used for computations.
</p>
</dd></dl>


<dl>
<dt><u>Function:</u> <b>bessel_k</b><i> (<var>v</var>, <var>z</var>)</i>
<a name="IDX522"></a>
</dt>
<dd><p>The modified Bessel function of the second kind of order <em>v</em> and argument <em>z</em>.
</p>
<p><code>bessel_k</code> computes the array <code>besselarray</code> such that
<code>besselarray [i] = bessel_k [i + v - int(v)] (z)</code> for <code>i</code> from zero to <code>int(v)</code>.
</p>
<p><code>bessel_k</code> is defined as
</p><table><tr><td>&nbsp;</td><td><pre class="example">           %pi csc(%pi v) (bessel_i(-v, z) - bessel_i(v, z))
           -------------------------------------------------
                                  2
</pre></td></tr></table>
<p>when <em>v</em> is not an integer.  If <em>v</em> is an integer <em>n</em>,
then the limit as <em>v</em> approaches <em>n</em> is taken.
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>besselexpand</b>
<a name="IDX523"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>Controls expansion of the Bessel functions when the order is half of
an odd integer.  In this case, the Bessel functions can be expanded
in terms of other elementary functions.  When <code>besselexpand</code> is <code>true</code>,
the Bessel function is expanded.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) besselexpand: false$
(%i2) bessel_j (3/2, z);
                                    3
(%o2)                      bessel_j(-, z)
                                    2
(%i3) besselexpand: true$
(%i4) bessel_j (3/2, z);
                          2 z   sin(z)   cos(z)
(%o4)                sqrt(---) (------ - ------)
                          %pi      2       z
                                  z
</pre></td></tr></table></dd></dl>



<dl>
<dt><u>Function:</u> <b>scaled_bessel_i</b><i> (<var>v</var>, <var>z</var>) </i>
<a name="IDX524"></a>
</dt>
<dd><p>The scaled modified Bessel function of the first kind of order
<em>v</em> and argument <em>z</em>.  That is, <em>scaled_bessel_i(v,z) =
exp(-abs(z))*bessel_i(v, z)</em>.  This function is particularly useful
for calculating <em>bessel_i</em> for large <em>z</em>, which is large.
However, maxima does not otherwise know much about this function.  For
symbolic work, it is probably preferable to work with the expression
<code>exp(-abs(z))*bessel_i(v, z)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>scaled_bessel_i0</b><i> (<var>z</var>) </i>
<a name="IDX525"></a>
</dt>
<dd><p>Identical to <code>scaled_bessel_i(0,z)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>scaled_bessel_i1</b><i> (<var>z</var>) </i>
<a name="IDX526"></a>
</dt>
<dd><p>Identical to <code>scaled_bessel_i(1,z)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>beta</b><i> (<var>x</var>, <var>y</var>)</i>
<a name="IDX527"></a>
</dt>
<dd><p>The beta function, defined as <code>gamma(x) gamma(y)/gamma(x + y)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>gamma</b><i> (<var>x</var>)</i>
<a name="IDX528"></a>
</dt>
<dd><p>The gamma function.
</p>

