1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on September, 20 2006 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
Karl Berry <karl@freefriends.org>
Olaf Bachmann <obachman@mathematik.uni-kl.de>
and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>
-->
<head>
<title>Maxima Manual: 37. Rules and Patterns</title>
<meta name="description" content="Maxima Manual: 37. Rules and Patterns">
<meta name="keywords" content="Maxima Manual: 37. Rules and Patterns">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
color: black;
background: white;
margin-left: 8%;
margin-right: 13%;
}
h1
{
margin-left: +8%;
font-size: 150%;
font-family: sans-serif
}
h2
{
font-size: 125%;
font-family: sans-serif
}
h3
{
font-size: 100%;
font-family: sans-serif
}
h2,h3,h4,h5,h6 { margin-left: +4%; }
div.textbox
{
border: solid;
border-width: thin;
/* width: 100%; */
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em
}
div.titlebox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(200,255,255);
font-family: sans-serif
}
div.synopsisbox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(255,220,255);
/*background: rgb(200,255,255); */
/* font-family: fixed */
}
pre.example
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 1em;
padding-right: 1em;
background: rgb(247,242,180); /* kind of sandy */
/* background: rgb(200,255,255); */ /* sky blue */
font-family: "Lucida Console", monospace
}
div.spacerbox
{
border: none;
padding-top: 2em;
padding-bottom: 2em
}
div.image
{
margin: 0;
padding: 1em;
text-align: center;
}
-->
</style>
<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Rules-and-Patterns"></a>
<a name="SEC142"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="maxima_36.html#SEC141" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC143" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima_36.html#SEC138" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_38.html#SEC145" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="chapter"> 37. Rules and Patterns </h1>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#SEC143">37.1 Introduction to Rules and Patterns</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC144">37.2 Definitions for Rules and Patterns</a></td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr size="6">
<a name="Introduction-to-Rules-and-Patterns"></a>
<a name="SEC143"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC142" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC144" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC142" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC142" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_38.html#SEC145" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 37.1 Introduction to Rules and Patterns </h2>
<p>This section describes user-defined pattern matching and
simplification rules.
There are two groups of functions which implement somewhat different pattern matching schemes.
In one group are <code>tellsimp</code>, <code>tellsimpafter</code>, <code>defmatch</code>, <code>defrule</code>,
<code>apply1</code>, <code>applyb1</code>, and <code>apply2</code>.
In the other group are <code>let</code> and <code>letsimp</code>.
Both schemes define patterns in terms of pattern variables declared by <code>matchdeclare</code>.
</p>
<p>Pattern-matching rules defined by <code>tellsimp</code> and <code>tellsimpafter</code> are applied automatically
by the Maxima simplifier.
Rules defined by <code>defmatch</code>, <code>defrule</code>, and <code>let</code> are applied
by an explicit function call.
</p>
<p>There are additional mechanisms for rules applied to polynomials by <code>tellrat</code>,
and for commutative and noncommutative algebra in <code>affine</code> package.
</p>
<hr size="6">
<a name="Definitions-for-Rules-and-Patterns"></a>
<a name="SEC144"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC143" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="maxima_38.html#SEC145" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC142" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC142" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_38.html#SEC145" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 37.2 Definitions for Rules and Patterns </h2>
<dl>
<dt><u>Function:</u> <b>apply1</b><i> (<var>expr</var>, <var>rule_1</var>, ..., <var>rule_n</var>)</i>
<a name="IDX1167"></a>
</dt>
<dd><p>Repeatedly applies <var>rule_1</var> to
<var>expr</var> until it fails, then repeatedly applies the same rule to all
subexpressions of <var>expr</var>, left to right, until <var>rule_1</var> has failed
on all subexpressions. Call the result of transforming <var>expr</var> in this
manner <var>expr_2</var>. Then <var>rule_2</var> is applied in the same fashion
starting at the top of <var>expr_2</var>. When <var>rule_n</var> fails on the final
subexpression, the result is returned.
</p>
<p><code>maxapplydepth</code> is the depth of the deepest subexpressions processed by
<code>apply1</code> and <code>apply2</code>.
</p>
<p>See also <code>applyb1</code>, <code>apply2</code>, and <code>let</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>apply2</b><i> (<var>expr</var>, <var>rule_1</var>, ..., <var>rule_n</var>)</i>
<a name="IDX1168"></a>
</dt>
<dd><p>If <var>rule_1</var> fails on a given subexpression, then <var>rule_2</var> is
repeatedly applied, etc. Only if all rules fail on a given
subexpression is the whole set of rules repeatedly applied to the next
subexpression. If one of the rules succeeds, then the same
subexpression is reprocessed, starting with the first rule.
</p>
<p><code>maxapplydepth</code> is the depth of the deepest subexpressions processed by
<code>apply1</code> and <code>apply2</code>.
</p>
<p>See also <code>apply1</code> and <code>let</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>applyb1</b><i> (<var>expr</var>, <var>rule_1</var>, ..., <var>rule_n</var>)</i>
<a name="IDX1169"></a>
</dt>
<dd><p>Repeatedly applies <var>rule_1</var> to the deepest subexpression of <var>expr</var> until it fails,
then repeatedly applies the same rule one level higher (i.e., larger subexpressions),
until <var>rule_1</var> has failed on the top-level expression.
