File: maxima_28.html

package info (click to toggle)
maxima 5.10.0-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 44,268 kB
  • ctags: 17,987
  • sloc: lisp: 152,894; fortran: 14,667; perl: 14,204; tcl: 10,103; sh: 3,376; makefile: 2,202; ansic: 471; awk: 7
file content (2580 lines) | stat: -rw-r--r-- 111,436 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on September, 20 2006 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
            Karl Berry  <karl@freefriends.org>
            Olaf Bachmann <obachman@mathematik.uni-kl.de>
            and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>

-->
<head>
<title>Maxima Manual: 28. itensor</title>

<meta name="description" content="Maxima Manual: 28. itensor">
<meta name="keywords" content="Maxima Manual: 28. itensor">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
    color: black;
    background: white; 
    margin-left: 8%;
    margin-right: 13%;
}

h1
{
    margin-left: +8%;
    font-size: 150%;
    font-family: sans-serif
}

h2
{
    font-size: 125%;
    font-family: sans-serif
}

h3
{
    font-size: 100%;
    font-family: sans-serif
}

h2,h3,h4,h5,h6 { margin-left: +4%; }

div.textbox
{
    border: solid;
    border-width: thin;
    /* width: 100%; */
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em
}

div.titlebox
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em;
    background: rgb(200,255,255);
    font-family: sans-serif
}

div.synopsisbox
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em;
     background: rgb(255,220,255);
    /*background: rgb(200,255,255); */
    /* font-family: fixed */
}

pre.example
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 1em;
    padding-right: 1em;
    background: rgb(247,242,180); /* kind of sandy */
    /* background: rgb(200,255,255); */ /* sky blue */
    font-family: "Lucida Console", monospace
}

div.spacerbox
{
    border: none;
    padding-top: 2em;
    padding-bottom: 2em
}

div.image
{
    margin: 0;
    padding: 1em;
    text-align: center;
}
-->
</style>

<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">

<a name="itensor"></a>
<a name="SEC93"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="maxima_27.html#SEC92" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC94" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima_27.html#SEC91" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="chapter"> 28. itensor </h1>



<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#SEC94">28.1 Introduction to itensor</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC97">28.2 Definitions for itensor</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr size="6">
<a name="Introduction-to-itensor"></a>
<a name="SEC94"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC93" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC95" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC93" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC93" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 28.1 Introduction to itensor </h2>

<p>Maxima implements symbolic tensor manipulation of two distinct types:
component tensor manipulation (<code>ctensor</code> package) and indicial tensor manipulation (<code>itensor</code> package).
</p>
<p>Nota bene: Please see the note on 'new tensor notation' below.
</p>
<p>Component tensor manipulation means that geometrical tensor
objects are represented as arrays or matrices. Tensor operations such
as contraction or covariant differentiation are carried out by
actually summing over repeated (dummy) indices with <code>do</code> statements.
That is, one explicitly performs operations on the appropriate tensor
components stored in an array or matrix.
</p>
<p>Indicial tensor manipulation is implemented by representing
tensors as functions of their covariant, contravariant and derivative
indices. Tensor operations such as contraction or covariant
differentiation are performed by manipulating the indices themselves
rather than the components to which they correspond.
</p>
<p>These two approaches to the treatment of differential, algebraic and
analytic processes in the context of Riemannian geometry have various
advantages and disadvantages which reveal themselves only through the
particular nature and difficulty of the user's problem.  However, one
should keep in mind the following characteristics of the two
implementations:
</p>
<p>The representation of tensors and tensor operations explicitly in
terms of their components makes <code>ctensor</code> easy to use. Specification of
the metric and the computation of the induced tensors and invariants
is straightforward. Although all of Maxima's powerful simplification
capacity is at hand, a complex metric with intricate functional and
coordinate dependencies can easily lead to expressions whose size is
excessive and whose structure is hidden. In addition, many calculations
involve intermediate expressions which swell causing programs to
terminate before completion. Through experience, a user can avoid
many of these difficulties.
</p>
<p>Because of the special way in which tensors and tensor operations
are represented in terms of symbolic operations on their indices,
expressions which in the component representation would be
unmanageable can sometimes be greatly simplified by using the special
routines for symmetrical objects in <code>itensor</code>. In this way the structure
of a large expression may be more transparent. On the other hand, because
of the the special indicial representation in <code>itensor</code>, in some cases the
user may find difficulty with the specification of the metric, function
definition, and the evaluation of differentiated &quot;indexed&quot; objects.
</p>
<hr size="6">
<a name="SEC95"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC94" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC96" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC93" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC94" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h3 class="subsection"> 28.1.1 New tensor notation </h3>

<p>Until now, the <code>itensor</code> package in Maxima has used a notation that sometimes
led to incorrect index ordering. Consider the following, for instance:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i2) imetric(g);
(%o2)                                done
(%i3) ishow(g([],[j,k])*g([],[i,l])*a([i,j],[]))$
                                 i l  j k
(%t3)                           g    g    a
                                           i j
(%i4) ishow(contract(%))$
                                      k l
(%t4)                                a
</pre></td></tr></table>
<p>This result is incorrect unless <code>a</code> happens to be a symmetric tensor.
The reason why this happens is that although <code>itensor</code> correctly maintains
the order within the set of covariant and contravariant indices, once an
index is raised or lowered, its position relative to the other set of
indices is lost.
</p>
<p>To avoid this problem, a new notation has been developed that remains fully
compatible with the existing notation and can be used interchangeably. In
this notation, contravariant indices are inserted in the appropriate
positions in the covariant index list, but with a minus sign prepended.
Functions like <code>contract</code> and <code>ishow</code> are now aware of this
new index notation and can process tensors appropriately.
</p>
<p>In this new notation, the previous example yields a correct result:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i5) ishow(g([-j,-k],[])*g([-i,-l],[])*a([i,j],[]))$
                                 i l       j k
(%t5)                           g    a    g
                                      i j
(%i6) ishow(contract(%))$
                                      l k
(%t6)                                a
</pre></td></tr></table>
<p>Presently, the only code that makes use of this notation is the <code>lc2kdt</code>
function. Through this notation, it achieves consistent results as it
applies the metric tensor to resolve Levi-Civita symbols without resorting
to numeric indices.
</p>
<p>Since this code is brand new, it probably contains bugs. While it has been
tested to make sure that it doesn't break anything using the &quot;old&quot; tensor
notation, there is a considerable chance that &quot;new&quot; tensors will fail to
interoperate with certain functions or features. These bugs will be fixed
as they are encountered... until then, caveat emptor!
</p>

<hr size="6">
<a name="SEC96"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC95" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC97" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC93" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC94" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h3 class="subsection"> 28.1.2 Indicial tensor manipulation </h3>

<p>The indicial tensor manipulation package may be loaded by
<code>load(itensor)</code>. Demos are also available: try <code>demo(tensor)</code>.
</p>
<p>In <code>itensor</code> a tensor is represented as an &quot;indexed object&quot; .  This is a
function of 3 groups of indices which represent the covariant,
contravariant and derivative indices.  The covariant indices are
specified by a list as the first argument to the indexed object, and
the contravariant indices by a list as the second argument. If the
indexed object lacks either of these groups of indices then the empty
list <code>[]</code> is given as the corresponding argument.  Thus, <code>g([a,b],[c])</code>
represents an indexed object called <code>g</code> which has two covariant indices
<code>(a,b)</code>, one contravariant index (<code>c</code>) and no derivative indices.
</p>
<p>The derivative indices, if they are present, are appended as
additional arguments to the symbolic function representing the tensor.
They can be explicitly specified by the user or be created in the
process of differentiation with respect to some coordinate variable.
Since ordinary differentiation is commutative, the derivative indices
are sorted alphanumerically, unless <code>iframe_flag</code> is set to <code>true</code>,
indicating that a frame metric is being used. This canonical ordering makes it
possible for Maxima to recognize that, for example, <code>t([a],[b],i,j)</code> is
the same as <code>t([a],[b],j,i)</code>.  Differentiation of an indexed object with
respect to some coordinate whose index does not appear as an argument
to the indexed object would normally yield zero. This is because
Maxima would not know that the tensor represented by the indexed
object might depend implicitly on the corresponding coordinate.  By
modifying the existing Maxima function <code>diff</code> in <code>itensor</code>, Maxima now
assumes that all indexed objects depend on any variable of
differentiation unless otherwise stated.  This makes it possible for
the summation convention to be extended to derivative indices. It
should be noted that <code>itensor</code> does not possess the capabilities of
raising derivative indices, and so they are always treated as
covariant.
</p>
<p>The following functions are available in the tensor package for
manipulating indexed objects.  At present, with respect to the
simplification routines, it is assumed that indexed objects do not
by default possess symmetry properties. This can be overridden by
setting the variable <code>allsym[false]</code> to <code>true</code>, which will
result in treating all indexed objects completely symmetric in their
lists of covariant indices and symmetric in their lists of
contravariant indices.
</p>
<p>The <code>itensor</code> package generally treats tensors as opaque objects. Tensorial
equations are manipulated based on algebraic rules, specifically symmetry
and contraction rules. In addition, the <code>itensor</code> package understands
covariant differentiation, curvature, and torsion. Calculations can be
performed relative to a metric of moving frame, depending on the setting
of the <code>iframe_flag</code> variable.
</p>
<p>A sample session below demonstrates how to load the <code>itensor</code> package,
specify the name of the metric, and perform some simple calculations.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) imetric(g);
(%o2)                                done
(%i3) components(g([i,j],[]),p([i,j],[])*e([],[]))$
(%i4) ishow(g([k,l],[]))$
(%t4)                               e p
                                       k l
(%i5) ishow(diff(v([i],[]),t))$
(%t5)                                  0
(%i6) depends(v,t);
(%o6)                               [v(t)]
(%i7) ishow(diff(v([i],[]),t))$
                                    d
(%t7)                               -- (v )
                                    dt   i
(%i8) ishow(idiff(v([i],[]),j))$
(%t8)                                v
                                      i,j
(%i9) ishow(extdiff(v([i],[]),j))$
(%t9)                             v    - v
                                   j,i    i,j
                                  -----------
                                       2
(%i10) ishow(liediff(v,w([i],[])))$
                               %3          %3
(%t10)                        v   w     + v   w
                                   i,%3    ,i  %3
(%i11) ishow(covdiff(v([i],[]),j))$
                                              %4
(%t11)                        v    - v   ichr2
                               i,j    %4      i j
(%i12) ishow(ev(%,ichr2))$
               %4 %5
(%t12) v    - g      v   (e p       + e   p     - e p       - e    p
        i,j           %4     j %5,i    ,i  j %5      i j,%5    ,%5  i j

