1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on September, 20 2006 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
Karl Berry <karl@freefriends.org>
Olaf Bachmann <obachman@mathematik.uni-kl.de>
and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>
-->
<head>
<title>Maxima Manual: 16. Special Functions</title>
<meta name="description" content="Maxima Manual: 16. Special Functions">
<meta name="keywords" content="Maxima Manual: 16. Special Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
color: black;
background: white;
margin-left: 8%;
margin-right: 13%;
}
h1
{
margin-left: +8%;
font-size: 150%;
font-family: sans-serif
}
h2
{
font-size: 125%;
font-family: sans-serif
}
h3
{
font-size: 100%;
font-family: sans-serif
}
h2,h3,h4,h5,h6 { margin-left: +4%; }
div.textbox
{
border: solid;
border-width: thin;
/* width: 100%; */
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em
}
div.titlebox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(200,255,255);
font-family: sans-serif
}
div.synopsisbox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(255,220,255);
/*background: rgb(200,255,255); */
/* font-family: fixed */
}
pre.example
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 1em;
padding-right: 1em;
background: rgb(247,242,180); /* kind of sandy */
/* background: rgb(200,255,255); */ /* sky blue */
font-family: "Lucida Console", monospace
}
div.spacerbox
{
border: none;
padding-top: 2em;
padding-bottom: 2em
}
div.image
{
margin: 0;
padding: 1em;
text-align: center;
}
-->
</style>
<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Special-Functions"></a>
<a name="SEC54"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="maxima_15.html#SEC53" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC55" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima_15.html#SEC51" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_17.html#SEC58" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="chapter"> 16. Special Functions </h1>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#SEC55">16.1 Introduction to Special Functions</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC56">16.2 specint</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC57">16.3 Definitions for Special Functions</a></td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr size="6">
<a name="Introduction-to-Special-Functions"></a>
<a name="SEC55"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC54" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC56" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC54" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC54" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_17.html#SEC58" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 16.1 Introduction to Special Functions </h2>
<hr size="6">
<a name="specint"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC55" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC57" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC54" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC54" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_17.html#SEC58" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="SEC56"></a>
<h2 class="section"> 16.2 specint </h2>
<p><code>hypgeo</code> is a package for handling Laplace transforms of special functions.
<code>hyp</code> is a package for handling generalized Hypergeometric functions.
</p>
<p><code>specint</code> attempts to compute the definite integral
(over the range from zero to infinity) of an expression containing special functions.
When the integrand contains a factor <code>exp (-s t)</code>,
the result is a Laplace transform.
</p>
<p>The syntax is as follows:
</p>
<table><tr><td> </td><td><pre class="example">specint (exp (-s*<var>t</var>) * <var>expr</var>, <var>t</var>);
</pre></td></tr></table>
<p>where <var>t</var> is the variable of integration
and <var>expr</var> is an expression containing special functions.
</p>
<p>If <code>specint</code> cannot compute the integral, the return value may
contain various Lisp symbols, including
<code>other-defint-to-follow-negtest</code>,
<code>other-lt-exponential-to-follow</code>,
<code>product-of-y-with-nofract-indices</code>, etc.; this is a bug.
</p>
<p>Special function notation follows:
</p>
<table><tr><td> </td><td><pre class="example">bessel_j (index, expr) Bessel function, 1st kind
bessel_y (index, expr) Bessel function, 2nd kind
bessel_i (index, expr) Modified Bessel function, 1st kind
bessel_k (index, expr) Modified Bessel function, 2nd kind
%he[n] (z) Hermite polynomial (Nota bene: <code>he</code>, not <code>h</code>. See A&S 22.5.18)
%p[u,v] (z) Legendre function
%q[u,v] (z) Legendre function, 2nd kind
hstruve[n] (z) Struve H function
lstruve[n] (z) Struve L function
%f[p,q] ([], [], expr) Generalized Hypergeometric function
gamma() Gamma function
gammagreek(a,z) Incomplete gamma function
gammaincomplete(a,z) Tail of incomplete gamma function
slommel
%m[u,k] (z) Whittaker function, 1st kind
%w[u,k] (z) Whittaker function, 2nd kind
erfc (z) Complement of the erf function
ei (z) Exponential integral (?)
kelliptic (z) Complete elliptic integral of the first kind (K)
%d [n] (z) Parabolic cylinder function
</pre></td></tr></table>
<p><code>demo ("hypgeo")</code> displays several examples of Laplace transforms computed by <code>specint</code>.
