1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on September, 20 2006 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
Karl Berry <karl@freefriends.org>
Olaf Bachmann <obachman@mathematik.uni-kl.de>
and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>
-->
<head>
<title>Maxima Manual: 22. Differential Equations</title>
<meta name="description" content="Maxima Manual: 22. Differential Equations">
<meta name="keywords" content="Maxima Manual: 22. Differential Equations">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
color: black;
background: white;
margin-left: 8%;
margin-right: 13%;
}
h1
{
margin-left: +8%;
font-size: 150%;
font-family: sans-serif
}
h2
{
font-size: 125%;
font-family: sans-serif
}
h3
{
font-size: 100%;
font-family: sans-serif
}
h2,h3,h4,h5,h6 { margin-left: +4%; }
div.textbox
{
border: solid;
border-width: thin;
/* width: 100%; */
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em
}
div.titlebox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(200,255,255);
font-family: sans-serif
}
div.synopsisbox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(255,220,255);
/*background: rgb(200,255,255); */
/* font-family: fixed */
}
pre.example
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 1em;
padding-right: 1em;
background: rgb(247,242,180); /* kind of sandy */
/* background: rgb(200,255,255); */ /* sky blue */
font-family: "Lucida Console", monospace
}
div.spacerbox
{
border: none;
padding-top: 2em;
padding-bottom: 2em
}
div.image
{
margin: 0;
padding: 1em;
text-align: center;
}
-->
</style>
<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Differential-Equations"></a>
<a name="SEC74"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="maxima_21.html#SEC73" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC75" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima_21.html#SEC72" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_23.html#SEC76" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="chapter"> 22. Differential Equations </h1>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#SEC75">22.1 Definitions for Differential Equations</a></td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr size="6">
<a name="Definitions-for-Differential-Equations"></a>
<a name="SEC75"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC74" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="maxima_23.html#SEC76" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC74" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC74" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_23.html#SEC76" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 22.1 Definitions for Differential Equations </h2>
<dl>
<dt><u>Function:</u> <b>bc2</b><i> (<var>solution</var>, <var>xval1</var>, <var>yval1</var>, <var>xval2</var>, <var>yval2</var>)</i>
<a name="IDX692"></a>
</dt>
<dd><p>Solves boundary value problem for second order differential equation.
Here: <var>solution</var> is a general solution to the equation, as
found by <code>ode2</code>, <var>xval1</var> is an equation for the independent
variable in the form <code><var>x</var> = <var>x0</var></code>, and <var>yval1</var> is
an equation for the dependent variable in the form
<code><var>y</var> = <var>y0</var></code>. The <var>xval2</var> and <var>yval2</var> are
equations for these variables at another point.
See <code>ode2</code> for example of usage.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>desolve</b><i> (<var>eqn</var>, <var>x</var>)</i>
<a name="IDX693"></a>
</dt>
<dt><u>Function:</u> <b>desolve</b><i> ([<var>eqn_1</var>, ..., <var>eqn_n</var>], [<var>x_1</var>, ..., <var>x_n</var>])</i>
<a name="IDX694"></a>
</dt>
<dd><p>The function <code>dsolve</code> solves systems of linear
ordinary differential equations using Laplace transform.
Here the <var>eqn</var>'s are differential equations in
the dependent variables <var>x_1</var>, ..., <var>x_n</var>.
The functional relationships must be explicitly
indicated in both the equations and the variables. For example
</p>
<table><tr><td> </td><td><pre class="example">'diff(f,x,2)=sin(x)+'diff(g,x);
'diff(f,x)+x^2-f=2*'diff(g,x,2);
</pre></td></tr></table>
<p>is not the proper format. The correct way is:
</p>
<table><tr><td> </td><td><pre class="example">'diff(f(x),x,2)=sin(x)+'diff(g(x),x);
'diff(f(x),x)+x^2-f=2*'diff(g(x),x,2);
</pre></td></tr></table>
<p>The call is then <code>desolve([%o3,%o4],[f(x),g(x)]);</code> .
</p>
<p>If initial conditions at 0 are known, they should be supplied before
calling <code>desolve</code> by using <code>atvalue</code>.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) <b><tt>'diff(f(x),x)='diff(g(x),x)+sin(x);</tt></b>
d d
(%o1) -- (f(x)) = -- (g(x)) + sin(x)
dx dx
(%i2) <b><tt>'diff(g(x),x,2)='diff(f(x),x)-cos(x);</tt></b>
2
d d
(%o2) --- (g(x)) = -- (f(x)) - cos(x)
2 dx
dx
(%i3) <b><tt>atvalue('diff(g(x),x),x=0,a);</tt></b>
(%o3) a
(%i4) <b><tt>atvalue(f(x),x=0,1);</tt></b>
(%o4) 1
(%i5) <b><tt>desolve([%o1,%o2],[f(x),g(x)]);</tt></b>
x
(%o5) [f(x) = a %e - a + 1, g(x) =
x
cos(x) + a %e - a + g(0) - 1]
(%i6) <b><tt>[%o1,%o2],%o5,diff;</tt></b>
x x x x
(%o6) [a %e = a %e , a %e - cos(x) = a %e - cos(x)]
</pre></td></tr></table>
<p>If <code>desolve</code> cannot obtain a solution, it returns <code>false</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>ic1</b><i> (<var>solution</var>, <var>xval</var>, <var>yval</var>)</i>
<a name="IDX695"></a>
</dt>
<dd><p>Solves initial value problem for first order differential equation.
