File: maxima_23.html

package info (click to toggle)
maxima 5.10.0-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 44,268 kB
  • ctags: 17,987
  • sloc: lisp: 152,894; fortran: 14,667; perl: 14,204; tcl: 10,103; sh: 3,376; makefile: 2,202; ansic: 471; awk: 7
file content (794 lines) | stat: -rw-r--r-- 33,502 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on September, 20 2006 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
            Karl Berry  <karl@freefriends.org>
            Olaf Bachmann <obachman@mathematik.uni-kl.de>
            and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>

-->
<head>
<title>Maxima Manual: 23. Numerical</title>

<meta name="description" content="Maxima Manual: 23. Numerical">
<meta name="keywords" content="Maxima Manual: 23. Numerical">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
    color: black;
    background: white; 
    margin-left: 8%;
    margin-right: 13%;
}

h1
{
    margin-left: +8%;
    font-size: 150%;
    font-family: sans-serif
}

h2
{
    font-size: 125%;
    font-family: sans-serif
}

h3
{
    font-size: 100%;
    font-family: sans-serif
}

h2,h3,h4,h5,h6 { margin-left: +4%; }

div.textbox
{
    border: solid;
    border-width: thin;
    /* width: 100%; */
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em
}

div.titlebox
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em;
    background: rgb(200,255,255);
    font-family: sans-serif
}

div.synopsisbox
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em;
     background: rgb(255,220,255);
    /*background: rgb(200,255,255); */
    /* font-family: fixed */
}

pre.example
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 1em;
    padding-right: 1em;
    background: rgb(247,242,180); /* kind of sandy */
    /* background: rgb(200,255,255); */ /* sky blue */
    font-family: "Lucida Console", monospace
}

div.spacerbox
{
    border: none;
    padding-top: 2em;
    padding-bottom: 2em
}

div.image
{
    margin: 0;
    padding: 1em;
    text-align: center;
}
-->
</style>

<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">

<a name="Numerical"></a>
<a name="SEC76"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="maxima_22.html#SEC75" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC77" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima_22.html#SEC74" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_24.html#SEC81" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="chapter"> 23. Numerical </h1>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#SEC77">23.1 Introduction to Numerical</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">   
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC78">23.2 Fourier packages</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">                     
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC79">23.3 Definitions for Numerical</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">   
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC80">23.4 Definitions for Fourier Series</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr size="6">
<a name="Introduction-to-Numerical"></a>
<a name="SEC77"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC76" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC78" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC76" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC76" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_24.html#SEC81" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 23.1 Introduction to Numerical </h2>

<hr size="6">
<a name="Fourier-packages"></a>
<a name="SEC78"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC77" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC79" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC76" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC76" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_24.html#SEC81" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 23.2 Fourier packages </h2>
<p>The <code>fft</code> package comprises functions for the numerical (not symbolic) computation
of the fast Fourier transform.
<code>load (&quot;fft&quot;)</code> loads this package.
See <code>fft</code>.
</p>
<p>The <code>fourie</code> package comprises functions for the symbolic computation
of Fourier series.
<code>load (&quot;fourie&quot;)</code> loads this package.
There are functions in the <code>fourie</code> package to calculate Fourier integral
coefficients and some functions for manipulation of expressions.
See <code>Definitions for Fourier Series</code>.
</p>

<hr size="6">
<a name="Definitions-for-Numerical"></a>
<a name="SEC79"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC78" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC80" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC76" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC76" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_24.html#SEC81" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 23.3 Definitions for Numerical </h2>