</p>
<p>This is a work in progress. Some of the function names may change.
</p>
<hr size="6">
<a name="Definitions-for-Special-Functions"></a>
<a name="SEC57"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC56" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="maxima_17.html#SEC58" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC54" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC54" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_17.html#SEC58" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 16.3 Definitions for Special Functions </h2>
<dl>
<dt><u>Function:</u> <b>airy</b><i> (<var>x</var>)</i>
<a name="IDX512"></a>
</dt>
<dd><p>The Airy function Ai.
If the argument <var>x</var> is a number,
the numerical value of <code>airy (<var>x</var>)</code> is returned.
Otherwise, an unevaluated expression <code>airy (<var>x</var>)</code> is returned.
</p>
<p>The Airy equation <code>diff (y(x), x, 2) - x y(x) = 0</code> has two linearly independent
solutions, named <code>ai</code> and <code>bi</code>. This equation is very popular
as an approximation to more complicated problems in many mathematical
physics settings.
</p>
<p><code>load ("airy")</code> loads the functions <code>ai</code>, <code>bi</code>, <code>dai</code>, and <code>dbi</code>.
</p>
<p>The <code>airy</code> package contains routines to compute
<code>ai</code> and <code>bi</code> and their derivatives <code>dai</code> and <code>dbi</code>. The result is
a floating point number if the argument is a number, and an
unevaluated expression otherwise.
</p>
<p>An error occurs if the argument is large
enough to cause an overflow in the exponentials, or a loss of
accuracy in <code>sin</code> or <code>cos</code>. This makes the range of validity
about -2800 to 10^38 for <code>ai</code> and <code>dai</code>, and -2800 to 25 for <code>bi</code> and <code>dbi</code>.
</p>
<p>These derivative rules are known to Maxima:
</p><ul>
<li>
<code>diff (ai(x), x)</code> yields <code>dai(x)</code>,
</li><li>
<code>diff (dai(x), x)</code> yields <code>x ai(x)</code>,
</li><li>
<code>diff (bi(x), x)</code> yields <code>dbi(x)</code>,
</li><li>
<code>diff (dbi(x), x)</code> yields <code>x bi(x)</code>.
</li></ul>
<p>Function values are computed from the convergent Taylor series for <code>abs(<var>x</var>) < 3</code>,
and from the asymptotic expansions for <code><var>x</var> < -3</code> or <code><var>x</var> > 3</code> as needed.
This results in only very minor numerical discrepancies at <code><var>x</var> = 3</code> and <code><var>x</var> = -3</code>.
For details, see Abramowitz and Stegun,
<i>Handbook of Mathematical Functions</i>, Section 10.4 and Table 10.11.
</p>
<p><code>ev (taylor (ai(x), x, 0, 9), infeval)</code> yields a
floating point Taylor expansions of the function <code>ai</code>.
A similar expression can be constructed for <code>bi</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>airy_ai</b><i> (<var>x</var>)</i>
<a name="IDX513"></a>
</dt>
<dd><p>The Airy function Ai, as defined in Abramowitz and Stegun,
<i>Handbook of Mathematical Functions</i>, Section 10.4.
</p>
<p>The Airy equation <code>diff (y(x), x, 2) - x y(x) = 0</code> has two
linearly independent solutions, <code>y = Ai(x)</code> and <code>y = Bi(x)</code>.
The derivative <code>diff (airy_ai(x), x)</code> is <code>airy_dai(x)</code>.
</p>
<p>If the argument <code>x</code> is a real or complex floating point
number, the numerical value of <code>airy_ai</code> is returned
when possible.
</p>
<p>See also <code>airy_bi</code>, <code>airy_dai</code>, <code>airy_dbi</code>.
</p></dd></dl>
<dl>
<dt><u>Function:</u> <b>airy_dai</b><i> (<var>x</var>)</i>
<a name="IDX514"></a>
</dt>
<dd><p>The derivative of the Airy function Ai <code>airy_ai(x)</code>.
</p>
<p>See <code>airy_ai</code>.
