File: maxima_19.html

package info (click to toggle)
maxima 5.10.0-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 44,268 kB
  • ctags: 17,987
  • sloc: lisp: 152,894; fortran: 14,667; perl: 14,204; tcl: 10,103; sh: 3,376; makefile: 2,202; ansic: 471; awk: 7
file content (864 lines) | stat: -rw-r--r-- 34,742 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on September, 20 2006 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
            Karl Berry  <karl@freefriends.org>
            Olaf Bachmann <obachman@mathematik.uni-kl.de>
            and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>

-->
<head>
<title>Maxima Manual: 19. Differentiation</title>

<meta name="description" content="Maxima Manual: 19. Differentiation">
<meta name="keywords" content="Maxima Manual: 19. Differentiation">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
    color: black;
    background: white; 
    margin-left: 8%;
    margin-right: 13%;
}

h1
{
    margin-left: +8%;
    font-size: 150%;
    font-family: sans-serif
}

h2
{
    font-size: 125%;
    font-family: sans-serif
}

h3
{
    font-size: 100%;
    font-family: sans-serif
}

h2,h3,h4,h5,h6 { margin-left: +4%; }

div.textbox
{
    border: solid;
    border-width: thin;
    /* width: 100%; */
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em
}

div.titlebox
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em;
    background: rgb(200,255,255);
    font-family: sans-serif
}

div.synopsisbox
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em;
     background: rgb(255,220,255);
    /*background: rgb(200,255,255); */
    /* font-family: fixed */
}

pre.example
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 1em;
    padding-right: 1em;
    background: rgb(247,242,180); /* kind of sandy */
    /* background: rgb(200,255,255); */ /* sky blue */
    font-family: "Lucida Console", monospace
}

div.spacerbox
{
    border: none;
    padding-top: 2em;
    padding-bottom: 2em
}

div.image
{
    margin: 0;
    padding: 1em;
    text-align: center;
}
-->
</style>

<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">

<a name="Differentiation"></a>
<a name="SEC64"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="maxima_18.html#SEC63" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC65" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima_18.html#SEC62" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_20.html#SEC66" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="chapter"> 19. Differentiation </h1>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#SEC65">19.1 Definitions for Differentiation</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">  
</td></tr>
</table>

<hr size="6">
<a name="Definitions-for-Differentiation"></a>
<a name="SEC65"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC64" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima_20.html#SEC66" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC64" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC64" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_20.html#SEC66" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 19.1 Definitions for Differentiation </h2>