                                                + e p       + e   p    )/2
                                                     i %5,j    ,j  i %5
(%i13) iframe_flag:true;
(%o13)                               true
(%i14) ishow(covdiff(v([i],[]),j))$
                                             %6
(%t14)                        v    - v   icc2
                               i,j    %6     i j
(%i15) ishow(ev(%,icc2))$
                                             %6
(%t15)                        v    - v   ifc2
                               i,j    %6     i j
(%i16) ishow(radcan(ev(%,ifc2,ifc1)))$
             %6 %8                    %6 %8
(%t16) - (ifg      v   ifb       + ifg      v   ifb       - 2 v
                    %6    j %8 i             %6    i j %8      i,j

                                                    %6 %8
                                               - ifg      v   ifb      )/2
                                                           %6    %8 i j
(%i17) ishow(canform(s([i,j],[])-s([j,i])))$
(%t17)                            s    - s
                                   i j    j i
(%i18) decsym(s,2,0,[sym(all)],[]);
(%o18)                               done
(%i19) ishow(canform(s([i,j],[])-s([j,i])))$
(%t19)                                 0
(%i20) ishow(canform(a([i,j],[])+a([j,i])))$
(%t20)                            a    + a
                                   j i    i j
(%i21) decsym(a,2,0,[anti(all)],[]);
(%o21)                               done
(%i22) ishow(canform(a([i,j],[])+a([j,i])))$
(%t22)                                 0
</pre></td></tr></table>



<hr size="6">
<a name="Definitions-for-itensor"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC96" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC98" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC93" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC93" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>

<a name="SEC97"></a>
<h2 class="section"> 28.2 Definitions for itensor </h2>
<hr size="6">
<a name="SEC98"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC97" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC99" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC93" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC97" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h3 class="subsection"> 28.2.1 Managing indexed objects </h3>

<dl>
<dt><u>Function:</u> <b>entertensor</b><i> (<var>name</var>)</i>
<a name="IDX851"></a>
</dt>
<dd><p>is a function which, by prompting, allows one to create an indexed
object called <var>name</var> with any number of tensorial and derivative
indices. Either a single index or a list of indices (which may be
null) is acceptable input (see the example under <code>covdiff</code>).
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>changename</b><i> (<var>old</var>, <var>new</var>, <var>expr</var>)</i>
<a name="IDX852"></a>
</dt>
<dd><p>will change the name of all indexed objects called <var>old</var> to <var>new</var>
in <var>expr</var>. <var>old</var> may be either a symbol or a list of the form
<code>[<var>name</var>, <var>m</var>, <var>n</var>]</code> in which case only those indexed objects called
<var>name</var> with <var>m</var> covariant and <var>n</var> contravariant indices will be
renamed to <var>new</var>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>listoftens</b>
<a name="IDX853"></a>
</dt>
<dd><p>Lists all tensors in a tensorial expression, complete with their indices. E.g.,
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i6) ishow(a([i,j],[k])*b([u],[],v)+c([x,y],[])*d([],[])*e)$
                                         k
(%t6)                        d e c    + a    b
                                  x y    i j  u,v
(%i7) ishow(listoftens(%))$
                               k
(%t7)                        [a   , b   , c   , d]
                               i j   u,v   x y

</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>ishow</b><i> (<var>expr</var>)</i>
<a name="IDX854"></a>
</dt>
<dd><p>displays <var>expr</var> with the indexed objects in it shown having their
covariant indices as subscripts and contravariant indices as
superscripts. The derivative indices are displayed as subscripts,
separated from the covariant indices by a comma (see the examples
throughout this document).
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>indices</b><i> (<var>expr</var>)</i>
<a name="IDX855"></a>
</dt>
<dd><p>Returns a list of two elements.  The first is a list of the free
indices in <var>expr</var> (those that occur only once). The second is the
list of the dummy indices in <var>expr</var> (those that occur exactly twice)
as the following example demonstrates.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) ishow(a([i,j],[k,l],m,n)*b([k,o],[j,m,p],q,r))$
                                k l      j m p
(%t2)                          a        b
                                i j,m n  k o,q r
(%i3) indices(%);
(%o3)                 [[l, p, i, n, o, q, r], [k, j, m]]

</pre></td></tr></table>
<p>A tensor product containing the same index more than twice is syntactically
illegal. <code>indices</code> attempts to deal with these expressions in a
reasonable manner; however, when it is called to operate upon such an
illegal expression, its behavior should be considered undefined.
</p>

</dd></dl>

<dl>
<dt><u>Function:</u> <b>rename</b><i> (<var>expr</var>)</i>
<a name="IDX856"></a>
</dt>
<dt><u>Function:</u> <b>rename</b><i> (<var>expr</var>, <var>count</var>)</i>
<a name="IDX857"></a>
</dt>
<dd><p>Returns an expression equivalent to <var>expr</var> but with the dummy indices
in each term chosen from the set <code>[%1, %2,...]</code>, if the optional second
argument is omitted. Otherwise, the dummy indices are indexed
beginning at the value of <var>count</var>.  Each dummy index in a product
will be different. For a sum, <code>rename</code> will operate upon each term in
the sum resetting the counter with each term. In this way <code>rename</code> can
serve as a tensorial simplifier. In addition, the indices will be
sorted alphanumerically (if <code>allsym</code> is <code>true</code>) with respect to
covariant or contravariant indices depending upon the value of <code>flipflag</code>.
If <code>flipflag</code> is <code>false</code> then the indices will be renamed according
to the order of the contravariant indices. If <code>flipflag</code> is <code>true</code>
the renaming will occur according to the order of the covariant
indices. It often happens that the combined effect of the two renamings will
reduce an expression more than either one by itself.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) allsym:true;
(%o2)                                true
(%i3) g([],[%4,%5])*g([],[%6,%7])*ichr2([%1,%4],[%3])*
ichr2([%2,%3],[u])*ichr2([%5,%6],[%1])*ichr2([%7,r],[%2])-
g([],[%4,%5])*g([],[%6,%7])*ichr2([%1,%2],[u])*
ichr2([%3,%5],[%1])*ichr2([%4,%6],[%3])*ichr2([%7,r],[%2]),noeval$
(%i4) expr:ishow(%)$

       %4 %5  %6 %7      %3         u          %1         %2
(%t4) g      g      ichr2      ichr2      ichr2      ichr2
                         %1 %4      %2 %3      %5 %6      %7 r

              %4 %5  %6 %7      u          %1         %3         %2
           - g      g      ichr2      ichr2      ichr2      ichr2
                                %1 %2      %3 %5      %4 %6      %7 r
(%i5) flipflag:true;
(%o5)                                true
(%i6) ishow(rename(expr))$
       %2 %5  %6 %7      %4         u          %1         %3
(%t6) g      g      ichr2      ichr2      ichr2      ichr2
                         %1 %2      %3 %4      %5 %6      %7 r

              %4 %5  %6 %7      u          %1         %3         %2
           - g      g      ichr2      ichr2      ichr2      ichr2
                                %1 %2      %3 %4      %5 %6      %7 r
(%i7) flipflag:false;
(%o7)                                false
(%i8) rename(%th(2));
(%o8)                                  0
(%i9) ishow(rename(expr))$
       %1 %2  %3 %4      %5         %6         %7        u
(%t9) g      g      ichr2      ichr2      ichr2     ichr2
                         %1 %6      %2 %3      %4 r      %5 %7

              %1 %2  %3 %4      %6         %5         %7        u
           - g      g      ichr2      ichr2      ichr2     ichr2
                                %1 %3      %2 %6      %4 r      %5 %7
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>flipflag</b>
<a name="IDX858"></a>
</dt>
<dd><p>Default: <code>false</code>. If <code>false</code> then the indices will be
renamed according to the order of the contravariant indices,
otherwise according to the order of the covariant indices.
</p>
<p>If <code>flipflag</code> is <code>false</code> then <code>rename</code> forms a list
of the contravariant indices as they are encountered from left to right
(if <code>true</code> then of the covariant indices). The first dummy
index in the list is renamed to <code>%1</code>, the next to <code>%2</code>, etc.
Then sorting occurs after the <code>rename</code>-ing (see the example
under <code>rename</code>).
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>defcon</b><i> (<var>tensor_1</var>)</i>
<a name="IDX859"></a>
</dt>
<dt><u>Function:</u> <b>defcon</b><i> (<var>tensor_1</var>, <var>tensor_2</var>, <var>tensor_3</var>)</i>
<a name="IDX860"></a>
</dt>
<dd><p>gives <var>tensor_1</var> the property that the
contraction of a product of <var>tensor_1</var> and <var>tensor_2</var> results in <var>tensor_3</var>
with the appropriate indices.  If only one argument, <var>tensor_1</var>, is
given, then the contraction of the product of <var>tensor_1</var> with any indexed
object having the appropriate indices (say <code>my_tensor</code>) will yield an
indexed object with that name, i.e. <code>my_tensor</code>, and with a new set of
indices reflecting the contractions performed.
    For example, if <code>imetric:g</code>, then <code>defcon(g)</code> will implement the
raising and lowering of indices through contraction with the metric
tensor.
    More than one <code>defcon</code> can be given for the same indexed object; the
latest one given which applies in a particular contraction will be
used.
<code>contractions</code> is a list of those indexed objects which have been given
contraction properties with <code>defcon</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>remcon</b><i> (<var>tensor_1</var>, ..., <var>tensor_n</var>)</i>
<a name="IDX861"></a>
</dt>
<dt><u>Function:</u> <b>remcon</b><i> (all)</i>
<a name="IDX862"></a>
</dt>
<dd><p>removes all the contraction properties
from the <var>tensor_1</var>, ..., <var>tensor_n</var>). <code>remcon(all)</code> removes all contraction
properties from all indexed objects.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>contract</b><i> (<var>expr</var>)</i>
<a name="IDX863"></a>
</dt>
<dd><p>Carries out the tensorial contractions in <var>expr</var> which may be any
combination of sums and products. This function uses the information
given to the <code>defcon</code> function. For best results, <code>expr</code>
should be fully expanded. <code>ratexpand</code> is the fastest way to expand
products and powers of sums if there are no variables in the denominators
of the terms. The <code>gcd</code> switch should be <code>false</code> if GCD
cancellations are unnecessary.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>indexed_tensor</b><i> (<var>tensor</var>)</i>
<a name="IDX864"></a>
</dt>
<dd><p>Must be executed before assigning components to a <var>tensor</var> for which
a built in value already exists as with <code>ichr1</code>, <code>ichr2</code>,
<code>icurvature</code>. See the example under <code>icurvature</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>components</b><i> (<var>tensor</var>, <var>expr</var>)</i>
<a name="IDX865"></a>
</dt>
<dd><p>permits one to assign an indicial value to an expression
<var>expr</var> giving the values of the components of <var>tensor</var>. These
are automatically substituted for the tensor whenever it occurs with
all of its indices. The tensor must be of the form <code>t([...],[...])</code>
where either list may be empty. <var>expr</var> can be any indexed expression
involving other objects with the same free indices as <var>tensor</var>. When
used to assign values to the metric tensor wherein the components
contain dummy indices one must be careful to define these indices to
avoid the generation of multiple dummy indices. Removal of this
assignment is given to the function <code>remcomps</code>.
</p>
<p>It is important to keep in mind that <code>components</code> cares only about
the valence of a tensor, not about any particular index ordering. Thus
assigning components to, say, <code>x([i,-j],[])</code>, <code>x([-j,i],[])</code>, or
<code>x([i],[j])</code> all produce the same result, namely components being
assigned to a tensor named <code>x</code> with valence <code>(1,1)</code>.
</p>
<p>Components can be assigned to an indexed expression in four ways, two
of which involve the use of the <code>components</code> command:
</p>
<p>1) As an indexed expression. For instance:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i2) components(g([],[i,j]),e([],[i])*p([],[j]))$
(%i3) ishow(g([],[i,j]))$
                                      i  j
(%t3)                                e  p