</p></dd></dl>
<dl>
<dt><u>Function:</u> <b>airy_bi</b><i> (<var>x</var>)</i>
<a name="IDX515"></a>
</dt>
<dd><p>The Airy function Bi, as defined in Abramowitz and Stegun,
<i>Handbook of Mathematical Functions</i>, Section 10.4,
is the second solution of the Airy equation
<code>diff (y(x), x, 2) - x y(x) = 0</code>.
</p>
<p>If the argument <code>x</code> is a real or complex floating point number,
the numerical value of <code>airy_bi</code> is returned when possible.
In other cases the unevaluated expression is returned.
</p>
<p>The derivative <code>diff (airy_bi(x), x)</code> is <code>airy_dbi(x)</code>.
</p>
<p>See <code>airy_ai</code>, <code>airy_dbi</code>.
</p></dd></dl>
<dl>
<dt><u>Function:</u> <b>airy_dbi</b><i> (<var>x</var>)</i>
<a name="IDX516"></a>
</dt>
<dd><p>The derivative of the Airy Bi function <code>airy_bi(x)</code>.
</p>
<p>See <code>airy_ai</code> and <code>airy_bi</code>.
</p></dd></dl>
<dl>
<dt><u>Function:</u> <b>asympa</b>
<a name="IDX517"></a>
</dt>
<dd><p><code>asympa</code> is a package for asymptotic analysis. The package contains
simplification functions for asymptotic analysis, including the "big O"
and "little o" functions that are widely used in complexity analysis and
numerical analysis.
</p>
<p><code>load ("asympa")</code> loads this package.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>bessel</b><i> (<var>z</var>, <var>a</var>) </i>
<a name="IDX518"></a>
</dt>
<dd><p>The Bessel function of the first kind.
</p>
<p>This function is deprecated. Write <code>bessel_j (<var>z</var>, <var>a</var>)</code> instead.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>bessel_j</b><i> (<var>v</var>, <var>z</var>)</i>
<a name="IDX519"></a>
</dt>
<dd><p>The Bessel function of the first kind of order <em>v</em> and argument <em>z</em>.
</p>
<p><code>bessel_j</code> computes the array <code>besselarray</code> such that
<code>besselarray [i] = bessel_j [i + v - int(v)] (z)</code> for <code>i</code> from zero to <code>int(v)</code>.
</p>
<p><code>bessel_j</code> is defined as
</p><table><tr><td> </td><td><pre class="example"> inf
==== k - v - 2 k v + 2 k
\ (- 1) 2 z
> --------------------------
/ k! gamma(v + k + 1)
====
k = 0
</pre></td></tr></table>
<p>although the infinite series is not used for computations.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>bessel_y</b><i> (<var>v</var>, <var>z</var>)</i>
<a name="IDX520"></a>
</dt>
<dd><p>The Bessel function of the second kind of order <em>v</em> and argument <em>z</em>.
</p>
<p><code>bessel_y</code> computes the array <code>besselarray</code> such that
<code>besselarray [i] = bessel_y [i + v - int(v)] (z)</code> for <code>i</code> from zero to <code>int(v)</code>.
</p>
<p><code>bessel_y</code> is defined as
</p><table><tr><td> </td><td><pre class="example"> cos(%pi v) bessel_j(v, z) - bessel_j(-v, z)
-------------------------------------------
sin(%pi v)
</pre></td></tr></table>
<p>when <em>v</em> is not an integer. When <em>v</em> is an integer <em>n</em>,
the limit as <em>v</em> approaches <em>n</em> is taken.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>bessel_i</b><i> (<var>v</var>, <var>z</var>)</i>
<a name="IDX521"></a>
</dt>
<dd><p>The modified Bessel function of the first kind of order <em>v</em> and argument <em>z</em>.
</p>
<p><code>bessel_i</code> computes the array <code>besselarray</code> such that
<code>besselarray [i] = bessel_i [i + v - int(v)] (z)</code> for <code>i</code> from zero to <code>int(v)</code>.
</p>
<p><code>bessel_i</code> is defined as
</p><table><tr><td> </td><td><pre class="example"> inf
==== - v - 2 k v + 2 k
\ 2 z
> -------------------
/ k! gamma(v + k + 1)
====
k = 0
</pre></td></tr></table>
<p>although the infinite series is not used for computations.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>bessel_k</b><i> (<var>v</var>, <var>z</var>)</i>
<a name="IDX522"></a>
</dt>
<dd><p>The modified Bessel function of the second kind of order <em>v</em> and argument <em>z</em>.