<dl>
<dt><u>Function:</u> <b>antid</b><i> (<var>expr</var>, <var>x</var>, <var>u(x)</var>) </i>
<a name="IDX591"></a>
</dt>
<dd><p>Returns a two-element list,
such that an antiderivative of <var>expr</var> with respect to <var>x</var>
can be constructed from the list.
The expression <var>expr</var> may contain an unknown function <var>u</var> and its derivatives.
</p>
<p>Let <var>L</var>, a list of two elements, be the return value of <code>antid</code>.
Then <code><var>L</var>[1] + 'integrate (<var>L</var>[2], <var>x</var>)</code>
is an antiderivative of <var>expr</var> with respect to <var>x</var>.
</p>
<p>When <code>antid</code> succeeds entirely,
the second element of the return value is zero.
Otherwise, the second element is nonzero,
and the first element is nonzero or zero.
If <code>antid</code> cannot make any progress,
the first element is zero and the second nonzero.
</p>
<p><code>load (&quot;antid&quot;)</code> loads this function.
The <code>antid</code> package also defines the functions <code>nonzeroandfreeof</code> and <code>linear</code>.
</p>
<p><code>antid</code> is related to <code>antidiff</code> as follows.
Let <var>L</var>, a list of two elements, be the return value of <code>antid</code>.
Then the return value of <code>antidiff</code> is equal to <code><var>L</var>[1] + 'integrate (<var>L</var>[2], <var>x</var>)</code>
where <var>x</var> is the variable of integration.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) load (&quot;antid&quot;)$
(%i2) expr: exp (z(x)) * diff (z(x), x) * y(x);
                            z(x)  d
(%o2)                y(x) %e     (-- (z(x)))
                                  dx
(%i3) a1: antid (expr, x, z(x));
                       z(x)      z(x)  d
(%o3)          [y(x) %e    , - %e     (-- (y(x)))]
                                       dx
(%i4) a2: antidiff (expr, x, z(x));
                            /
                     z(x)   [   z(x)  d
(%o4)         y(x) %e     - I %e     (-- (y(x))) dx
                            ]         dx
                            /
(%i5) a2 - (first (a1) + 'integrate (second (a1), x));
(%o5)                           0
(%i6) antid (expr, x, y(x));
                             z(x)  d
(%o6)             [0, y(x) %e     (-- (z(x)))]
                                   dx
(%i7) antidiff (expr, x, y(x));
                  /
                  [        z(x)  d
(%o7)             I y(x) %e     (-- (z(x))) dx
                  ]              dx
                  /
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>antidiff</b><i> (<var>expr</var>, <var>x</var>, <var>u</var>(<var>x</var>))</i>
<a name="IDX592"></a>
</dt>
<dd><p>Returns an antiderivative of <var>expr</var> with respect to <var>x</var>.
The expression <var>expr</var> may contain an unknown function <var>u</var> and its derivatives.
</p>
<p>When <code>antidiff</code> succeeds entirely,
the resulting expression is free of integral signs (that is, free of the <code>integrate</code> noun).
Otherwise, <code>antidiff</code> returns an expression
which is partly or entirely within an integral sign.
If <code>antidiff</code> cannot make any progress,
the return value is entirely within an integral sign.
</p>
<p><code>load (&quot;antid&quot;)</code> loads this function.
The <code>antid</code> package also defines the functions <code>nonzeroandfreeof</code> and <code>linear</code>.
</p>
<p><code>antidiff</code> is related to <code>antid</code> as follows.
Let <var>L</var>, a list of two elements, be the return value of <code>antid</code>.
Then the return value of <code>antidiff</code> is equal to <code><var>L</var>[1] + 'integrate (<var>L</var>[2], <var>x</var>)</code>
where <var>x</var> is the variable of integration.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) load (&quot;antid&quot;)$
(%i2) expr: exp (z(x)) * diff (z(x), x) * y(x);
                            z(x)  d
(%o2)                y(x) %e     (-- (z(x)))
                                  dx
(%i3) a1: antid (expr, x, z(x));
                       z(x)      z(x)  d
(%o3)          [y(x) %e    , - %e     (-- (y(x)))]
                                       dx
(%i4) a2: antidiff (expr, x, z(x));
                            /
                     z(x)   [   z(x)  d
(%o4)         y(x) %e     - I %e     (-- (y(x))) dx
                            ]         dx
                            /
(%i5) a2 - (first (a1) + 'integrate (second (a1), x));
(%o5)                           0
(%i6) antid (expr, x, y(x));
                             z(x)  d
(%o6)             [0, y(x) %e     (-- (z(x)))]
                                   dx
(%i7) antidiff (expr, x, y(x));
                  /
                  [        z(x)  d
(%o7)             I y(x) %e     (-- (z(x))) dx
                  ]              dx
                  /
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Property:</u> <b>atomgrad</b>
<a name="IDX593"></a>
</dt>
<dd><p><code>atomgrad</code> is the atomic gradient property of an expression.
This property is assigned by <code>gradef</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>atvalue</b><i> (<var>expr</var>, [<var>x_1</var> = <var>a_1</var>, ..., <var>x_m</var> = <var>a_m</var>], <var>c</var>)</i>
<a name="IDX594"></a>
</dt>
<dt><u>Function:</u> <b>atvalue</b><i> (<var>expr</var>, <var>x_1</var> = <var>a_1</var>, <var>c</var>)</i>
<a name="IDX595"></a>
</dt>
<dd><p>Assigns the value <var>c</var> to <var>expr</var> at the point <code><var>x</var> = <var>a</var></code>.
Typically boundary values are established by this mechanism.
</p>
<p><var>expr</var> is a function evaluation,
<code><var>f</var>(<var>x_1</var>, ..., <var>x_m</var>)</code>,
or a derivative,
<code>diff (<var>f</var>(<var>x_1</var>, ..., <var>x_m</var>), <var>x_1</var>, <var>n_1</var>, ..., <var>x_n</var>, <var>n_m</var>)</code>
in which the function arguments explicitly appear.
<var>n_i</var> is the order of differentiation with respect to <var>x_i</var>.
</p>
<p>The point at which the atvalue is established is given by the list of equations
<code>[<var>x_1</var> = <var>a_1</var>, ..., <var>x_m</var> = <var>a_m</var>]</code>.
If there is a single variable <var>x_1</var>,
the sole equation may be given without enclosing it in a list.
</p>
<p><code>printprops ([<var>f_1</var>, <var>f_2</var>, ...], atvalue)</code> displays the atvalues of
the functions <code><var>f_1</var>, <var>f_2</var>, ...</code>
as specified by calls to <code>atvalue</code>.
<code>printprops (<var>f</var>, atvalue)</code> displays the atvalues of one function <var>f</var>.
<code>printprops (all, atvalue)</code> displays the atvalues of all functions for which atvalues are defined.
</p>
<p>The symbols <code>@1</code>, <code>@2</code>, ... represent the 
variables <var>x_1</var>, <var>x_2</var>, ... when atvalues are displayed.
</p>
<p><code>atvalue</code> evaluates its arguments.
<code>atvalue</code> returns <var>c</var>, the atvalue.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) atvalue (f(x,y), [x = 0, y = 1], a^2);
                                2
(%o1)                          a
(%i2) atvalue ('diff (f(x,y), x), x = 0, 1 + y);
(%o2)                        @2 + 1
(%i3) printprops (all, atvalue);
                                !
                  d             !
                 --- (f(@1, @2))!       = @2 + 1
                 d@1            !
                                !@1 = 0