<p>See also <code>makegamma</code>.
</p>
<p>The variable <code>gammalim</code> controls simplification of the gamma function.
</p>
<p>The Euler-Mascheroni constant is <code>%gamma</code>.
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>gammalim</b>
<a name="IDX529"></a>
</dt>
<dd><p>Default value: 1000000
</p>
<p><code>gammalim</code> controls simplification of the gamma
function for integral and rational number arguments.  If the absolute
value of the argument is not greater than <code>gammalim</code>, then
simplification will occur.  Note that the <code>factlim</code> switch controls
simplification of the result of <code>gamma</code> of an integer argument as well.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>intopois</b><i> (<var>a</var>)</i>
<a name="IDX530"></a>
</dt>
<dd><p>Converts <var>a</var> into a Poisson encoding.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>makefact</b><i> (<var>expr</var>)</i>
<a name="IDX531"></a>
</dt>
<dd><p>Transforms instances of binomial, gamma, and beta
functions in <var>expr</var> into factorials.
</p>
<p>See also <code>makegamma</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>makegamma</b><i> (<var>expr</var>)</i>
<a name="IDX532"></a>
</dt>
<dd><p>Transforms instances of binomial, factorial, and beta
functions in <var>expr</var> into gamma functions.
</p>
<p>See also <code>makefact</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>numfactor</b><i> (<var>expr</var>)</i>
<a name="IDX533"></a>
</dt>
<dd><p>Returns the numerical factor multiplying the expression
<var>expr</var>, which should be a single term.
</p>
<p><code>content</code> returns the greatest common divisor (gcd) of all terms in a sum.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) gamma (7/2);
                          15 sqrt(%pi)
(%o1)                     ------------
                               8
(%i2) numfactor (%);
                               15
(%o2)                          --
                               8
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>outofpois</b><i> (<var>a</var>)</i>
<a name="IDX534"></a>
</dt>
<dd><p>Converts <var>a</var> from Poisson encoding to general
representation.  If <var>a</var> is not in Poisson form, <code>outofpois</code> carries out the conversion,
i.e., the return value is <code>outofpois (intopois (<var>a</var>))</code>.
This function is thus a canonical simplifier
for sums of powers of sine and cosine terms of a particular type.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>poisdiff</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX535"></a>
</dt>
<dd><p>Differentiates <var>a</var> with respect to <var>b</var>. <var>b</var> must occur only
in the trig arguments or only in the coefficients.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>poisexpt</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX536"></a>
</dt>
<dd><p>Functionally identical to <code>intopois (<var>a</var>^<var>b</var>)</code>.
<var>b</var> must be a positive integer.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>poisint</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX537"></a>
</dt>
<dd><p>Integrates in a similarly restricted sense (to
<code>poisdiff</code>).  Non-periodic terms in <var>b</var> are dropped if <var>b</var> is in the trig
arguments.
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>poislim</b>
<a name="IDX538"></a>
</dt>
<dd><p>Default value: 5
</p>
<p><code>poislim</code> determines the domain of the coefficients in
the arguments of the trig functions.  The initial value of 5
corresponds to the interval [-2^(5-1)+1,2^(5-1)], or [-15,16], but it
can be set to [-2^(n-1)+1, 2^(n-1)].
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>poismap</b><i> (<var>series</var>, <var>sinfn</var>, <var>cosfn</var>)</i>
<a name="IDX539"></a>
</dt>
<dd><p>will map the functions <var>sinfn</var> on the
sine terms and <var>cosfn</var> on the cosine terms of the Poisson series given.
<var>sinfn</var> and <var>cosfn</var> are functions of two arguments which are a coefficient
and a trigonometric part of a term in series respectively.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>poisplus</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX540"></a>
</dt>
<dd><p>Is functionally identical to <code>intopois (a + b)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>poissimp</b><i> (<var>a</var>)</i>
<a name="IDX541"></a>
</dt>
<dd><p>Converts <var>a</var> into a Poisson series for <var>a</var> in general
representation.
</p>
</dd></dl>