</p>
<p><code>bessel_k</code> computes the array <code>besselarray</code> such that
<code>besselarray [i] = bessel_k [i + v - int(v)] (z)</code> for <code>i</code> from zero to <code>int(v)</code>.
</p>
<p><code>bessel_k</code> is defined as
</p><table><tr><td> </td><td><pre class="example"> %pi csc(%pi v) (bessel_i(-v, z) - bessel_i(v, z))
-------------------------------------------------
2
</pre></td></tr></table>
<p>when <em>v</em> is not an integer. If <em>v</em> is an integer <em>n</em>,
then the limit as <em>v</em> approaches <em>n</em> is taken.
</p>
</dd></dl>
<dl>
<dt><u>Option variable:</u> <b>besselexpand</b>
<a name="IDX523"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>Controls expansion of the Bessel functions when the order is half of
an odd integer. In this case, the Bessel functions can be expanded
in terms of other elementary functions. When <code>besselexpand</code> is <code>true</code>,
the Bessel function is expanded.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) besselexpand: false$
(%i2) bessel_j (3/2, z);
3
(%o2) bessel_j(-, z)
2
(%i3) besselexpand: true$
(%i4) bessel_j (3/2, z);
2 z sin(z) cos(z)
(%o4) sqrt(---) (------ - ------)
%pi 2 z
z
</pre></td></tr></table></dd></dl>
<dl>
<dt><u>Function:</u> <b>scaled_bessel_i</b><i> (<var>v</var>, <var>z</var>) </i>
<a name="IDX524"></a>
</dt>
<dd><p>The scaled modified Bessel function of the first kind of order
<em>v</em> and argument <em>z</em>. That is, <em>scaled_bessel_i(v,z) =
exp(-abs(z))*bessel_i(v, z)</em>. This function is particularly useful
for calculating <em>bessel_i</em> for large <em>z</em>, which is large.
However, maxima does not otherwise know much about this function. For
symbolic work, it is probably preferable to work with the expression
<code>exp(-abs(z))*bessel_i(v, z)</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>scaled_bessel_i0</b><i> (<var>z</var>) </i>
<a name="IDX525"></a>
</dt>
<dd><p>Identical to <code>scaled_bessel_i(0,z)</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>scaled_bessel_i1</b><i> (<var>z</var>) </i>
<a name="IDX526"></a>
</dt>
<dd><p>Identical to <code>scaled_bessel_i(1,z)</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>beta</b><i> (<var>x</var>, <var>y</var>)</i>
<a name="IDX527"></a>
</dt>
<dd><p>The beta function, defined as <code>gamma(x) gamma(y)/gamma(x + y)</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>gamma</b><i> (<var>x</var>)</i>
<a name="IDX528"></a>
</dt>
<dd><p>The gamma function.
</p>
<p>See also <code>makegamma</code>.
</p>
<p>The variable <code>gammalim</code> controls simplification of the gamma function.
</p>
<p>The Euler-Mascheroni constant is <code>%gamma</code>.
</p>
</dd></dl>
<dl>
<dt><u>Option variable:</u> <b>gammalim</b>
<a name="IDX529"></a>
</dt>
<dd><p>Default value: 1000000
</p>
<p><code>gammalim</code> controls simplification of the gamma
function for integral and rational number arguments. If the absolute
value of the argument is not greater than <code>gammalim</code>, then
simplification will occur. Note that the <code>factlim</code> switch controls
simplification of the result of <code>gamma</code> of an integer argument as well.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>intopois</b><i> (<var>a</var>)</i>
<a name="IDX530"></a>
</dt>
<dd><p>Converts <var>a</var> into a Poisson encoding.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>makefact</b><i> (<var>expr</var>)</i>
<a name="IDX531"></a>
</dt>
<dd><p>Transforms instances of binomial, gamma, and beta
functions in <var>expr</var> into factorials.
</p>
<p>See also <code>makegamma</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>makegamma</b><i> (<var>expr</var>)</i>
<a name="IDX532"></a>
</dt>
<dd><p>Transforms instances of binomial, factorial, and beta
functions in <var>expr</var> into gamma functions.