                                     2
                          f(0, 1) = a

(%o3)                         done
(%i4) diff (4*f(x,y)^2 - u(x,y)^2, x);
                  d                          d
(%o4)  8 f(x, y) (-- (f(x, y))) - 2 u(x, y) (-- (u(x, y)))
                  dx                         dx
(%i5) at (%, [x = 0, y = 1]);
                                         !
              2              d           !
(%o5)     16 a  - 2 u(0, 1) (-- (u(x, y))!            )
                             dx          !
                                         !x = 0, y = 1
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>cartan</b><i>  -</i>
<a name="IDX596"></a>
</dt>
<dd><p>The exterior calculus of differential forms is a basic tool
of differential geometry developed by Elie Cartan and has important
applications in the theory of partial differential equations.
The <code>cartan</code> package
implements the functions <code>ext_diff</code> and <code>lie_diff</code>,
along with the operators <code>~</code> (wedge product) and <code>|</code> (contraction
of a form with a vector.)
Type <code>demo (tensor)</code> to see a brief
description of these commands along with examples.
</p>
<p><code>cartan</code> was implemented by F.B. Estabrook and H.D. Wahlquist.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>del</b><i> (<var>x</var>)</i>
<a name="IDX597"></a>
</dt>
<dd><p><code>del (<var>x</var>)</code> represents the differential of the variable <em>x</em>.
</p>
<p><code>diff</code> returns an expression containing <code>del</code>
if an independent variable is not specified.
In this case, the return value is the so-called &quot;total differential&quot;.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) diff (log (x));
                             del(x)
(%o1)                        ------
                               x
(%i2) diff (exp (x*y));
                     x y              x y
(%o2)            x %e    del(y) + y %e    del(x)
(%i3) diff (x*y*z);
(%o3)         x y del(z) + x z del(y) + y z del(x)
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>delta</b><i> (<var>t</var>)</i>
<a name="IDX598"></a>
</dt>
<dd><p>The Dirac Delta function.
</p>
<p>Currently only <code>laplace</code> knows about the <code>delta</code> function.
</p>
<p>Example:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) laplace (delta (t - a) * sin(b*t), t, s);
Is  a  positive, negative, or zero?