Here: <var>solution</var> is a general solution to the equation, as
found by <code>ode2</code>, <var>xval</var> is an equation for the independent
variable in the form <code><var>x</var> = <var>x0</var></code>, and <var>yval</var> is
an equation for the dependent variable in the form
<code><var>y</var> = <var>y0</var></code>. See <code>ode2</code> for example of usage.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>ic2</b><i> (<var>solution</var>, <var>xval</var>, <var>yval</var>, <var>dval</var>)</i>
<a name="IDX696"></a>
</dt>
<dd><p>Solves initial value problem for second order differential equation.
Here: <var>solution</var> is a general solution to the equation, as
found by <code>ode2</code>, <var>xval</var> is an equation for the independent
variable in the form <code><var>x</var> = <var>x0</var></code>, <var>yval</var> is
an equation for the dependent variable in the form
<code><var>y</var> = <var>y0</var></code>, and <var>dval</var> is an equation for
the derivative of the dependent variable with respect to
independent variable evaluated at the point <var>xval</var>.
See <code>ode2</code> for example of usage.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>ode2</b><i> (<var>eqn</var>, <var>dvar</var>, <var>ivar</var>)</i>
<a name="IDX697"></a>
</dt>
<dd><p>The function <code>ode2</code> solves ordinary differential equations of first or second order.
It takes three arguments: an ODE <var>eqn</var>, the dependent variable
<var>dvar</var>, and the independent variable <var>ivar</var>.
When successful, it returns either an explicit or implicit solution for the
dependent variable. <code>%c</code> is used to represent the constant in the case
of first order equations, and <code>%k1</code> and <code>%k2</code> the constants for second
order equations. If <code>ode2</code> cannot obtain a solution for whatever
reason, it returns <code>false</code>, after perhaps printing out an error message.
The methods implemented for first order equations in the order in
which they are tested are: linear, separable, exact - perhaps
requiring an integrating factor, homogeneous, Bernoulli's equation,
and a generalized homogeneous method.
For second order: constant coefficient, exact, linear homogeneous with
non-constant coefficients which can be transformed to constant
coefficient, the Euler or equidimensional equation, the method of
variation of parameters, and equations which are free of either the
independent or of the dependent variable so that they can be reduced
to two first order linear equations to be solved sequentially.
In the course of solving ODEs, several variables are set purely for
informational purposes: <code>method</code> denotes the method of solution used
e.g. <code>linear</code>, <code>intfactor</code> denotes any integrating factor
used, <code>odeindex</code> denotes the index for Bernoulli's method or for the generalized
homogeneous method, and <code>yp</code> denotes the particular solution for the
variation of parameters technique.
</p>
<p>In order to solve initial value problems (IVPs) and
boundary value problems (BVPs), the routine <code>ic1</code> is available
for first order equations, and <code>ic2</code> and <code>bc2</code> for second
order IVPs and BVPs, respectively.
</p>
<p>Example:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) <b><tt>x^2*'diff(y,x) + 3*y*x = sin(x)/x;</tt></b>
2 dy sin(x)
(%o1) x -- + 3 x y = ------
dx x
(%i2) <b><tt>ode2(%,y,x);</tt></b>
%c - cos(x)
(%o2) y = -----------
3
x
(%i3) <b><tt>ic1(%o2,x=%pi,y=0);</tt></b>
cos(x) + 1
(%o3) y = - ----------
3
x
(%i4) <b><tt>'diff(y,x,2) + y*'diff(y,x)^3 = 0;</tt></b>
2
d y dy 3
(%o4) --- + y (--) = 0
2 dx
dx
(%i5) <b><tt>ode2(%,y,x);</tt></b>
3
y + 6 %k1 y
(%o5) ------------ = x + %k2
6
(%i6) <b><tt>ratsimp(ic2(%o5,x=0,y=0,'diff(y,x)=2));</tt></b>
3
2 y - 3 y
(%o6) - ---------- = x
6
(%i7) <b><tt>bc2(%o5,x=0,y=1,x=1,y=3);</tt></b>
3
y - 10 y 3
(%o7) --------- = x - -
6 2
</pre></td></tr></table>
</dd></dl>
<hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC74" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="maxima_23.html#SEC76" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
<font size="-1">
This document was generated by <em>Robert Dodier</em> on <em>September, 20 2006</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
</font>
<br>
</p>
</body>
</html>
|