</p>
<p>See also <code>makefact</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>numfactor</b><i> (<var>expr</var>)</i>
<a name="IDX533"></a>
</dt>
<dd><p>Returns the numerical factor multiplying the expression
<var>expr</var>, which should be a single term.
</p>
<p><code>content</code> returns the greatest common divisor (gcd) of all terms in a sum.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) gamma (7/2);
15 sqrt(%pi)
(%o1) ------------
8
(%i2) numfactor (%);
15
(%o2) --
8
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>outofpois</b><i> (<var>a</var>)</i>
<a name="IDX534"></a>
</dt>
<dd><p>Converts <var>a</var> from Poisson encoding to general
representation. If <var>a</var> is not in Poisson form, <code>outofpois</code> carries out the conversion,
i.e., the return value is <code>outofpois (intopois (<var>a</var>))</code>.
This function is thus a canonical simplifier
for sums of powers of sine and cosine terms of a particular type.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>poisdiff</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX535"></a>
</dt>
<dd><p>Differentiates <var>a</var> with respect to <var>b</var>. <var>b</var> must occur only
in the trig arguments or only in the coefficients.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>poisexpt</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX536"></a>
</dt>
<dd><p>Functionally identical to <code>intopois (<var>a</var>^<var>b</var>)</code>.
<var>b</var> must be a positive integer.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>poisint</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX537"></a>
</dt>
<dd><p>Integrates in a similarly restricted sense (to
<code>poisdiff</code>). Non-periodic terms in <var>b</var> are dropped if <var>b</var> is in the trig
arguments.
</p>
</dd></dl>
<dl>
<dt><u>Option variable:</u> <b>poislim</b>
<a name="IDX538"></a>
</dt>
<dd><p>Default value: 5
</p>
<p><code>poislim</code> determines the domain of the coefficients in
the arguments of the trig functions. The initial value of 5
corresponds to the interval [-2^(5-1)+1,2^(5-1)], or [-15,16], but it
can be set to [-2^(n-1)+1, 2^(n-1)].
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>poismap</b><i> (<var>series</var>, <var>sinfn</var>, <var>cosfn</var>)</i>
<a name="IDX539"></a>
</dt>
<dd><p>will map the functions <var>sinfn</var> on the
sine terms and <var>cosfn</var> on the cosine terms of the Poisson series given.
<var>sinfn</var> and <var>cosfn</var> are functions of two arguments which are a coefficient
and a trigonometric part of a term in series respectively.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>poisplus</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX540"></a>
</dt>
<dd><p>Is functionally identical to <code>intopois (a + b)</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>poissimp</b><i> (<var>a</var>)</i>
<a name="IDX541"></a>
</dt>
<dd><p>Converts <var>a</var> into a Poisson series for <var>a</var> in general
representation.
</p>
</dd></dl>
<dl>
<dt><u>Special symbol:</u> <b>poisson</b>
<a name="IDX542"></a>
</dt>
<dd><p>The symbol <code>/P/</code> follows the line label of Poisson series
expressions.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>poissubst</b><i> (<var>a</var>, <var>b</var>, <var>c</var>)</i>
<a name="IDX543"></a>
</dt>
<dd><p>Substitutes <var>a</var> for <var>b</var> in <var>c</var>. <var>c</var> is a Poisson series.
</p>
<p>(1) Where <var>B</var> is a variable <var>u</var>, <var>v</var>, <var>w</var>, <var>x</var>, <var>y</var>, or <var>z</var>,
then <var>a</var> must be an
expression linear in those variables (e.g., <code>6*u + 4*v</code>).
</p>
<p>(2) Where <var>b</var> is other than those variables, then <var>a</var> must also be
free of those variables, and furthermore, free of sines or cosines.