<dl>
<dt><u>Function:</u> <b>polartorect</b><i> (<var>magnitude_array</var>, <var>phase_array</var>)</i>
<a name="IDX698"></a>
</dt>
<dd><p>Translates complex values of the form <code>r %e^(%i t)</code> to the form <code>a + b %i</code>.
<code>load (&quot;fft&quot;)</code> loads this function into Maxima. See also <code>fft</code>.
</p>
<p>The magnitude and phase, <code>r</code> and <code>t</code>, are taken from <var>magnitude_array</var> and
<var>phase_array</var>, respectively. The original values of the input arrays are
replaced by the real and imaginary parts, <code>a</code> and <code>b</code>, on return. The outputs are
calculated as
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">a: r cos (t)
b: r sin (t)
</pre></td></tr></table>
<p>The input arrays must be the same size and 1-dimensional.
The array size need not be a power of 2.
</p>
<p><code>polartorect</code> is the inverse function of <code>recttopolar</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>recttopolar</b><i> (<var>real_array</var>, <var>imaginary_array</var>)</i>
<a name="IDX699"></a>
</dt>
<dd><p>Translates complex values of the form <code>a + b %i</code> to the form <code>r %e^(%i t)</code>.
<code>load (&quot;fft&quot;)</code> loads this function into Maxima. See also <code>fft</code>.
</p>
<p>The real and imaginary parts, <code>a</code> and <code>b</code>, are taken from <var>real_array</var> and
<var>imaginary_array</var>, respectively. The original values of the input arrays
are replaced by the magnitude and angle, <code>r</code> and <code>t</code>, on return. The outputs are
calculated as
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">r: sqrt (a^2 + b^2)
t: atan2 (b, a)
</pre></td></tr></table>
<p>The computed angle is in the range <code>-%pi</code> to <code>%pi</code>. 
</p>
<p>The input arrays must be the same size and 1-dimensional.
The array size need not be a power of 2.
</p>
<p><code>recttopolar</code> is the inverse function of <code>polartorect</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>ift</b><i> (<var>real_array</var>, <var>imaginary_array</var>)</i>
<a name="IDX700"></a>
</dt>
<dd><p>Fast inverse discrete Fourier transform. <code>load (&quot;fft&quot;)</code> loads this function
into Maxima.
</p>
<p><code>ift</code> carries out the inverse complex fast Fourier transform on
1-dimensional floating point arrays. The inverse transform is defined as
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">x[j]: sum (y[j] exp (+2 %i %pi j k / n), k, 0, n-1)
</pre></td></tr></table>
<p>See <code>fft</code> for more details.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>fft</b><i> (<var>real_array</var>, <var>imaginary_array</var>)</i>
<a name="IDX701"></a>
</dt>
<dt><u>Function:</u> <b>ift</b><i> (<var>real_array</var>, <var>imaginary_array</var>)</i>
<a name="IDX702"></a>
</dt>
<dt><u>Function:</u> <b>recttopolar</b><i> (<var>real_array</var>, <var>imaginary_array</var>)</i>
<a name="IDX703"></a>
</dt>
<dt><u>Function:</u> <b>polartorect</b><i> (<var>magnitude_array</var>, <var>phase_array</var>)</i>
<a name="IDX704"></a>
</dt>
<dd><p>Fast Fourier transform and related functions. <code>load (&quot;fft&quot;)</code>
loads these functions into Maxima.
</p>
<p><code>fft</code> and <code>ift</code> carry out the complex fast Fourier transform and
inverse transform, respectively, on 1-dimensional floating
point arrays. The size of <var>imaginary_array</var> must equal the size of <var>real_array</var>.
</p>
<p><code>fft</code> and <code>ift</code> operate in-place. That is, on return from <code>fft</code> or <code>ift</code>,
the original content of the input arrays is replaced by the output.
The <code>fillarray</code> function can make a copy of an array, should it
be necessary.
</p>
<p>The discrete Fourier transform and inverse transform are defined
as follows. Let <code>x</code> be the original data, with
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">x[i]: real_array[i] + %i imaginary_array[i]
</pre></td></tr></table>  
<p>Let <code>y</code> be the transformed data. The forward and inverse transforms are
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">y[k]: (1/n) sum (x[j] exp (-2 %i %pi j k / n), j, 0, n-1)