</pre></td></tr></table>
<p>2) As a matrix:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i6) components(g([i,j],[]),lg);
(%o6)                                done
(%i7) ishow(g([i,j],[]))$
(%t7)                                g
                                      i j
(%i8) g([3,3],[]);
(%o8)                                  1
(%i9) g([4,4],[]);
(%o9)                                 - 1

</pre></td></tr></table>
<p>3) As a function. You can use a Maxima function to specify the
components of a tensor based on its indices. For instance, the following
code assigns <code>kdelta</code> to <code>h</code> if <code>h</code> has the same number
of covariant and contravariant indices and no derivative indices, and
<code>g</code> otherwise:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i4) h(l1,l2,[l3]):=if length(l1)=length(l2) and length(l3)=0
  then kdelta(l1,l2) else apply(g,append([l1,l2], l3))$
(%i5) ishow(h([i],[j]))$
                                          j
(%t5)                               kdelta
                                          i
(%i6) ishow(h([i,j],[k],l))$
                                     k
(%t6)                               g
                                     i j,l

</pre></td></tr></table>
<p>4) Using Maxima's pattern matching capabilities, specifically the
<code>defrule</code> and <code>applyb1</code> commands:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) matchdeclare(l1,listp);
(%o2)                                done
(%i3) defrule(r1,m(l1,[]),(i1:idummy(),
      g([l1[1],l1[2]],[])*q([i1],[])*e([],[i1])))$

(%i4) defrule(r2,m([],l1),(i1:idummy(),
      w([],[l1[1],l1[2]])*e([i1],[])*q([],[i1])))$

(%i5) ishow(m([i,n],[])*m([],[i,m]))$
                                    i m
(%t5)                              m    m
                                         i n
(%i6) ishow(rename(applyb1(%,r1,r2)))$
                           %1  %2  %3 m
(%t6)                     e   q   w     q   e   g
                                         %1  %2  %3 n


</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>remcomps</b><i> (<var>tensor</var>)</i>
<a name="IDX866"></a>
</dt>
<dd><p>Unbinds all values from <var>tensor</var> which were assigned with the
<code>components</code> function.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>showcomps</b><i> (<var>tensor</var>)</i>
<a name="IDX867"></a>
</dt>
<dd><p>Shows component assignments of a tensor, as made using the <code>components</code>
command. This function can be particularly useful when a matrix is assigned
to an indicial tensor using <code>components</code>, as demonstrated by the
following example:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(ctensor);
(%o1)       /share/tensor/ctensor.mac
(%i2) load(itensor);
(%o2)      /share/tensor/itensor.lisp
(%i3) lg:matrix([sqrt(r/(r-2*m)),0,0,0],[0,r,0,0],
                [0,0,sin(theta)*r,0],[0,0,0,sqrt((r-2*m)/r)]);
               [         r                                     ]
               [ sqrt(-------)  0       0              0       ]
               [      r - 2 m                                  ]
               [                                               ]
               [       0        r       0              0       ]
(%o3)          [                                               ]
               [       0        0  r sin(theta)        0       ]
               [                                               ]
               [                                      r - 2 m  ]
               [       0        0       0        sqrt(-------) ]
               [                                         r     ]
(%i4) components(g([i,j],[]),lg);
(%o4)                                done
(%i5) showcomps(g([i,j],[]));
                  [         r                                     ]
                  [ sqrt(-------)  0       0              0       ]
                  [      r - 2 m                                  ]
                  [                                               ]
                  [       0        r       0              0       ]
(%t5)      g    = [                                               ]
            i j   [       0        0  r sin(theta)        0       ]
                  [                                               ]
                  [                                      r - 2 m  ]
                  [       0        0       0        sqrt(-------) ]
                  [                                         r     ]
(%o5)                                false

</pre></td></tr></table>
<p>The <code>showcomps</code> command can also display components of a tensor of
rank higher than 2.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>idummy</b><i> ()</i>
<a name="IDX868"></a>
</dt>
<dd><p>Increments <code>icounter</code> and returns as its value an index of the form
<code>%n</code> where n is a positive integer.  This guarantees that dummy indices
which are needed in forming expressions will not conflict with indices
already in use (see the example under <code>indices</code>).
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>idummyx</b>
<a name="IDX869"></a>
</dt>
<dd><p>Default value: <code>%</code>
</p>
<p>Is the prefix for dummy indices (see the example under <code>indices</code>).
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>icounter</b>
<a name="IDX870"></a>
</dt>
<dd><p>Default value: <code>1</code>
</p>
<p>Determines the numerical suffix to be used in
generating the next dummy index in the tensor package.  The prefix is
determined by the option <code>idummy</code> (default: <code>%</code>).
</p></dd></dl>

<dl>
<dt><u>Function:</u> <b>kdelta</b><i> (<var>L1</var>, <var>L2</var>)</i>
<a name="IDX871"></a>
</dt>
<dd><p>is the generalized Kronecker delta function defined in
the <code>itensor</code> package with <var>L1</var> the list of covariant indices and <var>L2</var>
the list of contravariant indices.  <code>kdelta([i],[j])</code> returns the ordinary
Kronecker delta.  The command <code>ev(<var>expr</var>,kdelta)</code> causes the evaluation of
an expression containing <code>kdelta([],[])</code> to the dimension of the
manifold.
</p>
<p>In what amounts to an abuse of this notation, <code>itensor</code> also allows
<code>kdelta</code> to have 2 covariant and no contravariant, or 2 contravariant
and no covariant indices, in effect providing a co(ntra)variant &quot;unit matrix&quot;
capability. This is strictly considered a programming aid and not meant to
imply that <code>kdelta([i,j],[])</code> is a valid tensorial object.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>kdels</b><i> (<var>L1</var>, <var>L2</var>)</i>
<a name="IDX872"></a>
</dt>
<dd><p>Symmetricized Kronecker delta, used in some calculations. For instance:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) kdelta([1,2],[2,1]);
(%o2)                                 - 1
(%i3) kdels([1,2],[2,1]);
(%o3)                                  1
(%i4) ishow(kdelta([a,b],[c,d]))$
                             c       d         d       c
(%t4)                  kdelta  kdelta  - kdelta  kdelta
                             a       b         a       b
(%i4) ishow(kdels([a,b],[c,d]))$
                             c       d         d       c
(%t4)                  kdelta  kdelta  + kdelta  kdelta
                             a       b         a       b

</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>levi_civita</b><i> (<var>L</var>)</i>
<a name="IDX873"></a>
</dt>
<dd><p>is the permutation (or Levi-Civita) tensor which yields 1 if
the list <var>L</var> consists of an even permutation of integers, -1 if it
consists of an odd permutation, and 0 if some indices in <var>L</var> are
repeated.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>lc2kdt</b><i> (<var>expr</var>)</i>
<a name="IDX874"></a>
</dt>
<dd><p>Simplifies expressions containing the Levi-Civita symbol, converting these
to Kronecker-delta expressions when possible. The main difference between
this function and simply evaluating the Levi-Civita symbol is that direct
evaluation often results in Kronecker expressions containing numerical
indices. This is often undesirable as it prevents further simplification.
The <code>lc2kdt</code> function avoids this problem, yielding expressions that
are more easily simplified with <code>rename</code> or <code>contract</code>.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) expr:ishow('levi_civita([],[i,j])*'levi_civita([k,l],[])*a([j],[k]))$
                                  i j  k
(%t2)                  levi_civita    a  levi_civita
                                       j            k l
(%i3) ishow(ev(expr,levi_civita))$
                                  i j  k       1 2
(%t3)                       kdelta    a  kdelta
                                  1 2  j       k l
(%i4) ishow(ev(%,kdelta))$
             i       j         j       i   k
(%t4) (kdelta  kdelta  - kdelta  kdelta ) a
             1       2         1       2   j

                               1       2         2       1
                        (kdelta  kdelta  - kdelta  kdelta )
                               k       l         k       l
(%i5) ishow(lc2kdt(expr))$
                     k       i       j    k       j       i
(%t5)               a  kdelta  kdelta  - a  kdelta  kdelta
                     j       k       l    j       k       l
(%i6) ishow(contract(expand(%)))$
                                 i           i
(%t6)                           a  - a kdelta
                                 l           l

</pre></td></tr></table>
<p>The <code>lc2kdt</code> function sometimes makes use of the metric tensor.
If the metric tensor was not defined previously with <code>imetric</code>,
this results in an error.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i7) expr:ishow('levi_civita([],[i,j])*'levi_civita([],[k,l])*a([j,k],[]))$
                                 i j            k l
(%t7)                 levi_civita    levi_civita    a
                                                     j k
(%i8) ishow(lc2kdt(expr))$
Maxima encountered a Lisp error:

 Error in $IMETRIC [or a callee]:
 $IMETRIC [or a callee] requires less than two arguments.