<dl>
<dt><u>Special symbol:</u> <b>poisson</b>
<a name="IDX542"></a>
</dt>
<dd><p>The symbol <code>/P/</code> follows the line label of Poisson series
expressions.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>poissubst</b><i> (<var>a</var>, <var>b</var>, <var>c</var>)</i>
<a name="IDX543"></a>
</dt>
<dd><p>Substitutes <var>a</var> for <var>b</var> in <var>c</var>.  <var>c</var> is a Poisson series.
</p>
<p>(1) Where <var>B</var> is a variable <var>u</var>, <var>v</var>, <var>w</var>, <var>x</var>, <var>y</var>, or <var>z</var>,
then <var>a</var> must be an
expression linear in those variables (e.g., <code>6*u + 4*v</code>).
</p>
<p>(2) Where <var>b</var> is other than those variables, then <var>a</var> must also be
free of those variables, and furthermore, free of sines or cosines.
</p>
<p><code>poissubst (<var>a</var>, <var>b</var>, <var>c</var>, <var>d</var>, <var>n</var>)</code> is a special type of substitution which
operates on <var>a</var> and <var>b</var> as in type (1) above, but where <var>d</var> is a Poisson
series, expands <code>cos(<var>d</var>)</code> and <code>sin(<var>d</var>)</code> to order <var>n</var> so as to provide the
result of substituting <code><var>a</var> + <var>d</var></code> for <var>b</var> in <var>c</var>.  The idea is that <var>d</var> is an
expansion in terms of a small parameter.  For example,
<code>poissubst (u, v, cos(v), %e, 3)</code> yields <code>cos(u)*(1 - %e^2/2) - sin(u)*(%e - %e^3/6)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>poistimes</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX544"></a>
</dt>
<dd><p>Is functionally identical to <code>intopois (<var>a</var>*<var>b</var>)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>poistrim</b><i> ()</i>
<a name="IDX545"></a>
</dt>
<dd><p>is a reserved function name which (if the user has defined
it) gets applied during Poisson multiplication.  It is a predicate
function of 6 arguments which are the coefficients of the <var>u</var>, <var>v</var>, ..., <var>z</var>
in a term.  Terms for which <code>poistrim</code> is <code>true</code> (for the coefficients of
that term) are eliminated during multiplication.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>printpois</b><i> (<var>a</var>)</i>
<a name="IDX546"></a>
</dt>
<dd><p>Prints a Poisson series in a readable format.  In common
with <code>outofpois</code>, it will convert <var>a</var> into a Poisson encoding first, if
necessary.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>psi</b><i> [<var>n</var>](<var>x</var>)</i>
<a name="IDX547"></a>
</dt>
<dd><p>The derivative of <code>log (gamma (<var>x</var>))</code> of order <code><var>n</var>+1</code>.
Thus, <code>psi[0](<var>x</var>)</code> is the first derivative,
<code>psi[1](<var>x</var>)</code> is the second derivative, etc.
</p>
<p>Maxima does not know how, in general, to compute a numerical value of
<code>psi</code>, but it can compute some exact values for rational args.
Several variables control what range of rational args <code>psi</code> will
return an exact value, if possible.  See <code>maxpsiposint</code>,
<code>maxpsinegint</code>, <code>maxpsifracnum</code>, and <code>maxpsifracnum</code>.
That is, <var>x</var> must lie between <code>maxpsinegint</code> and
<code>maxpsiposint</code>.  If the absolute value of the fractional part of
<var>x</var> is rational and has a numerator less than <code>maxpsifracnum</code>
and has a denominator less than <code>maxpsifracdenom</code>, <code>psi</code>
will return an exact value.
</p>
<p>The function <code>bfpsi</code> in the <code>bffac</code> package can compute
numerical values.
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>maxpsiposint</b>
<a name="IDX548"></a>
</dt>
<dd><p>Default value: 20
</p>
<p><code>maxpsiposint</code> is the largest positive value for which
<code>psi[n](x)</code> will try to compute an exact value.
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>maxpsinegint</b>
<a name="IDX549"></a>
</dt>
<dd><p>Default value: -10
</p>
<p><code>maxpsinegint</code> is the most negative value for which
<code>psi[n](x)</code> will try to compute an exact value.  That is if
<var>x</var> is less than <code>maxnegint</code>, <code>psi[n](<var>x</var>)</code> will not
return simplified answer, even if it could.
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>maxpsifracnum</b>
<a name="IDX550"></a>
</dt>
<dd><p>Default value: 4
</p>
<p>Let <var>x</var> be a rational number less than one of the form <code>p/q</code>.
If <code>p</code> is greater than <code>maxpsifracnum</code>, then
<code>psi[<var>n</var>](<var>x</var>)</code> will not try to return a simplified
value.
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>maxpsifracdenom</b>
<a name="IDX551"></a>
</dt>
<dd><p>Default value: 4
</p>
<p>Let <var>x</var> be a rational number less than one of the form <code>p/q</code>.
If <code>q</code> is greater than <code>maxpsifracdeonm</code>, then
<code>psi[<var>n</var>](<var>x</var>)</code> will not try to return a simplified
value.
</p>

</dd></dl>

<hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC54" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima_17.html#SEC58" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
 <font size="-1">
  This document was generated by <em>Robert Dodier</em> on <em>September, 20 2006</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
 </font>
 <br>

</p>
</body>
</html>