x[j]:       sum (y[j] exp (+2 %i %pi j k / n), k, 0, n-1)
</pre></td></tr></table>
<p>Suitable arrays can be allocated by the <code>array</code> function. For example:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">array (my_array, float, n-1)$
</pre></td></tr></table>
<p>declares a 1-dimensional array with n elements, indexed from 0 through
n-1 inclusive. The number of elements n must be equal to 2^m for some m.
</p>
<p><code>fft</code> can be applied to real data (imaginary array all zeros) to obtain
sine and cosine coefficients. After calling <code>fft</code>, the sine and cosine
coefficients, say <code>a</code> and <code>b</code>, can be calculated as
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">a[0]: real_array[0]
b[0]: 0
</pre></td></tr></table>
<p>and
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">a[j]: real_array[j] + real_array[n-j]
b[j]: imaginary_array[j] - imaginary_array[n-j]
</pre></td></tr></table>
<p>for j equal to 1 through n/2-1, and
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">a[n/2]: real_array[n/2]
b[n/2]: 0
</pre></td></tr></table>
<p><code>recttopolar</code> translates complex values of the form <code>a + b %i</code> to
the form <code>r %e^(%i t)</code>. See <code>recttopolar</code>.
</p>
<p><code>polartorect</code> translates complex values of the form <code>r %e^(%i t)</code>
to the form <code>a + b %i</code>. See <code>polartorect</code>.
</p>
<p><code>demo (&quot;fft&quot;)</code> displays a demonstration of the <code>fft</code> package.
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>fortindent</b>
<a name="IDX705"></a>
</dt>
<dd><p>Default value: 0
</p>
<p><code>fortindent</code> controls the left margin indentation of
expressions printed out by the <code>fortran</code> command.  0 gives normal
printout (i.e., 6 spaces), and positive values will causes the
expressions to be printed farther to the right.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>fortran</b><i> (<var>expr</var>)</i>
<a name="IDX706"></a>
</dt>
<dd><p>Prints <var>expr</var> as a Fortran statement.
The output line is indented with spaces.
If the line is too long, <code>fortran</code> prints continuation lines.
<code>fortran</code> prints the exponentiation operator <code>^</code> as <code>**</code>,
and prints a complex number <code>a + b %i</code> in the form <code>(a,b)</code>.
</p>
<p><var>expr</var> may be an equation. If so, <code>fortran</code> prints an assignment
statement, assigning the right-hand side of the equation to the left-hand side.
In particular, if the right-hand side of <var>expr</var> is the name of a matrix,
then <code>fortran</code> prints an assignment statement for each element of the matrix.
</p>
<p>If <var>expr</var> is not something recognized by <code>fortran</code>,
the expression is printed in <code>grind</code> format without complaint.
<code>fortran</code> does not know about lists, arrays, or functions.
</p>
<p><code>fortindent</code> controls the left margin of the printed lines.
0 is the normal margin (i.e., indented 6 spaces). Increasing <code>fortindent</code>
causes expressions to be printed further to the right.
</p>
<p>When <code>fortspaces</code> is <code>true</code>, <code>fortran</code> fills out
each printed line with spaces to 80 columns.
</p>
<p><code>fortran</code> evaluates its arguments;
quoting an argument defeats evaluation.
<code>fortran</code> always returns <code>done</code>.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) expr: (a + b)^12$
(%i2) fortran (expr);
      (b+a)**12                                                                 
(%o2)                         done
(%i3) fortran ('x=expr);
      x = (b+a)**12                                                             
(%o3)                         done
(%i4) fortran ('x=expand (expr));
      x = b**12+12*a*b**11+66*a**2*b**10+220*a**3*b**9+495*a**4*b**8+792        
     1   *a**5*b**7+924*a**6*b**6+792*a**7*b**5+495*a**8*b**4+220*a**9*b        
     2   **3+66*a**10*b**2+12*a**11*b+a**12                                     
(%o4)                         done
(%i5) fortran ('x=7+5*%i);
      x = (7,5)                                                                 
(%o5)                         done
(%i6) fortran ('x=[1,2,3,4]);
      x = [1,2,3,4]                                                             
(%o6)                         done
(%i7) f(x) := x^2$
(%i8) fortran (f);
      f                                                                         
(%o8)                         done
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>fortspaces</b>
<a name="IDX707"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>fortspaces</code> is <code>true</code>, <code>fortran</code> fills out
each printed line with spaces to 80 columns.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>horner</b><i> (<var>expr</var>, <var>x</var>)</i>
<a name="IDX708"></a>
</dt>
<dt><u>Function:</u> <b>horner</b><i> (<var>expr</var>)</i>
<a name="IDX709"></a>
</dt>
<dd><p>Returns a rearranged representation of <var>expr</var> as
in Horner's rule, using <var>x</var> as the main variable if it is specified.
<code>x</code> may be omitted in which case the main variable of the canonical rational expression
form of <var>expr</var> is used.
</p>
<p><code>horner</code> sometimes improves stability if <code>expr</code> is
to be numerically evaluated.  It is also useful if Maxima is used to
generate programs to be run in Fortran. See also <code>stringout</code>.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) expr: 1e-155*x^2 - 5.5*x + 5.2e155;
                           2
(%o1)            1.0E-155 x  - 5.5 x + 5.2E+155
(%i2) expr2: horner (%, x), keepfloat: true;
(%o2)            (1.0E-155 x - 5.5) x + 5.2E+155
(%i3) ev (expr, x=1e155);
Maxima encountered a Lisp error:

 floating point overflow

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.
(%i4) ev (expr2, x=1e155);
(%o4)                       7.0E+154
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>find_root</b><i> (<var>f</var>(<var>x</var>), <var>x</var>, <var>a</var>, <var>b</var>)</i>
<a name="IDX710"></a>
</dt>
<dt><u>Function:</u> <b>find_root</b><i> (<var>f</var>, <var>a</var>, <var>b</var>)</i>
<a name="IDX711"></a>
</dt>
<dd><p>Finds the zero of function <var>f</var> as variable <var>x</var> varies over the range <code>[<var>a</var>, <var>b</var>]</code>.
The function must have a
different sign at each endpoint.  If this condition is not met, the
action of the function is governed by <code>find_root_error</code>.  If
<code>find_root_error</code> is <code>true</code> then an error occurs, otherwise the value of
<code>find_root_error</code> is returned (thus for plotting <code>find_root_error</code> might be set to
0.0).  Otherwise (given that Maxima can evaluate the first argument
in the specified range, and that it is continuous) <code>find_root</code> is
guaranteed to come up with the zero (or one of them if there is more
than one zero).  The accuracy of <code>find_root</code> is governed by
<code>find_root_abs</code> and <code>find_root_rel</code> which must be non-negative floating
point numbers.  <code>find_root</code> will stop when the first arg evaluates to
something less than or equal to <code>find_root_abs</code> or if successive
approximants to the root differ by no more than <code>find_root_rel * &lt;one of the approximants&gt;</code>.
The default values of <code>find_root_abs</code> and <code>find_root_rel</code> are
0.0 so <code>find_root</code> gets as good an answer as is possible with the
single precision arithmetic we have.  The first arg may be an
equation.  The order of the last two args is irrelevant.  Thus
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">find_root (sin(x) = x/2, x, %pi, 0.1);
</pre></td></tr></table>
<p>is equivalent to
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">find_root (sin(x) = x/2, x, 0.1, %pi);
</pre></td></tr></table>
<p>The method used is a binary search in the range specified by the last
two args.  When it thinks the function is close enough to being
linear, it starts using linear interpolation.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) f(x) := sin(x) - x/2;
                                        x
(%o1)                  f(x) := sin(x) - -
                                        2
(%i2) find_root (sin(x) - x/2, x, 0.1, %pi);
(%o2)                   1.895494267033981
(%i3) find_root (sin(x) = x/2, x, 0.1, %pi);
(%o3)                   1.895494267033981
(%i4) find_root (f(x), x, 0.1, %pi);
(%o4)                   1.895494267033981
(%i5) find_root (f, 0.1, %pi);
(%o5)                   1.895494267033981
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>find_root_abs</b>
<a name="IDX712"></a>
</dt>
<dd><p>Default value: 0.0
</p>
<p><code>find_root_abs</code> is the accuracy of the <code>find_root</code> command is
governed by <code>find_root_abs</code> and <code>find_root_rel</code> which must be
non-negative floating point numbers.  <code>find_root</code> will stop when the
first arg evaluates to something less than or equal to <code>find_root_abs</code> or if
successive approximants to the root differ by no more than <code>find_root_rel * &lt;one of the approximants&gt;</code>.
The default values of <code>find_root_abs</code> and
<code>find_root_rel</code> are 0.0 so <code>find_root</code> gets as good an answer as is possible
with the single precision arithmetic we have.
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>find_root_error</b>
<a name="IDX713"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p><code>find_root_error</code> governs the behavior of <code>find_root</code>.
When <code>find_root</code> is called, it determines whether or not the function
to be solved satisfies the condition that the values of the
function at the endpoints of the interpolation interval are opposite
in sign.  If they are of opposite sign, the interpolation proceeds.
If they are of like sign, and <code>find_root_error</code> is <code>true</code>, then an error is
signaled.  If they are of like sign and <code>find_root_error</code> is not <code>true</code>, the
value of <code>find_root_error</code> is returned.  Thus for plotting, <code>find_root_error</code>
might be set to 0.0.
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>find_root_rel</b>
<a name="IDX714"></a>
</dt>
<dd><p>Default value: 0.0
</p>
<p><code>find_root_rel</code> is the accuracy of the <code>find_root</code> command is
governed by <code>find_root_abs</code> and <code>find_root_rel</code> which must be
non-negative floating point numbers.  <code>find_root</code> will stop when the
first arg evaluates to something less than or equal to <code>find_root_abs</code> or if
successive approximants to the root differ by no more than <code>find_root_rel * &lt;one of the approximants&gt;</code>.
The default values of <code>find_root_abs</code> and
<code>find_root_rel</code> are 0.0 so <code>find_root</code> gets as good an answer as is possible
with the single precision arithmetic we have.
</p>
</dd></dl>