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.
(%i9) imetric(g);
(%o9)                                done
(%i10) ishow(lc2kdt(expr))$
         %3 i       k   %4 j       l     %3 i       l   %4 j       k
(%t10) (g     kdelta   g     kdelta   - g     kdelta   g     kdelta  ) a
                    %3             %4               %3             %4   j k
(%i11) ishow(contract(expand(%)))$
                                  l i      l i
(%t11)                           a    - a g

</pre></td></tr></table>

</dd></dl>

<dl>
<dt><u>Function:</u> <b>lc_l</b>
<a name="IDX875"></a>
</dt>
<dd><p>Simplification rule used for expressions containing the unevaluated Levi-Civita
symbol (<code>levi_civita</code>). Along with <code>lc_u</code>, it can be used to simplify
many expressions more efficiently than the evaluation of <code>levi_civita</code>.
For example:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2)  el1:ishow('levi_civita([i,j,k],[])*a([],[i])*a([],[j]))$
                             i  j
(%t2)                       a  a  levi_civita
                                             i j k
(%i3) el2:ishow('levi_civita([],[i,j,k])*a([i])*a([j]))$
                                       i j k
(%t3)                       levi_civita      a  a
                                              i  j
(%i4) ishow(canform(contract(expand(applyb1(el1,lc_l,lc_u)))))$
(%t4)                                  0
(%i5) ishow(canform(contract(expand(applyb1(el2,lc_l,lc_u)))))$
(%t5)                                  0

</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>lc_u</b>
<a name="IDX876"></a>
</dt>
<dd><p>Simplification rule used for expressions containing the unevaluated Levi-Civita
symbol (<code>levi_civita</code>). Along with <code>lc_u</code>, it can be used to simplify
many expressions more efficiently than the evaluation of <code>levi_civita</code>.
For details, see <code>lc_l</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>canten</b><i> (<var>expr</var>)</i>
<a name="IDX877"></a>
</dt>
<dd><p>Simplifies <var>expr</var> by renaming (see <code>rename</code>)
and permuting dummy indices. <code>rename</code> is restricted to sums of tensor
products in which no derivatives are present. As such it is limited
and should only be used if <code>canform</code> is not capable of carrying out the
required simplification.
</p>
<p>The <code>canten</code> function returns a mathematically correct result only
if its argument is an expression that is fully symmetric in its indices.
For this reason, <code>canten</code> returns an error if <code>allsym</code> is not
set to <code>true</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>concan</b><i> (<var>expr</var>)</i>
<a name="IDX878"></a>
</dt>
<dd><p>Similar to <code>canten</code> but also performs index contraction.
</p>
</dd></dl>

<hr size="6">
<a name="SEC99"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC98" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC100" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC93" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC97" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h3 class="subsection"> 28.2.2 Tensor symmetries </h3>

<dl>
<dt><u>Option variable:</u> <b>allsym</b>
<a name="IDX879"></a>
</dt>
<dd><p>Default: <code>false</code>. if <code>true</code> then all indexed objects
are assumed symmetric in all of their covariant and contravariant
indices. If <code>false</code> then no symmetries of any kind are assumed
in these indices. Derivative indices are always taken to be symmetric
unless <code>iframe_flag</code> is set to <code>true</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>decsym</b><i> (<var>tensor</var>, <var>m</var>, <var>n</var>, [<var>cov_1</var>, <var>cov_2</var>, ...], [<var>contr_1</var>, <var>contr_2</var>, ...])</i>
<a name="IDX880"></a>
</dt>
<dd><p>Declares symmetry properties for <var>tensor</var> of <var>m</var> covariant and
<var>n</var> contravariant indices. The <var>cov_i</var> and <var>contr_i</var> are
pseudofunctions expressing symmetry relations among the covariant and
contravariant indices respectively.  These are of the form
<code>symoper(<var>index_1</var>, <var>index_2</var>,...)</code> where <code>symoper</code> is one of
<code>sym</code>, <code>anti</code> or <code>cyc</code> and the <var>index_i</var> are integers
indicating the position of the index in the <var>tensor</var>.  This will
declare <var>tensor</var> to be symmetric, antisymmetric or cyclic respectively
in the <var>index_i</var>. <code>symoper(all)</code> is also an allowable form which
indicates all indices obey the symmetry condition. For example, given an
object <code>b</code> with 5 covariant indices,
<code>decsym(b,5,3,[sym(1,2),anti(3,4)],[cyc(all)])</code> declares <code>b</code>
symmetric in its first and second and antisymmetric in its third and
fourth covariant indices, and cyclic in all of its contravariant indices.
Either list of symmetry declarations may be null.  The function which
performs the simplifications is <code>canform</code> as the example below
illustrates.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) expr:contract(expand(a([i1,j1,k1],[])*kdels([i,j,k],[i1,j1,k1])))$
(%i3) ishow(expr)$
(%t3)         a      + a      + a      + a      + a      + a
               k j i    k i j    j k i    j i k    i k j    i j k
(%i4) decsym(a,3,0,[sym(all)],[]);
(%o4)                                done
(%i5) ishow(canform(expr))$
(%t5)                              6 a
                                      i j k
(%i6) remsym(a,3,0);
(%o6)                                done
(%i7) decsym(a,3,0,[anti(all)],[]);
(%o7)                                done
(%i8) ishow(canform(expr))$
(%t8)                                  0
(%i9) remsym(a,3,0);
(%o9)                                done
(%i10) decsym(a,3,0,[cyc(all)],[]);
(%o10)                               done
(%i11) ishow(canform(expr))$
(%t11)                        3 a      + 3 a
                                 i k j      i j k
(%i12) dispsym(a,3,0);
(%o12)                     [[cyc, [[1, 2, 3]], []]]

</pre></td></tr></table>

</dd></dl>

<dl>
<dt><u>Function:</u> <b>remsym</b><i> (<var>tensor</var>, <var>m</var>, <var>n</var>)</i>
<a name="IDX881"></a>
</dt>
<dd><p>Removes all symmetry properties from <var>tensor</var> which has <var>m</var>
covariant indices and <var>n</var> contravariant indices.
</p></dd></dl>

<dl>
<dt><u>Function:</u> <b>canform</b><i> (<var>expr</var>)</i>
<a name="IDX882"></a>
</dt>
<dd><p>Simplifies <var>expr</var> by renaming dummy
indices and reordering all indices as dictated by symmetry conditions
imposed on them. If <code>allsym</code> is <code>true</code> then all indices are assumed
symmetric, otherwise symmetry information provided by <code>decsym</code>
declarations will be used. The dummy indices are renamed in the same
manner as in the <code>rename</code> function. When <code>canform</code> is applied to a large
expression the calculation may take a considerable amount of time.
This time can be shortened by calling <code>rename</code> on the expression first.
Also see the example under <code>decsym</code>. Note: <code>canform</code> may not be able to
reduce an expression completely to its simplest form although it will
always return a mathematically correct result.
</p></dd></dl>

<hr size="6">
<a name="SEC100"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC99" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC101" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC93" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC97" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h3 class="subsection"> 28.2.3 Indicial tensor calculus </h3>

<dl>
<dt><u>Function:</u> <b>diff</b><i> (<var>expr</var>, <var>v_1</var>, [<var>n_1</var>, [<var>v_2</var>, <var>n_2</var>] ...])</i>
<a name="IDX883"></a>
</dt>
<dd><p>is the usual Maxima differentiation function which has been expanded
in its abilities for <code>itensor</code>. It takes the derivative of <var>expr</var> with
respect to <var>v_1</var> <var>n_1</var> times, with respect to <var>v_2</var> <var>n_2</var>
times, etc. For the tensor package, the function has been modified so
that the <var>v_i</var> may be integers from 1 up to the value of the variable
<code>dim</code>.  This will cause the differentiation to be carried out with
respect to the <var>v_i</var>th member of the list <code>vect_coords</code>.  If
<code>vect_coords</code> is bound to an atomic variable, then that variable
subscripted by <var>v_i</var> will be used for the variable of
differentiation.  This permits an array of coordinate names or
subscripted names like <code>x[1]</code>, <code>x[2]</code>, ...  to be used.
</p></dd></dl>

<dl>
<dt><u>Function:</u> <b>idiff</b><i> (<var>expr</var>, <var>v_1</var>, [<var>n_1</var>, [<var>v_2</var>, <var>n_2</var>] ...])</i>
<a name="IDX884"></a>
</dt>
<dd><p>Indicial differentiation. Unlike <code>diff</code>, which differentiates
with respect to an independent variable, <code>idiff)</code> can be used
to differentiate with respect to a coordinate. For an indexed object,
this amounts to appending the <var>v_i</var> as derivative indices.
Subsequently, derivative indices will be sorted, unless <code>iframe_flag</code>
is set to <code>true</code>.
</p>
<p><code>idiff</code> can also differentiate the determinant of the metric
tensor. Thus, if <code>imetric</code> has been bound to <code>G</code> then
<code>idiff(determinant(g),k)</code> will return
<code>2*determinant(g)*ichr2([%i,k],[%i])</code> where the dummy index <code>%i</code>
is chosen appropriately.
</p>

</dd></dl>

<dl>
<dt><u>Function:</u> <b>liediff</b><i> (<var>v</var>, <var>ten</var>)</i>
<a name="IDX885"></a>
</dt>
<dd><p>Computes the Lie-derivative of the tensorial expression <var>ten</var> with
respect to the vector field <var>v</var>. <var>ten</var> should be any indexed
tensor expression; <var>v</var> should be the name (without indices) of a vector
field. For example:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) ishow(liediff(v,a([i,j],[])*b([],[k],l)))$
       k    %2            %2          %2
(%t2) b   (v   a       + v   a     + v   a    )
       ,l       i j,%2    ,j  i %2    ,i  %2 j