</p>
<p><code>poissubst (<var>a</var>, <var>b</var>, <var>c</var>, <var>d</var>, <var>n</var>)</code> is a special type of substitution which
operates on <var>a</var> and <var>b</var> as in type (1) above, but where <var>d</var> is a Poisson
series, expands <code>cos(<var>d</var>)</code> and <code>sin(<var>d</var>)</code> to order <var>n</var> so as to provide the
result of substituting <code><var>a</var> + <var>d</var></code> for <var>b</var> in <var>c</var>. The idea is that <var>d</var> is an
expansion in terms of a small parameter. For example,
<code>poissubst (u, v, cos(v), %e, 3)</code> yields <code>cos(u)*(1 - %e^2/2) - sin(u)*(%e - %e^3/6)</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>poistimes</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX544"></a>
</dt>
<dd><p>Is functionally identical to <code>intopois (<var>a</var>*<var>b</var>)</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>poistrim</b><i> ()</i>
<a name="IDX545"></a>
</dt>
<dd><p>is a reserved function name which (if the user has defined
it) gets applied during Poisson multiplication. It is a predicate
function of 6 arguments which are the coefficients of the <var>u</var>, <var>v</var>, ..., <var>z</var>
in a term. Terms for which <code>poistrim</code> is <code>true</code> (for the coefficients of
that term) are eliminated during multiplication.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>printpois</b><i> (<var>a</var>)</i>
<a name="IDX546"></a>
</dt>
<dd><p>Prints a Poisson series in a readable format. In common
with <code>outofpois</code>, it will convert <var>a</var> into a Poisson encoding first, if
necessary.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>psi</b><i> [<var>n</var>](<var>x</var>)</i>
<a name="IDX547"></a>
</dt>
<dd><p>The derivative of <code>log (gamma (<var>x</var>))</code> of order <code><var>n</var>+1</code>.
Thus, <code>psi[0](<var>x</var>)</code> is the first derivative,
<code>psi[1](<var>x</var>)</code> is the second derivative, etc.
</p>
<p>Maxima does not know how, in general, to compute a numerical value of
<code>psi</code>, but it can compute some exact values for rational args.
Several variables control what range of rational args <code>psi</code> will
return an exact value, if possible. See <code>maxpsiposint</code>,
<code>maxpsinegint</code>, <code>maxpsifracnum</code>, and <code>maxpsifracnum</code>.
That is, <var>x</var> must lie between <code>maxpsinegint</code> and
<code>maxpsiposint</code>. If the absolute value of the fractional part of
<var>x</var> is rational and has a numerator less than <code>maxpsifracnum</code>
and has a denominator less than <code>maxpsifracdenom</code>, <code>psi</code>
will return an exact value.
</p>
<p>The function <code>bfpsi</code> in the <code>bffac</code> package can compute
numerical values.
</p>
</dd></dl>
<dl>
<dt><u>Option variable:</u> <b>maxpsiposint</b>
<a name="IDX548"></a>
</dt>
<dd><p>Default value: 20
</p>
<p><code>maxpsiposint</code> is the largest positive value for which
<code>psi[n](x)</code> will try to compute an exact value.
</p>
</dd></dl>
<dl>
<dt><u>Option variable:</u> <b>maxpsinegint</b>
<a name="IDX549"></a>
</dt>
<dd><p>Default value: -10
</p>
<p><code>maxpsinegint</code> is the most negative value for which
<code>psi[n](x)</code> will try to compute an exact value. That is if
<var>x</var> is less than <code>maxnegint</code>, <code>psi[n](<var>x</var>)</code> will not
return simplified answer, even if it could.
</p>
</dd></dl>
<dl>
<dt><u>Option variable:</u> <b>maxpsifracnum</b>
<a name="IDX550"></a>
</dt>
<dd><p>Default value: 4
</p>
<p>Let <var>x</var> be a rational number less than one of the form <code>p/q</code>.
If <code>p</code> is greater than <code>maxpsifracnum</code>, then
<code>psi[<var>n</var>](<var>x</var>)</code> will not try to return a simplified
value.
</p>
</dd></dl>
<dl>
<dt><u>Option variable:</u> <b>maxpsifracdenom</b>
<a name="IDX551"></a>
</dt>
<dd><p>Default value: 4
</p>
<p>Let <var>x</var> be a rational number less than one of the form <code>p/q</code>.
If <code>q</code> is greater than <code>maxpsifracdeonm</code>, then
<code>psi[<var>n</var>](<var>x</var>)</code> will not try to return a simplified
value.
</p>
</dd></dl>
<hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC54" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="maxima_17.html#SEC58" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
<font size="-1">
This document was generated by <em>Robert Dodier</em> on <em>September, 20 2006</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
</font>
<br>
</p>
</body>
</html>
|