<hr size="6">
<a name="Definitions-for-Fourier-Series"></a>
<a name="SEC80"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC79" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima_24.html#SEC81" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC76" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC76" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_24.html#SEC81" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 23.4 Definitions for Fourier Series </h2>

<dl>
<dt><u>Function:</u> <b>equalp</b><i> (<var>x</var>, <var>y</var>)</i>
<a name="IDX715"></a>
</dt>
<dd><p>Returns <code>true</code> if <code>equal (<var>x</var>, <var>y</var>)</code> otherwise <code>false</code> (doesn't give an
error message like <code>equal (x, y)</code> would do in this case).
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>remfun</b><i> (<var>f</var>, <var>expr</var>)</i>
<a name="IDX716"></a>
</dt>
<dt><u>Function:</u> <b>remfun</b><i> (<var>f</var>, <var>expr</var>, <var>x</var>)</i>
<a name="IDX717"></a>
</dt>
<dd><p><code>remfun (<var>f</var>, <var>expr</var>)</code>
replaces all occurrences of <code><var>f</var> (<var>arg</var>)</code> by <var>arg</var> in <var>expr</var>.
</p>
<p><code>remfun (<var>f</var>, <var>expr</var>, <var>x</var>)</code>
replaces all occurrences of <code><var>f</var> (<var>arg</var>)</code> by <var>arg</var> in <var>expr</var>
only if <var>arg</var> contains the variable <var>x</var>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>funp</b><i> (<var>f</var>, <var>expr</var>)</i>
<a name="IDX718"></a>
</dt>
<dt><u>Function:</u> <b>funp</b><i> (<var>f</var>, <var>expr</var>, <var>x</var>)</i>
<a name="IDX719"></a>
</dt>
<dd><p><code>funp (<var>f</var>, <var>expr</var>)</code>
returns <code>true</code> if <var>expr</var> contains the function <var>f</var>.
</p>
<p><code>funp (<var>f</var>, <var>expr</var>, <var>x</var>)</code>
returns <code>true</code> if <var>expr</var> contains the function <var>f</var> and the variable
<var>x</var> is somewhere in the argument of one of the instances of <var>f</var>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>absint</b><i> (<var>f</var>, <var>x</var>, <var>halfplane</var>)</i>
<a name="IDX720"></a>
</dt>
<dt><u>Function:</u> <b>absint</b><i> (<var>f</var>, <var>x</var>)</i>
<a name="IDX721"></a>
</dt>
<dt><u>Function:</u> <b>absint</b><i> (<var>f</var>, <var>x</var>, <var>a</var>, <var>b</var>)</i>
<a name="IDX722"></a>
</dt>
<dd><p><code>absint (<var>f</var>, <var>x</var>, <var>halfplane</var>)</code>
returns the indefinite integral of <var>f</var> with respect to
<var>x</var> in the given halfplane (<code>pos</code>, <code>neg</code>, or <code>both</code>).
<var>f</var> may contain expressions of the form
<code>abs (x)</code>, <code>abs (sin (x))</code>, <code>abs (a) * exp (-abs (b) * abs (x))</code>.
</p>
<p><code>absint (<var>f</var>, <var>x</var>)</code> is equivalent to <code>absint (<var>f</var>, <var>x</var>, pos)</code>.
</p>
<p><code>absint (<var>f</var>, <var>x</var>, <var>a</var>, <var>b</var>)</code>
returns the definite integral of <var>f</var> with respect to <var>x</var> from <var>a</var> to <var>b</var>.
<var>f</var> may include absolute values.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>fourier</b><i> (<var>f</var>, <var>x</var>, <var>p</var>)</i>