                                %1  k        %1  k      %1  k
                            + (v   b      - b   v    + v   b   ) a
                                    ,%1 l    ,l  ,%1    ,l  ,%1   i j

</pre></td></tr></table>

</dd></dl>

<dl>
<dt><u>Function:</u> <b>rediff</b><i> (<var>ten</var>)</i>
<a name="IDX886"></a>
</dt>
<dd><p>Evaluates all occurrences of the <code>idiff</code> command in the tensorial
expression <var>ten</var>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>undiff</b><i> (<var>expr</var>)</i>
<a name="IDX887"></a>
</dt>
<dd><p>Returns an expression equivalent to <var>expr</var> but with all derivatives
of indexed objects replaced by the noun form of the <code>idiff</code> function. Its
arguments would yield that indexed object if the differentiation were
carried out.  This is useful when it is desired to replace a
differentiated indexed object with some function definition resulting
in <var>expr</var> and then carry out the differentiation by saying
<code>ev(<var>expr</var>, idiff)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>evundiff</b><i> (<var>expr</var>)</i>
<a name="IDX888"></a>
</dt>
<dd><p>Equivalent to the execution of <code>undiff</code>, followed by <code>ev</code> and
<code>rediff</code>.
</p>
<p>The point of this operation is to easily evalute expressions that cannot
be directly evaluated in derivative form. For instance, the following
causes an error:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) icurvature([i,j,k],[l],m);
Maxima encountered a Lisp error:

 Error in $ICURVATURE [or a callee]:
 $ICURVATURE [or a callee] requires less than three arguments.

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.
</pre></td></tr></table>
<p>However, if <code>icurvature</code> is entered in noun form, it can be evaluated
using <code>evundiff</code>:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i3) ishow('icurvature([i,j,k],[l],m))$
                                         l
(%t3)                          icurvature
                                         i j k,m
(%i4) ishow(evundiff(%))$
             l              l         %1           l           %1
(%t4) - ichr2        - ichr2     ichr2      - ichr2       ichr2
             i k,j m        %1 j      i k,m        %1 j,m      i k

                l              l         %1           l           %1
         + ichr2        + ichr2     ichr2      + ichr2       ichr2
                i j,k m        %1 k      i j,m        %1 k,m      i j
</pre></td></tr></table>
<p>Note: In earlier versions of Maxima, derivative forms of the
Christoffel-symbols also could not be evaluated. This has been fixed now,
so <code>evundiff</code> is no longer necessary for expressions like this:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i5) imetric(g);
(%o5)                                done
(%i6) ishow(ichr2([i,j],[k],l))$
       k %3
      g     (g         - g         + g        )
              j %3,i l    i j,%3 l    i %3,j l
(%t6) -----------------------------------------
                          2

                         k %3
                        g     (g       - g       + g      )
                         ,l     j %3,i    i j,%3    i %3,j
                      + -----------------------------------
                                         2
</pre></td></tr></table>

</dd></dl>

<dl>
<dt><u>Function:</u> <b>flush</b><i> (<var>expr</var>, <var>tensor_1</var>, <var>tensor_2</var>, ...)</i>
<a name="IDX889"></a>
</dt>
<dd><p>Set to zero, in
<var>expr</var>, all occurrences of the <var>tensor_i</var> that have no derivative indices.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>flushd</b><i> (<var>expr</var>, <var>tensor_1</var>, <var>tensor_2</var>, ...)</i>
<a name="IDX890"></a>
</dt>
<dd><p>Set to zero, in
<var>expr</var>, all occurrences of the <var>tensor_i</var> that have derivative indices.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>flushnd</b><i> (<var>expr</var>, <var>tensor</var>, <var>n</var>)</i>
<a name="IDX891"></a>
</dt>
<dd><p>Set to zero, in <var>expr</var>, all
occurrences of the differentiated object <var>tensor</var> that have <var>n</var> or more
derivative indices as the following example demonstrates.
</p><table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) ishow(a([i],[J,r],k,r)+a([i],[j,r,s],k,r,s))$
                                J r      j r s
(%t2)                          a      + a
                                i,k r    i,k r s
(%i3) ishow(flushnd(%,a,3))$
                                     J r
(%t3)                               a
                                     i,k r
</pre></td></tr></table></dd></dl>

<dl>
<dt><u>Function:</u> <b>coord</b><i> (<var>tensor_1</var>, <var>tensor_2</var>, ...)</i>
<a name="IDX892"></a>
</dt>
<dd><p>Gives <var>tensor_i</var> the coordinate differentiation property that the
derivative of contravariant vector whose name is one of the
<var>tensor_i</var> yields a Kronecker delta. For example, if <code>coord(x)</code> has
been done then <code>idiff(x([],[i]),j)</code> gives <code>kdelta([i],[j])</code>.
<code>coord</code> is a list of all indexed objects having this property.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>remcoord</b><i> (<var>tensor_1</var>, <var>tensor_2</var>, ...)</i>
<a name="IDX893"></a>
</dt>
<dt><u>Function:</u> <b>remcoord</b><i> (all)</i>
<a name="IDX894"></a>
</dt>
<dd><p>Removes the coordinate differentiation property from the <code>tensor_i</code>
that was established by the function <code>coord</code>.  <code>remcoord(all)</code>
removes this property from all indexed objects.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>makebox</b><i> (<var>expr</var>)</i>
<a name="IDX895"></a>
</dt>
<dd><p>Display <var>expr</var> in the same manner as <code>show</code>; however,
any tensor d'Alembertian occurring in <var>expr</var> will be indicated using the
symbol <code>[]</code>.  For example, <code>[]p([m],[n])</code> represents
<code>g([],[i,j])*p([m],[n],i,j)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>conmetderiv</b><i> (<var>expr</var>, <var>tensor</var>)</i>
<a name="IDX896"></a>
</dt>
<dd><p>Simplifies expressions containing ordinary derivatives of
both covariant and contravariant forms of the metric tensor (the
current restriction).  For example, <code>conmetderiv</code> can relate the
derivative of the contravariant metric tensor with the Christoffel
symbols as seen from the following:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) ishow(g([],[a,b],c))$
                                      a b
(%t2)                                g
                                      ,c
(%i3) ishow(conmetderiv(%,g))$
                         %1 b      a       %1 a      b
(%t3)                 - g     ichr2     - g     ichr2
                                   %1 c              %1 c
</pre></td></tr></table></dd></dl>

<dl>
<dt><u>Function:</u> <b>simpmetderiv</b><i> (<var>expr</var>)</i>
<a name="IDX897"></a>
</dt>
<dt><u>Function:</u> <b>simpmetderiv</b><i> (<var>expr</var>[, <var>stop</var>])</i>
<a name="IDX898"></a>
</dt>
<dd><p>Simplifies expressions containing products of the derivatives of the
metric tensor. Specifically, <code>simpmetderiv</code> recognizes two identities:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
   ab        ab           ab                 a
  g   g   + g   g     = (g   g  )   = (kdelta )   = 0
   ,d  bc        bc,d         bc ,d          c ,d

</pre></td></tr></table>
<p>hence
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
   ab          ab
  g   g   = - g   g
   ,d  bc          bc,d
</pre></td></tr></table>
<p>and
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
  ab          ab
 g   g     = g   g
  ,j  ab,i    ,i  ab,j

</pre></td></tr></table>
<p>which follows from the symmetries of the Christoffel symbols.
</p>
<p>The <code>simpmetderiv</code> function takes one optional parameter which, when
present, causes the function to stop after the first successful
substitution in a product expression. The <code>simpmetderiv</code> function
also makes use of the global variable <var>flipflag</var> which determines
how to apply a &quot;canonical&quot; ordering to the product indices.
</p>
<p>Put together, these capabilities can be used to achieve powerful
simplifications that are difficult or impossible to accomplish otherwise.
This is demonstrated through the following example that explicitly uses the
partial simplification features of <code>simpmetderiv</code> to obtain a
contractible expression:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) imetric(g);
(%o2)                                done
(%i3) ishow(g([],[a,b])*g([],[b,c])*g([a,b],[],d)*g([b,c],[],e))$
                             a b  b c
(%t3)                       g    g    g      g
                                       a b,d  b c,e
(%i4) ishow(canform(%))$

errexp1 has improper indices
 -- an error.  Quitting.  To debug this try debugmode(true);
(%i5) ishow(simpmetderiv(%))$
                             a b  b c
(%t5)                       g    g    g      g
                                       a b,d  b c,e
(%i6) flipflag:not flipflag;
(%o6)                                true
(%i7) ishow(simpmetderiv(%th(2)))$
                               a b  b c
(%t7)                         g    g    g    g
                               ,d   ,e   a b  b c
(%i8) flipflag:not flipflag;
(%o8)                                false
(%i9) ishow(simpmetderiv(%th(2),stop))$
                               a b  b c
(%t9)                       - g    g    g      g
                                    ,e   a b,d  b c
(%i10) ishow(contract(%))$
                                    b c
(%t10)                           - g    g
                                    ,e   c b,d

</pre></td></tr></table>
<p>See also <code>weyl.dem</code> for an example that uses <code>simpmetderiv</code>
and <code>conmetderiv</code> together to simplify contractions of the Weyl tensor.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>flush1deriv</b><i> (<var>expr</var>, <var>tensor</var>)</i>
<a name="IDX899"></a>
</dt>
<dd><p>Set to zero, in <code>expr</code>, all occurrences of <code>tensor</code> that have
exactly one derivative index.
</p>
</dd></dl>

<hr size="6">
<a name="SEC101"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC100" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC102" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC93" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC97" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h3 class="subsection"> 28.2.4 Tensors in curved spaces </h3>