p;
                                   - a s
(%o1)                   sin(a b) %e
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>System variable:</u> <b>dependencies</b>
<a name="IDX599"></a>
</dt>
<dd><p>Default value: <code>[]</code>
</p>
<p><code>dependencies</code> is the list of atoms which have functional
dependencies, assigned by <code>depends</code> or <code>gradef</code>.
The <code>dependencies</code> list is cumulative:
each call to <code>depends</code> or <code>gradef</code> appends additional items.
</p>
<p>See <code>depends</code> and <code>gradef</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>depends</b><i> (<var>f_1</var>, <var>x_1</var>, ..., <var>f_n</var>, <var>x_n</var>)</i>
<a name="IDX600"></a>
</dt>
<dd><p>Declares functional dependencies among variables for the purpose of computing derivatives.
In the absence of declared dependence,
<code>diff (f, x)</code> yields zero.
If <code>depends (f, x)</code> is declared,
<code>diff (f, x)</code> yields a symbolic derivative (that is, a <code>diff</code> noun).
</p>
<p>Each argument <var>f_1</var>, <var>x_1</var>, etc., can be the name of a variable or array,
or a list of names.
Every element of <var>f_i</var> (perhaps just a single element)
is declared to depend
on every element of <var>x_i</var> (perhaps just a single element).
If some <var>f_i</var> is the name of an array or contains the name of an array,
all elements of the array depend on <var>x_i</var>.
</p>
<p><code>diff</code> recognizes indirect dependencies established by <code>depends</code>
and applies the chain rule in these cases.
</p>
<p><code>remove (<var>f</var>, dependency)</code> removes all dependencies declared for <var>f</var>.
</p>
<p><code>depends</code> returns a list of the dependencies established.
The dependencies are appended to the global variable <code>dependencies</code>.
<code>depends</code> evaluates its arguments.
</p>
<p><code>diff</code> is the only Maxima command which recognizes dependencies established by <code>depends</code>.
Other functions (<code>integrate</code>, <code>laplace</code>, etc.)
only recognize dependencies explicitly represented by their arguments.
For example, <code>integrate</code> does not recognize the dependence of <code>f</code> on <code>x</code>
unless explicitly represented as <code>integrate (f(x), x)</code>.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) depends ([f, g], x);
(%o1)                     [f(x), g(x)]
(%i2) depends ([r, s], [u, v, w]);
(%o2)               [r(u, v, w), s(u, v, w)]
(%i3) depends (u, t);
(%o3)                        [u(t)]
(%i4) dependencies;
(%o4)      [f(x), g(x), r(u, v, w), s(u, v, w), u(t)]
(%i5) diff (r.s, u);
                         dr           ds
(%o5)                    -- . s + r . --
                         du           du
</pre></td></tr></table>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i6) diff (r.s, t);
                      dr du           ds du
(%o6)                 -- -- . s + r . -- --
                      du dt           du dt
</pre></td></tr></table>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i7) remove (r, dependency);
(%o7)                         done
(%i8) diff (r.s, t);
                                ds du
(%o8)                       r . -- --
                                du dt
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>derivabbrev</b>
<a name="IDX601"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>derivabbrev</code> is <code>true</code>,
symbolic derivatives (that is, <code>diff</code> nouns) are displayed as subscripts.
Otherwise, derivatives are displayed in the Leibniz notation <code>dy/dx</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>derivdegree</b><i> (<var>expr</var>, <var>y</var>, <var>x</var>)</i>
<a name="IDX602"></a>
</dt>
<dd><p>Returns the highest degree of the derivative
of the dependent variable <var>y</var> with respect to the independent variable
<var>x</var> occuring in <var>expr</var>.
</p>
<p>Example:
</p><table><tr><td>&nbsp;</td><td><pre class="example">(%i1) 'diff (y, x, 2) + 'diff (y, z, 3) + 'diff (y, x) * x^2;
                         3     2
                        d y   d y    2 dy
(%o1)                   --- + --- + x  --
                          3     2      dx
                        dz    dx
(%i2) derivdegree (%, y, x);
(%o2)                           2