<a name="IDX723"></a>
</dt>
<dd><p>Returns a list of the Fourier coefficients of <code><var>f</var>(<var>x</var>)</code> defined
on the interval <code>[-%pi, %pi]</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>foursimp</b><i> (<var>l</var>)</i>
<a name="IDX724"></a>
</dt>
<dd><p>Simplifies <code>sin (n %pi)</code> to 0 if <code>sinnpiflag</code> is <code>true</code> and
<code>cos (n %pi)</code> to <code>(-1)^n</code> if <code>cosnpiflag</code> is <code>true</code>.
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>sinnpiflag</b>
<a name="IDX725"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>See <code>foursimp</code>.
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>cosnpiflag</b>
<a name="IDX726"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>See <code>foursimp</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>fourexpand</b><i> (<var>l</var>, <var>x</var>, <var>p</var>, <var>limit</var>)</i>
<a name="IDX727"></a>
</dt>
<dd><p>Constructs and returns the Fourier series from the list of
Fourier coefficients <var>l</var> up through <var>limit</var> terms (<var>limit</var>
may be <code>inf</code>). <var>x</var> and <var>p</var> have same meaning as in
<code>fourier</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>fourcos</b><i> (<var>f</var>, <var>x</var>, <var>p</var>)</i>
<a name="IDX728"></a>
</dt>
<dd><p>Returns the Fourier cosine coefficients for <code><var>f</var>(<var>x</var>)</code> defined on <code>[0, %pi]</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>foursin</b><i> (<var>f</var>, <var>x</var>, <var>p</var>)</i>
<a name="IDX729"></a>
</dt>
<dd><p>Returns the Fourier sine coefficients for <code><var>f</var>(<var>x</var>)</code> defined on <code>[0, %pi]</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>totalfourier</b><i> (<var>f</var>, <var>x</var>, <var>p</var>)</i>
<a name="IDX730"></a>
</dt>
<dd><p>Returns <code>fourexpand (foursimp (fourier (<var>f</var>, <var>x</var>, <var>p</var>)), <var>x</var>, <var>p</var>, 'inf)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>fourint</b><i> (<var>f</var>, <var>x</var>)</i>
<a name="IDX731"></a>
</dt>
<dd><p>Constructs and returns a list of the Fourier integral coefficients of <code><var>f</var>(<var>x</var>)</code>
defined on <code>[minf, inf]</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>fourintcos</b><i> (<var>f</var>, <var>x</var>)</i>
<a name="IDX732"></a>
</dt>
<dd><p>Returns the Fourier cosine integral coefficients for <code><var>f</var>(<var>x</var>)</code> on <code>[0, inf]</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>fourintsin</b><i> (<var>f</var>, <var>x</var>)</i>
<a name="IDX733"></a>
</dt>
<dd><p>Returns the Fourier sine integral coefficients for <code><var>f</var>(<var>x</var>)</code> on <code>[0, inf]</code>.
</p>
</dd></dl>

<hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC76" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima_24.html#SEC81" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
 <font size="-1">
  This document was generated by <em>Robert Dodier</em> on <em>September, 20 2006</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
 </font>
 <br>

</p>
</body>
</html>