<dl>
<dt><u>Function:</u> <b>imetric</b><i> (<var>g</var>)</i>
<a name="IDX900"></a>
</dt>
<dt><u>System variable:</u> <b>imetric</b>
<a name="IDX901"></a>
</dt>
<dd><p>Specifies the metric by assigning the variable <code>imetric:<var>g</var></code> in
addition, the contraction properties of the metric <var>g</var> are set up by
executing the commands <code>defcon(<var>g</var>),defcon(<var>g</var>,<var>g</var>,kdelta)</code>.
The variable <code>imetric</code> (unbound by default), is bound to the metric, assigned by
the <code>imetric(<var>g</var>)</code> command.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>idim</b><i> (<var>n</var>)</i>
<a name="IDX902"></a>
</dt>
<dd><p>Sets the dimensions of the metric. Also initializes the antisymmetry
properties of the Levi-Civita symbols for the given dimension.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>ichr1</b><i> ([<var>i</var>, <var>j</var>, <var>k</var>])</i>
<a name="IDX903"></a>
</dt>
<dd><p>Yields the Christoffel symbol of the first kind via the
definition
</p><table><tr><td>&nbsp;</td><td><pre class="example">       (g      + g      - g     )/2 .
         ik,j     jk,i     ij,k
</pre></td></tr></table>
<p>To evaluate the Christoffel symbols for a particular metric, the
variable <code>imetric</code> must be assigned a name as in the example under <code>chr2</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>ichr2</b><i> ([<var>i</var>, <var>j</var>], [<var>k</var>])</i>
<a name="IDX904"></a>
</dt>
<dd><p>Yields the Christoffel symbol of the second kind
defined by the relation
</p><table><tr><td>&nbsp;</td><td><pre class="example">                       ks
   ichr2([i,j],[k]) = g    (g      + g      - g     )/2
                             is,j     js,i     ij,s
</pre></td></tr></table></dd></dl>

<dl>
<dt><u>Function:</u> <b>icurvature</b><i> ([<var>i</var>, <var>j</var>, <var>k</var>], [<var>h</var>])</i>
<a name="IDX905"></a>
</dt>
<dd><p>Yields the Riemann
curvature tensor in terms of the Christoffel symbols of the second
kind (<code>ichr2</code>).  The following notation is used:
</p><table><tr><td>&nbsp;</td><td><pre class="example">               h             h            h         %1         h
     icurvature     = - ichr2      - ichr2     ichr2    + ichr2
               i j k         i k,j        %1 j      i k        i j,k
                               h          %1
                        + ichr2      ichr2
                               %1 k       i j
</pre></td></tr></table></dd></dl>

<dl>
<dt><u>Function:</u> <b>covdiff</b><i> (<var>expr</var>, <var>v_1</var>, <var>v_2</var>, ...)</i>
<a name="IDX906"></a>
</dt>
<dd><p>Yields the covariant derivative of <var>expr</var> with
respect to the variables <var>v_i</var> in terms of the Christoffel symbols of the
second kind (<code>ichr2</code>).  In order to evaluate these, one should use
<code>ev(<var>expr</var>,ichr2)</code>.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) entertensor()$
Enter tensor name: a;
Enter a list of the covariant indices: [i,j];
Enter a list of the contravariant indices: [k];
Enter a list of the derivative indices: [];
                                      k
(%t2)                                a
                                      i j
(%i3) ishow(covdiff(%,s))$
             k         %1     k         %1     k            k     %1
(%t3)     - a     ichr2    - a     ichr2    + a      + ichr2     a
             i %1      j s    %1 j      i s    i j,s        %1 s  i j
(%i4) imetric:g;
(%o4)                                  g
(%i5) ishow(ev(%th(2),ichr2))$
         %1 %4  k
        g      a     (g       - g       + g      )
                i %1   s %4,j    j s,%4    j %4,s
(%t5) - ------------------------------------------
                            2
    %1 %3  k
   g      a     (g       - g       + g      )
           %1 j   s %3,i    i s,%3    i %3,s
 - ------------------------------------------
                       2
    k %2  %1
   g     a    (g        - g        + g       )
          i j   s %2,%1    %1 s,%2    %1 %2,s     k
 + ------------------------------------------- + a
                        2                         i j,s
(%i6)
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>lorentz_gauge</b><i> (<var>expr</var>)</i>
<a name="IDX907"></a>
</dt>
<dd><p>Imposes the Lorentz condition by substituting 0 for all
indexed objects in <var>expr</var> that have a derivative index identical to a
contravariant index.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>igeodesic_coords</b><i> (<var>expr</var>, <var>name</var>)</i>
<a name="IDX908"></a>
</dt>
<dd><p>Causes undifferentiated Christoffel symbols and
first derivatives of the metric tensor vanish in <var>expr</var>. The <var>name</var>
in the <code>igeodesic_coords</code> function refers to the metric <var>name</var>
(if it appears in <var>expr</var>) while the connection coefficients must be
called with the names <code>ichr1</code> and/or <code>ichr2</code>. The following example
demonstrates the verification of the cyclic identity satisfied by the Riemann
curvature tensor using the <code>igeodesic_coords</code> function.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) ishow(icurvature([r,s,t],[u]))$
             u            u         %1         u            u         %1
(%t2) - ichr2      - ichr2     ichr2    + ichr2      + ichr2     ichr2
             r t,s        %1 s      r t        r s,t        %1 t      r s
(%i3) ishow(igeodesic_coords(%,ichr2))$
                                 u            u
(%t3)                       ichr2      - ichr2
                                 r s,t        r t,s
(%i4) ishow(igeodesic_coords(icurvature([r,s,t],[u]),ichr2)+
            igeodesic_coords(icurvature([s,t,r],[u]),ichr2)+
            igeodesic_coords(icurvature([t,r,s],[u]),ichr2))$
             u            u            u            u            u
(%t4) - ichr2      + ichr2      + ichr2      - ichr2      - ichr2
             t s,r        t r,s        s t,r        s r,t        r t,s

                                                                  u
                                                           + ichr2
                                                                  r s,t
(%i5) canform(%);
(%o5)                                  0

</pre></td></tr></table>
</dd></dl>

<hr size="6">
<a name="SEC102"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC101" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC103" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC93" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC97" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h3 class="subsection"> 28.2.5 Moving frames </h3>

<p>Maxima now has the ability to perform calculations using moving frames.
These can be orthonormal frames (tetrads, vielbeins) or an arbitrary frame.
</p>
<p>To use frames, you must first set <code>iframe_flag</code> to <code>true</code>. This
causes the Christoffel-symbols, <code>ichr1</code> and <code>ichr2</code>, to be replaced
by the more general frame connection coefficients <code>icc1</code> and <code>icc2</code>
in calculations. Speficially, the behavior of <code>covdiff</code> and
<code>icurvature</code> is changed.
</p>
<p>The frame is defined by two tensors: the inverse frame field (<code>ifri</code>,
the dual basis tetrad),
and the frame metric <code>ifg</code>. The frame metric is the identity matrix for
orthonormal frames, or the Lorentz metric for orthonormal frames in Minkowski
spacetime. The inverse frame field defines the frame base (unit vectors).
Contraction properties are defined for the frame field and the frame metric.
</p>
<p>When <code>iframe_flag</code> is true, many <code>itensor</code> expressions use the frame
metric <code>ifg</code> instead of the metric defined by <code>imetric</code> for
raising and lowerind indices.
</p>
<p>IMPORTANT: Setting the variable <code>iframe_flag</code> to <code>true</code> does NOT
undefine the contraction properties of a metric defined by a call to
<code>defcon</code> or <code>imetric</code>. If a frame field is used, it is best to
define the metric by assigning its name to the variable <code>imetric</code>
and NOT invoke the <code>imetric</code> function.
</p>
<p>Maxima uses these two tensors to define the frame coefficients (<code>ifc1</code>
and <code>ifc2</code>) which form part of the connection coefficients (<code>icc1</code>
and <code>icc2</code>), as the following example demonstrates:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) iframe_flag:true;
(%o2)                                true
(%i3) ishow(covdiff(v([],[i]),j))$
                               i        i     %1
(%t3)                         v   + icc2     v
                               ,j       %1 j
(%i4) ishow(ev(%,icc2))$
                        %1      i           i        i
(%t4)                  v   (ifc2     + ichr2    ) + v
                                %1 j        %1 j     ,j
(%i5) ishow(ev(%,ifc2))$
            %1    i %2
           v   ifg     (ifb        - ifb        + ifb       )
                           j %2 %1      %2 %1 j      %1 j %2     i
(%t5)      -------------------------------------------------- + v
                                   2                             ,j
(%i6) ishow(ifb([a,b,c]))$
                       %5    %4
(%t6)               ifr   ifr   (ifri        - ifri       )
                       a     b       c %4,%5       c %5,%4

</pre></td></tr></table>
<p>An alternate method is used to compute the frame bracket (<code>ifb</code>) if
the <code>iframe_bracket_form</code> flag is set to <code>false</code>:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i8) block([iframe_bracket_form:false],ishow(ifb([a,b,c])))$
                       %7    %6        %6      %7
(%t8)              (ifr   ifr     - ifr     ifr  ) ifri
                       a     b,%7      a,%7    b       c %6

</pre></td></tr></table>

<dl>
<dt><u>Function:</u> <b>iframes</b><i> ()</i>
<a name="IDX909"></a>
</dt>
<dd><p>Since in this version of Maxima, contraction identities for <code>ifr</code> and
<code>ifri</code> are always defined, as is the frame bracket (<code>ifb</code>), this
function does nothing.
</p>
</dd></dl>

<dl>
<dt><u>Variable:</u> <b>ifb</b>
<a name="IDX910"></a>
</dt>
<dd><p>The frame bracket. The contribution of the frame metric to the connection
coefficients is expressed using the frame bracket:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
          - ifb      + ifb      + ifb
               c a b      b c a      a b c
ifc1    = --------------------------------
    abc                  2

</pre></td></tr></table>
<p>The frame bracket itself is defined in terms of the frame field and frame
metric. Two alternate methods of computation are used depending on the
value of <code>frame_bracket_form</code>. If true (the default) or if the
<code>itorsion_flag</code> is <code>true</code>:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
          d      e                                      f
ifb =  ifr    ifr   (ifri      - ifri      - ifri    itr   )
   abc    b      c       a d,e       a e,d       a f    d e


</pre></td></tr></table>
<p>Otherwise:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
             e      d        d      e
ifb    = (ifr    ifr    - ifr    ifr   ) ifri
   abc       b      c,e      b,e    c        a d

</pre></td></tr></table>

</dd></dl>


<dl>
<dt><u>Variable:</u> <b>icc1</b>
<a name="IDX911"></a>
</dt>
<dd><p>Connection coefficients of the first kind. In <code>itensor</code>, defined as
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
icc1    = ichr1    - ikt1    - inmc1
    abc        abc       abc        abc