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>derivlist</b><i> (<var>var_1</var>, ..., <var>var_k</var>)</i>
<a name="IDX603"></a>
</dt>
<dd><p>Causes only differentiations with respect to
the indicated variables, within the <code>ev</code> command.
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>derivsubst</b>
<a name="IDX604"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>derivsubst</code> is <code>true</code>, a non-syntactic substitution such as
<code>subst (x, 'diff (y, t), 'diff (y, t, 2))</code> yields <code>'diff (x, t)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>diff</b><i> (<var>expr</var>, <var>x_1</var>, <var>n_1</var>, ..., <var>x_m</var>, <var>n_m</var>)</i>
<a name="IDX605"></a>
</dt>
<dt><u>Function:</u> <b>diff</b><i> (<var>expr</var>, <var>x</var>, <var>n</var>)</i>
<a name="IDX606"></a>
</dt>
<dt><u>Function:</u> <b>diff</b><i> (<var>expr</var>, <var>x</var>)</i>
<a name="IDX607"></a>
</dt>
<dt><u>Function:</u> <b>diff</b><i> (<var>expr</var>)</i>
<a name="IDX608"></a>
</dt>
<dd><p>Returns the derivative or differential of <var>expr</var> with respect to some or all variables in <var>expr</var>.
</p>
<p><code>diff (<var>expr</var>, <var>x</var>, <var>n</var>)</code> returns the <var>n</var>'th derivative of <var>expr</var>
with respect to <var>x</var>.
</p>
<p><code>diff (<var>expr</var>, <var>x_1</var>, <var>n_1</var>, ..., <var>x_m</var>, <var>n_m</var>)</code>
returns the mixed partial derivative of <var>expr</var> with respect to <var>x_1</var>, ..., <var>x_m</var>.
It is equivalent to <code>diff (... (diff (<var>expr</var>, <var>x_m</var>, <var>n_m</var>) ...), <var>x_1</var>, <var>n_1</var>)</code>.
</p>
<p><code>diff (<var>expr</var>, <var>x</var>)</code>
returns the first derivative of <var>expr</var> with respect to
the variable <var>x</var>.
</p>
<p><code>diff (<var>expr</var>)</code> returns the total differential of <var>expr</var>,
that is, the sum of the derivatives of <var>expr</var> with respect to each its variables
times the differential <code>del</code> of each variable.
No further simplification of <code>del</code> is offered.
</p>
<p>The noun form of <code>diff</code> is required in some contexts,
such as stating a differential equation.
In these cases, <code>diff</code> may be quoted (as <code>'diff</code>) to yield the noun form
instead of carrying out the differentiation.
</p>
<p>When <code>derivabbrev</code> is <code>true</code>, derivatives are displayed as subscripts.
Otherwise, derivatives are displayed in the Leibniz notation, <code>dy/dx</code>.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) diff (exp (f(x)), x, 2);
                     2
              f(x)  d               f(x)  d         2
(%o1)       %e     (--- (f(x))) + %e     (-- (f(x)))
                      2                   dx
                    dx
(%i2) derivabbrev: true$
(%i3) 'integrate (f(x, y), y, g(x), h(x));
                         h(x)
                        /
                        [
(%o3)                   I     f(x, y) dy
                        ]
                        /
                         g(x)
(%i4) diff (%, x);
       h(x)
      /
      [
(%o4) I     f(x, y)  dy + f(x, h(x)) h(x)  - f(x, g(x)) g(x)
      ]            x                     x                  x
      /
       g(x)
</pre></td></tr></table>
<p>For the tensor package, the following modifications have been
incorporated:
</p>
<p>(1) The derivatives of any indexed objects in <var>expr</var> will have the
variables <var>x_i</var> appended as additional arguments.  Then all the
derivative indices will be sorted.
</p>
<p>(2) The <var>x_i</var> may be integers from 1 up to the value of the variable
<code>dimension</code> [default value: 4].  This will cause the differentiation to
be carried out with respect to the <var>x_i</var>'th member of the list <code>coordinates</code> which
should be set to a list of the names of the coordinates, e.g.,
<code>[x, y, z, t]</code>. If <code>coordinates</code> is bound to an atomic variable, then that
variable subscripted by <var>x_i</var> will be used for the variable of
differentiation.  This permits an array of coordinate names or
subscripted names like <code>X[1]</code>, <code>X[2]</code>, ... to be used.  If <code>coordinates</code> has
not been assigned a value, then the variables will be treated as in (1)
above.
</p>
</dd></dl>