</pre></td></tr></table>
<p>In this expression, if <code>iframe_flag</code> is true, the Christoffel-symbol
<code>ichr1</code> is replaced with the frame connection coefficient <code>ifc1</code>.
If <code>itorsion_flag</code> is <code>false</code>, <code>ikt1</code>
will be omitted. It is also omitted if a frame base is used, as the
torsion is already calculated as part of the frame bracket.
Lastly, of <code>inonmet_flag</code> is <code>false</code>,
<code>inmc1</code> will not be present.
</p>

</dd></dl>

<dl>
<dt><u>Variable:</u> <b>icc2</b>
<a name="IDX912"></a>
</dt>
<dd><p>Connection coefficients of the second kind. In <code>itensor</code>, defined as
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
    c         c        c         c
icc2   = ichr2   - ikt2   - inmc2
    ab        ab       ab        ab

</pre></td></tr></table>
<p>In this expression, if <code>iframe_flag</code> is true, the Christoffel-symbol
<code>ichr2</code> is replaced with the frame connection coefficient <code>ifc2</code>.
If <code>itorsion_flag</code> is <code>false</code>, <code>ikt2</code>
will be omitted. It is also omitted if a frame base is used, as the
torsion is already calculated as part of the frame bracket.
Lastly, of <code>inonmet_flag</code> is <code>false</code>,
<code>inmc2</code> will not be present.
</p>
</dd></dl>

<dl>
<dt><u>Variable:</u> <b>ifc1</b>
<a name="IDX913"></a>
</dt>
<dd><p>Frame coefficient of the first kind (also known as Ricci-rotation
coefficients.) This tensor represents the contribution
of the frame metric to the connection coefficient of the first kind. Defined
as:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
          - ifb      + ifb      + ifb
               c a b      b c a      a b c
ifc1    = --------------------------------
    abc                   2


</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Variable:</u> <b>ifc2</b>
<a name="IDX914"></a>
</dt>
<dd><p>Frame coefficient of the first kind. This tensor represents the contribution
of the frame metric to the connection coefficient of the first kind. Defined
as a permutation of the frame bracket (<code>ifb</code>) with the appropriate
indices raised and lowered as necessary:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
    c       cd
ifc2   = ifg   ifc1
    ab             abd

</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Variable:</u> <b>ifr</b>
<a name="IDX915"></a>
</dt>
<dd><p>The frame field. Contracts with the inverse frame field (<code>ifri</code>) to
form the frame metric (<code>ifg</code>).
</p>
</dd></dl>

<dl>
<dt><u>Variable:</u> <b>ifri</b>
<a name="IDX916"></a>
</dt>
<dd><p>The inverse frame field. Specifies the frame base (dual basis vectors). Along
with the frame metric, it forms the basis of all calculations based on
frames.
</p>
</dd></dl>

<dl>
<dt><u>Variable:</u> <b>ifg</b>
<a name="IDX917"></a>
</dt>
<dd><p>The frame metric. Defaults to <code>kdelta</code>, but can be changed using
<code>components</code>.
</p>
</dd></dl>

<dl>
<dt><u>Variable:</u> <b>ifgi</b>
<a name="IDX918"></a>
</dt>
<dd><p>The inverse frame metric. Contracts with the frame metric (<code>ifg</code>)
to <code>kdelta</code>.
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>iframe_bracket_form</b>
<a name="IDX919"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>Specifies how the frame bracket (<code>ifb</code>) is computed.
</p>
</dd></dl>

<hr size="6">
<a name="SEC103"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC102" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC104" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC93" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC97" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h3 class="subsection"> 28.2.6 Torsion and nonmetricity </h3>

<p>Maxima can now take into account torsion and nonmetricity. When the flag
<code>itorsion_flag</code> is set to <code>true</code>, the contribution of torsion
is added to the connection coefficients. Similarly, when the flag
<code>inonmet_flag</code> is true, nonmetricity components are included.
</p>
<dl>
<dt><u>Variable:</u> <b>inm</b>
<a name="IDX920"></a>
</dt>
<dd><p>The nonmetricity vector. Conformal nonmetricity is defined through the
covariant derivative of the metric tensor. Normally zero, the metric
tensor's covariant derivative will evaluate to the following when
<code>inonmet_flag</code> is set to <code>true</code>:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
g     =- g  inm
 ij;k     ij   k

</pre></td></tr></table>
</dd></dl>


<dl>
<dt><u>Variable:</u> <b>inmc1</b>
<a name="IDX921"></a>
</dt>
<dd><p>Covariant permutation of the nonmetricity vector components. Defined as
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
           g   inm  - inm  g   - g   inm
            ab    c      a  bc    ac    b
inmc1    = ------------------------------
     abc                 2

</pre></td></tr></table>
<p>(Substitute <code>ifg</code> in place of <code>g</code> if a frame metric is used.)
</p>
</dd></dl>

<dl>
<dt><u>Variable:</u> <b>inmc2</b>
<a name="IDX922"></a>
</dt>
<dd><p>Contravariant permutation of the nonmetricity vector components. Used
in the connection coefficients if <code>inonmet_flag</code> is <code>true</code>. Defined
as:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
                      c         c         cd
          -inm  kdelta  - kdelta  inm  + g   inm  g
     c        a       b         a    b          d  ab
inmc2   = -------------------------------------------
     ab                        2

</pre></td></tr></table>
<p>(Substitute <code>ifg</code> in place of <code>g</code> if a frame metric is used.)
</p>
</dd></dl>

<dl>
<dt><u>Variable:</u> <b>ikt1</b>
<a name="IDX923"></a>
</dt>
<dd><p>Covariant permutation of the torsion tensor (also known as contorsion).
Defined as:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
                  d           d       d
          -g   itr  - g    itr   - itr   g
            ad    cb    bd    ca      ab  cd
ikt1    = ----------------------------------
    abc                   2

</pre></td></tr></table>
<p>(Substitute <code>ifg</code> in place of <code>g</code> if a frame metric is used.)
</p>
</dd></dl>

<dl>
<dt><u>Variable:</u> <b>ikt2</b>
<a name="IDX924"></a>
</dt>
<dd><p>Contravariant permutation of the torsion tensor (also known as contorsion).
Defined as:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
    c     cd
ikt2   = g   ikt1
    ab           abd

</pre></td></tr></table>
<p>(Substitute <code>ifg</code> in place of <code>g</code> if a frame metric is used.)
</p>
</dd></dl>

<dl>
<dt><u>Variable:</u> <b>itr</b>
<a name="IDX925"></a>
</dt>
<dd><p>The torsion tensor. For a metric with torsion, repeated covariant
differentiation on a scalar function will not commute, as demonstrated
by the following example:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) imetric:g;
(%o2)                                  g
(%i3) covdiff(covdiff(f([],[]),i),j)-covdiff(covdiff(f([],[]),j),i)$
(%i4) ishow(%)$
                                   %4              %2
(%t4)                    f    ichr2    - f    ichr2
                          ,%4      j i    ,%2      i j
(%i5) canform(%);
(%o5)                                  0
(%i6) itorsion_flag:true;
(%o6)                                true
(%i7) covdiff(covdiff(f([],[]),i),j)-covdiff(covdiff(f([],[]),j),i)$
(%i8) ishow(%)$
                           %8             %6
(%t8)             f    icc2    - f    icc2    - f     + f
                   ,%8     j i    ,%6     i j    ,j i    ,i j
(%i9) ishow(canform(%))$
                                   %1             %1
(%t9)                     f    icc2    - f    icc2
                           ,%1     j i    ,%1     i j
(%i10) ishow(canform(ev(%,icc2)))$
                                   %1             %1
(%t10)                    f    ikt2    - f    ikt2
                           ,%1     i j    ,%1     j i
(%i11) ishow(canform(ev(%,ikt2)))$
                      %2 %1                    %2 %1
(%t11)          f    g      ikt1       - f    g      ikt1
                 ,%2            i j %1    ,%2            j i %1
(%i12) ishow(factor(canform(rename(expand(ev(%,ikt1))))))$
                           %3 %2            %1       %1
                     f    g      g      (itr    - itr   )
                      ,%3         %2 %1     j i      i j
(%t12)               ------------------------------------
                                      2
(%i13) decsym(itr,2,1,[anti(all)],[]);
(%o13)                               done
(%i14) defcon(g,g,kdelta);
(%o14)                               done
(%i15) subst(g,nounify(g),%th(3))$
(%i16) ishow(canform(contract(%)))$
                                           %1
(%t16)                           - f    itr
                                    ,%1    i j

</pre></td></tr></table>
</dd></dl>

<hr size="6">
<a name="SEC104"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC103" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC105" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC93" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC97" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h3 class="subsection"> 28.2.7 Exterior algebra </h3>