<dl>
<dt><u>Special symbol:</u> <b>diff</b>
<a name="IDX609"></a>
</dt>
<dd><p>When <code>diff</code> is present as an <code>evflag</code> in call to <code>ev</code>,
all differentiations indicated in <code>expr</code> are carried out.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>dscalar</b><i> (<var>f</var>)</i>
<a name="IDX610"></a>
</dt>
<dd><p>Applies the scalar d'Alembertian to the scalar function <var>f</var>.
</p>
<p><code>load (&quot;ctensor&quot;)</code> loads this function.
</p>


</dd></dl>

<dl>
<dt><u>Function:</u> <b>express</b><i> (<var>expr</var>)</i>
<a name="IDX611"></a>
</dt>
<dd>
<p>Expands differential operator nouns into expressions in terms of partial derivatives.
<code>express</code> recognizes the operators <code>grad</code>, <code>div</code>, <code>curl</code>, <code>laplacian</code>.
<code>express</code> also expands the cross product <code>~</code>.
</p>
<p>Symbolic derivatives (that is, <code>diff</code> nouns)
in the return value of express may be evaluated by including <code>diff</code>
in the <code>ev</code> function call or command line.
In this context, <code>diff</code> acts as an <code>evfun</code>.
</p>
<p><code>load (&quot;vect&quot;)</code> loads this function.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) load (&quot;vect&quot;)$
(%i2) grad (x^2 + y^2 + z^2);
                              2    2    2
(%o2)                  grad (z  + y  + x )
(%i3) express (%);
       d    2    2    2   d    2    2    2   d    2    2    2
(%o3) [-- (z  + y  + x ), -- (z  + y  + x ), -- (z  + y  + x )]
       dx                 dy                 dz
(%i4) ev (%, diff);
(%o4)                    [2 x, 2 y, 2 z]
(%i5) div ([x^2, y^2, z^2]);
                              2   2   2
(%o5)                   div [x , y , z ]
(%i6) express (%);
                   d    2    d    2    d    2
(%o6)              -- (z ) + -- (y ) + -- (x )
                   dz        dy        dx
(%i7) ev (%, diff);
(%o7)                    2 z + 2 y + 2 x
(%i8) curl ([x^2, y^2, z^2]);
                               2   2   2
(%o8)                   curl [x , y , z ]
(%i9) express (%);
       d    2    d    2   d    2    d    2   d    2    d    2
(%o9) [-- (z ) - -- (y ), -- (x ) - -- (z ), -- (y ) - -- (x )]
       dy        dz       dz        dx       dx        dy
(%i10) ev (%, diff);
(%o10)                      [0, 0, 0]
(%i11) laplacian (x^2 * y^2 * z^2);
                                  2  2  2
(%o11)                laplacian (x  y  z )
(%i12) express (%);
         2                2                2
        d     2  2  2    d     2  2  2    d     2  2  2
(%o12)  --- (x  y  z ) + --- (x  y  z ) + --- (x  y  z )
          2                2                2
        dz               dy               dx
(%i13) ev (%, diff);
                      2  2      2  2      2  2
(%o13)             2 y  z  + 2 x  z  + 2 x  y
(%i14) [a, b, c] ~ [x, y, z];
(%o14)                [a, b, c] ~ [x, y, z]
(%i15) express (%);
(%o15)          [b z - c y, c x - a z, a y - b x]
</pre></td></tr></table>
</dd></dl>


<dl>
<dt><u>Function:</u> <b>gradef</b><i> (<var>f</var>(<var>x_1</var>, ..., <var>x_n</var>), <var>g_1</var>, ..., <var>g_m</var>)</i>
<a name="IDX612"></a>
</dt>
<dt><u>Function:</u> <b>gradef</b><i> (<var>a</var>, <var>x</var>, <var>expr</var>)</i>
<a name="IDX613"></a>
</dt>
<dd><p>Defines the partial derivatives (i.e., the components of the gradient) of the function <var>f</var>
or variable <var>a</var>.
</p>
<p><code>gradef (<var>f</var>(<var>x_1</var>, ..., <var>x_n</var>), <var>g_1</var>, ..., <var>g_m</var>)</code>
defines <code>d<var>f</var>/d<var>x_i</var></code> as <var>g_i</var>, 
where <var>g_i</var> is an expression; <var>g_i</var> may be a function call, but not the name of a function.
The number of partial derivatives <var>m</var> may be less than the number of arguments <var>n</var>,
in which case derivatives are defined with respect to <var>x_1</var> through <var>x_m</var> only.
</p>
<p><code>gradef (<var>a</var>, <var>x</var>, <var>expr</var>)</code> defines the derivative of variable <var>a</var>
with respect to <var>x</var> as <var>expr</var>.
This also establishes the dependence of <var>a</var> on <var>x</var> (via <code>depends (<var>a</var>, <var>x</var>)</code>).
</p>
<p>The first argument <code><var>f</var>(<var>x_1</var>, ..., <var>x_n</var>)</code> or <var>a</var> is quoted,
but the remaining arguments <var>g_1</var>, ..., <var>g_m</var> are evaluated.
<code>gradef</code> returns the function or variable for which the partial derivatives are defined.
</p>
<p><code>gradef</code> can redefine the derivatives of Maxima's built-in functions.
For example, <code>gradef (sin(x), sqrt (1 - sin(x)^2))</code> redefines the derivative of <code>sin</code>.
</p>
<p><code>gradef</code> cannot define partial derivatives for a subscripted function.
</p>
<p><code>printprops ([<var>f_1</var>, ..., <var>f_n</var>], gradef)</code> displays the partial derivatives
of the functions <var>f_1</var>, ..., <var>f_n</var>, as defined by <code>gradef</code>.
</p>
<p><code>printprops ([<var>a_n</var>, ..., <var>a_n</var>], atomgrad)</code> displays the partial derivatives
of the variables <var>a_n</var>, ..., <var>a_n</var>, as defined by <code>gradef</code>.
</p>
<p><code>gradefs</code> is the list of the functions
for which partial derivatives have been defined by <code>gradef</code>.
<code>gradefs</code> does not include any variables
for which partial derivatives have been defined by <code>gradef</code>.
</p>
<p>Gradients are needed when, for example, a function is not known
explicitly but its first derivatives are and it is desired to obtain
higher order derivatives.
</p>
</dd></dl>