<p>The <code>itensor</code> package can perform operations on totally antisymmetric
covariant tensor fields. A totally antisymmetric tensor field of rank
(0,L) corresponds with a differential L-form. On these objects, a
multiplication operation known as the exterior product, or wedge product,
is defined.
</p>
<p>Unfortunately, not all authors agree on the definition of the wedge
product. Some authors prefer a definition that corresponds with the
notion of antisymmetrization: in these works, the wedge product of
two vector fields, for instance, would be defined as
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">            a a  - a a
             i j    j i
 a  /\ a  = -----------
  i     j        2
</pre></td></tr></table>
<p>More generally, the product of a p-form and a q-form would be defined as
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">                       1     k1..kp l1..lq
A       /\ B       = ------ D              A       B
 i1..ip     j1..jq   (p+q)!  i1..ip j1..jq  k1..kp  l1..lq
</pre></td></tr></table>
<p>where <code>D</code> stands for the Kronecker-delta.
</p>
<p>Other authors, however, prefer a &quot;geometric&quot; definition that corresponds
with the notion of the volume element:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">a  /\ a  = a a  - a a
 i     j    i j    j i
</pre></td></tr></table>
<p>and, in the general case
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">                       1    k1..kp l1..lq
A       /\ B       = ----- D              A       B
 i1..ip     j1..jq   p! q!  i1..ip j1..jq  k1..kp  l1..lq
</pre></td></tr></table>
<p>Since <code>itensor</code> is a tensor algebra package, the first of these two
definitions appears to be the more natural one. Many applications, however,
utilize the second definition. To resolve this dilemma, a flag has been
implemented that controls the behavior of the wedge product: if
<code>igeowedge_flag</code> is <code>false</code> (the default), the first, &quot;tensorial&quot;
definition is used, otherwise the second, &quot;geometric&quot; definition will
be applied.
</p>
<dl>
<dt><u>Operator:</u> <b>~</b>
<a name="IDX926"></a>
</dt>
<dd><p>The wedge product operator is denoted by the tilde <code>~</code>. This is
a binary operator. Its arguments should be expressions involving scalars,
covariant tensors of rank one, or covariant tensors of rank <code>l</code> that
have been declared antisymmetric in all covariant indices.
</p>
<p>The behavior of the wedge product operator is controlled by the
<code>igeowedge_flag</code> flag, as in the following example:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) ishow(a([i])~b([j]))$
                                 a  b  - b  a
                                  i  j    i  j
(%t2)                            -------------
                                       2
(%i3) decsym(a,2,0,[anti(all)],[]);
(%o3)                                done
(%i4) ishow(a([i,j])~b([k]))$
                          a    b  + b  a    - a    b
                           i j  k    i  j k    i k  j
(%t4)                     ---------------------------
                                       3
(%i5) igeowedge_flag:true;
(%o5)                                true
(%i6) ishow(a([i])~b([j]))$
(%t6)                            a  b  - b  a
                                  i  j    i  j
(%i7) ishow(a([i,j])~b([k]))$
(%t7)                     a    b  + b  a    - a    b
                           i j  k    i  j k    i k  j
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Operator:</u> <b>|</b>
<a name="IDX927"></a>
</dt>
<dd><p>The vertical bar <code>|</code> denotes the &quot;contraction with a vector&quot; binary
operation. When a totally antisymmetric covariant tensor is contracted
with a contravariant vector, the result is the same regardless which index
was used for the contraction. Thus, it is possible to define the
contraction operation in an index-free manner.
</p>
<p>In the <code>itensor</code> package, contraction with a vector is always carried out
with respect to the first index in the literal sorting order. This ensures
better simplification of expressions involving the <code>|</code> operator. For instance:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) decsym(a,2,0,[anti(all)],[]);
(%o2)                                done
(%i3) ishow(a([i,j],[])|v)$
                                    %1
(%t3)                              v   a
                                        %1 j
(%i4) ishow(a([j,i],[])|v)$
                                     %1
(%t4)                             - v   a
                                         %1 j
</pre></td></tr></table>
<p>Note that it is essential that the tensors used with the <code>|</code> operator be
declared totally antisymmetric in their covariant indices. Otherwise,
the results will be incorrect.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>extdiff</b><i> (<var>expr</var>, <var>i</var>)</i>
<a name="IDX928"></a>
</dt>
<dd><p>Computes the exterior derivative of <var>expr</var> with respect to the index
<var>i</var>. The exterior derivative is formally defined as the wedge
product of the partial derivative operator and a differential form. As
such, this operation is also controlled by the setting of <code>igeowedge_flag</code>.
For instance:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) ishow(extdiff(v([i]),j))$
                                  v    - v
                                   j,i    i,j
(%t2)                             -----------
                                       2
(%i3) decsym(a,2,0,[anti(all)],[]);
(%o3)                                done
(%i4) ishow(extdiff(a([i,j]),k))$
                           a      - a      + a
                            j k,i    i k,j    i j,k
(%t4)                      ------------------------
                                      3
(%i5) igeowedge_flag:true;
(%o5)                                true
(%i6) ishow(extdiff(v([i]),j))$
(%t6)                             v    - v
                                   j,i    i,j
(%i7) ishow(extdiff(a([i,j]),k))$
(%t7)                      a      - a      + a
                            j k,i    i k,j    i j,k
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>hodge</b><i> (<var>expr</var>)</i>
<a name="IDX929"></a>
</dt>
<dd><p>Compute the Hodge-dual of <var>expr</var>. For instance:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) imetric(g);
(%o2)                            done
(%i3) idim(4);
(%o3)                            done
(%i4) icounter:100;
(%o4)                             100
(%i5) decsym(A,3,0,[anti(all)],[])$

(%i6) ishow(A([i,j,k],[]))$
(%t6)                           A
                                 i j k
(%i7) ishow(canform(hodge(%)))$
                          %1 %2 %3 %4
               levi_civita            g        A
                                       %1 %102  %2 %3 %4
(%t7)          -----------------------------------------
                                   6
(%i8) ishow(canform(hodge(%)))$
                 %1 %2 %3 %8            %4 %5 %6 %7
(%t8) levi_civita            levi_civita            g        g
                                                     %1 %106  %2 %107
                                            g        g      A        /6
                                             %3 %108  %4 %8  %5 %6 %7
(%i9) lc2kdt(%)$

(%i10) %,kdelta$

(%i11) ishow(canform(contract(expand(%))))$
(%t11)                     - A
                              %106 %107 %108

</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>igeowedge_flag</b>
<a name="IDX930"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>Controls the behavior of the wedge product and exterior derivative. When
set to <code>false</code> (the default), the notion of differential forms will
correspond with that of a totally antisymmetric covariant tensor field.
When set to <code>true</code>, differential forms will agree with the notion
of the volume element.
</p>
</dd></dl>


<hr size="6">
<a name="SEC105"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC104" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC106" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC93" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC97" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h3 class="subsection"> 28.2.8 Exporting TeX expressions </h3>

<p>The <code>itensor</code> package provides limited support for exporting tensor
expressions to TeX. Since <code>itensor</code> expressions appear as function calls,
the regular Maxima <code>tex</code> command will not produce the expected
output. You can try instead the <code>tentex</code> command, which attempts
to translate tensor expressions into appropriately indexed TeX objects.
</p>
<dl>
<dt><u>Function:</u> <b>tentex</b><i> (<var>expr</var>)</i>
<a name="IDX931"></a>
</dt>
<dd><p>To use the <code>tentex</code> function, you must first load <code>tentex</code>,
as in the following example:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">
(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) load(tentex);
(%o2)       /share/tensor/tentex.lisp
(%i3) idummyx:m;
(%o3)                                  m
(%i4) ishow(icurvature([j,k,l],[i]))$
            m1       i           m1       i           i            i
(%t4)  ichr2    ichr2     - ichr2    ichr2     - ichr2      + ichr2
            j k      m1 l        j l      m1 k        j l,k        j k,l
(%i5) tentex(%)$
$$\Gamma_{j\,k}^{m_1}\,\Gamma_{l\,m_1}^{i}-\Gamma_{j\,l}^{m_1}\,
 \Gamma_{k\,m_1}^{i}-\Gamma_{j\,l,k}^{i}+\Gamma_{j\,k,l}^{i}$$

</pre></td></tr></table>
<p>Note the use of the <code>idummyx</code> assignment, to avoid the appearance
of the percent sign in the TeX expression, which may lead to compile errors.
</p>
<p>NB: This version of the <code>tentex</code> function is somewhat experimental.
</p>
</dd></dl>

<hr size="6">
<a name="SEC106"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC105" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC107" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC93" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC97" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h3 class="subsection"> 28.2.9 Interfacing with ctensor </h3>

<p>The <code>itensor</code> package has the ability to generate Maxima code that can
then be executed in the context of the <code>ctensor</code> package. The function that performs
this task is <code>ic_convert</code>.
</p>
<dl>
<dt><u>Function:</u> <b>ic_convert</b><i> (<var>eqn</var>)</i>
<a name="IDX932"></a>
</dt>
<dd><p>Converts the <code>itensor</code> equation <var>eqn</var> to a <code>ctensor</code> assignment statement.
Implied sums over dummy indices are made explicit while indexed
objects are transformed into arrays (the array subscripts are in the
order of covariant followed by contravariant indices of the indexed
objects). The derivative of an indexed object will be replaced by the
noun form of <code>diff</code> taken with respect to <code>ct_coords</code> subscripted
by the derivative index. The Christoffel symbols <code>ichr1</code> and <code>ichr2</code>
will be translated to <code>lcs</code> and <code>mcs</code>, respectively and if
<code>metricconvert</code> is <code>true</code> then all occurrences of the metric
with two covariant (contravariant) indices will be renamed to <code>lg</code>
(<code>ug</code>). In addition, <code>do</code> loops will be introduced summing over
all free indices so that the
transformed assignment statement can be evaluated by just doing
<code>ev</code>. The following examples demonstrate the features of this
function.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) load(itensor);
(%o1)      /share/tensor/itensor.lisp
(%i2) eqn:ishow(t([i,j],[k])=f([],[])*g([l,m],[])*a([],[m],j)*b([i],[l,k]))$
                             k        m   l k
(%t2)                       t    = f a   b    g
                             i j      ,j  i    l m
(%i3) ic_convert(eqn);
(%o3) for i thru dim do (for j thru dim

do (for k thru dim do t        : f sum(sum(diff(a , ct_coords ) b
                       i, j, k                   m           j   i, l, k

 g    , l, 1, dim), m, 1, dim)))
  l, m
(%i4) imetric(g);
(%o4)                                done
(%i5) metricconvert:true;
(%o5)                                true
(%i6) ic_convert(eqn);
(%o6) for i thru dim do (for j thru dim

do (for k thru dim do t        : f sum(sum(diff(a , ct_coords ) b
                       i, j, k                   m           j   i, l, k

 lg    , l, 1, dim), m, 1, dim)))
   l, m
</pre></td></tr></table>
</dd></dl>

<hr size="6">
<a name="SEC107"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC106" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC93" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC97" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h3 class="subsection"> 28.2.10 Reserved words </h3>

<p>The following Maxima words are used by the <code>itensor</code> package internally and
should not be redefined:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">  Keyword    Comments
  ------------------------------------------
  indices2() Internal version of indices()
  conti      Lists contravariant indices
  covi       Lists covariant indices of a indexed object
  deri       Lists derivative indices of an indexed object
  name       Returns the name of an indexed object
  concan
  irpmon
  lc0
  _lc2kdt0
  _lcprod
  _extlc
</pre></td></tr></table>

<hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC93" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC108" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
 <font size="-1">
  This document was generated by <em>Robert Dodier</em> on <em>September, 20 2006</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
 </font>
 <br>

</p>
</body>
</html>