<dl>
<dt><u>System variable:</u> <b>gradefs</b>
<a name="IDX614"></a>
</dt>
<dd><p>Default value: <code>[]</code>
</p>
<p><code>gradefs</code> is the list of the functions
for which partial derivatives have been defined by <code>gradef</code>.
<code>gradefs</code> does not include any variables
for which partial derivatives have been defined by <code>gradef</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>laplace</b><i> (<var>expr</var>, <var>t</var>, <var>s</var>)</i>
<a name="IDX615"></a>
</dt>
<dd><p>Attempts to compute the Laplace transform of <var>expr</var> with respect to the variable <var>t</var>
and transform parameter <var>s</var>.
If <code>laplace</code> cannot find a solution, a noun <code>'laplace</code> is returned.
</p>
<p><code>laplace</code> recognizes in <var>expr</var> the functions
<code>delta</code>, <code>exp</code>, <code>log</code>, <code>sin</code>, <code>cos</code>, <code>sinh</code>, <code>cosh</code>, and <code>erf</code>,
as well as <code>derivative</code>, <code>integrate</code>, <code>sum</code>, and <code>ilt</code>.
If some other functions are present,
<code>laplace</code> may not be able to compute the transform.
</p>
<p><var>expr</var> may also be a linear, constant coefficient differential equation in
which case <code>atvalue</code> of the dependent variable is used.
The required atvalue may be supplied either before or after the transform is computed.
Since the initial conditions must be specified at zero, if one has boundary
conditions imposed elsewhere he can impose these on the general
solution and eliminate the constants by solving the general solution
for them and substituting their values back.
</p>
<p><code>laplace</code> recognizes convolution integrals of the form
<code>integrate (f(x) * g(t - x), x, 0, t)</code>;
other kinds of convolutions are not recognized.
</p>
<p>Functional relations must be explicitly represented in <var>expr</var>;
implicit relations, established by <code>depends</code>, are not recognized.
That is, if <var>f</var> depends on <var>x</var> and <var>y</var>,
<code>f (x, y)</code> must appear in <var>expr</var>.
</p>
<p>See also <code>ilt</code>, the inverse Laplace transform.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) laplace (exp (2*t + a) * sin(t) * t, t, s);
                            a
                          %e  (2 s - 4)
(%o1)                    ---------------
                           2           2
                         (s  - 4 s + 5)
(%i2) laplace ('diff (f (x), x), x, s);
(%o2)             s laplace(f(x), x, s) - f(0)
(%i3) diff (diff (delta (t), t), t);
                          2
                         d
(%o3)                    --- (delta(t))
                           2
                         dt
(%i4) laplace (%, t, s);
                            !
               d            !         2
(%o4)        - -- (delta(t))!      + s  - delta(0) s
               dt           !
                            !t = 0
</pre></td></tr></table>
</dd></dl>

<hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC64" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima_20.html#SEC66" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
 <font size="-1">
  This document was generated by <em>Robert Dodier</em> on <em>September, 20 2006</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
 </font>
 <br>

</p>
</body>
</html>