Then <var>rule_2</var> is applied in the same fashion to the result of <var>rule_1</var>.
After <var>rule_n</var> has been applied to the top-level expression,
the result is returned.
</p>
<p><code>applyb1</code> is similar to <code>apply1</code> but works from
the bottom up instead of from the top down.
</p>
<p><code>maxapplyheight</code> is the maximum height which <code>applyb1</code> reaches
before giving up.
</p>
<p>See also <code>apply1</code>, <code>apply2</code>, and <code>let</code>.
</p>
</dd></dl>
<dl>
<dt><u>Option variable:</u> <b>current_let_rule_package</b>
<a name="IDX1170"></a>
</dt>
<dd><p>Default value: <code>default_let_rule_package</code>
</p>
<p><code>current_let_rule_package</code> is the name of the rule package that is used by
functions in the <code>let</code> package (<code>letsimp</code>, etc.) if no other rule package is specified.
This variable may be assigned the name of any rule package defined
via the <code>let</code> command.
</p>
<p>If a call such as <code>letsimp (expr, rule_pkg_name)</code> is made,
the rule package <code>rule_pkg_name</code> is used for that function call only,
and the value of <code>current_let_rule_package</code> is not changed.
</p>
</dd></dl>
<dl>
<dt><u>Option variable:</u> <b>default_let_rule_package</b>
<a name="IDX1171"></a>
</dt>
<dd><p>Default value: <code>default_let_rule_package</code>
</p>
<p><code>default_let_rule_package</code> is the name of the rule package used when one
is not explicitly set by the user with <code>let</code> or by changing the value of
<code>current_let_rule_package</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>defmatch</b><i> (<var>progname</var>, <var>pattern</var>, <var>x_1</var>, ..., <var>x_n</var>)</i>
<a name="IDX1172"></a>
</dt>
<dd><p>Creates a function <code><var>progname</var> (<var>expr</var>, <var>y_1</var>, ..., <var>y_n</var>)</code>
which tests <var>expr</var> to see if it matches <var>pattern</var>.
</p>
<p><var>pattern</var> is an expression
containing the pattern variables <var>x_1</var>, ..., <var>x_n</var>
and pattern parameters, if any.
The pattern variables are given
explicitly as arguments to <code>defmatch</code> while the pattern parameters
are declared by the <code>matchdeclare</code> function.
</p>
<p>The first argument to the created function <var>progname</var> is an expression
to be matched against the pattern and the other arguments are the
actual variables <var>y_1</var>, ..., <var>y_n</var>
in the expression which correspond to
the dummy variables <var>x_1</var>, ..., <var>x_n</var>
in the pattern.
</p>
<p>If the match is successful, <var>progname</var> returns
a list of equations whose left sides are the
pattern variables and pattern parameters, and whose right sides are the expressions
which the pattern variables and parameters matched.
The pattern parameters, but not the variables, are assigned the subexpressions they match.
If the match fails, <var>progname</var> returns <code>false</code>.
</p>
<p>Any variables not declared as pattern parameters in <code>matchdeclare</code> or as
variables in <code>defmatch</code> match only themselves.
</p>
<p>A pattern which contains no pattern variables or parameters
returns <code>true</code> if the match succeeds.
</p>
<p>See also <code>matchdeclare</code>, <code>defrule</code>, <code>tellsimp</code>, and <code>tellsimpafter</code>.
</p>
<p>Examples:
</p>
<p>This <code>defmatch</code> defines the function <code>linearp (expr, y)</code>, which
tests <code>expr</code> to see if it is of the form <code>a*y + b</code>
such that <code>a</code> and <code>b</code> do not contain <code>y</code>.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) matchdeclare (a, freeof(x), b, freeof(x))$
(%i2) defmatch (linearp, a*x + b, x)$
(%i3) linearp (3*z + (y+1)*z + y^2, z);
2
(%o3) [b = y , a = y + 4, x = z]
(%i4) a;
(%o4) y + 4
(%i5) b;
2
(%o5) y
</pre></td></tr></table>
<p>If the third argument to <code>defmatch</code> in line (%i2) had
been omitted, then <code>linear</code> would only match expressions linear in <var>x</var>,
not in any other variable.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) matchdeclare ([a, f], true)$
(%i2) constinterval (l, h) := constantp (h - l)$
(%i3) matchdeclare (b, constinterval (a))$
(%i4) matchdeclare (x, atom)$
(%i5) (remove (integrate, outative),
defmatch (checklimits, 'integrate (f, x, a, b)),
declare (integrate, outative))$
(%i6) 'integrate (sin(t), t, %pi + x, 2*%pi + x);
x + 2 %pi
/
[
(%o6) I sin(t) dt
]
/
x + %pi
(%i7) checklimits (%);
(%o7) [b = x + 2 %pi, a = x + %pi, x = t, f = sin(t)]
(%i8) a;
(%o8) x + %pi
(%i9) b;
(%o9) x + 2 %pi
(%i10) f;
(%o10) sin(t)
(%i11) x;
(%o11) t
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>defrule</b><i> (<var>rulename</var>, <var>pattern</var>, <var>replacement</var>)</i>
<a name="IDX1173"></a>
</dt>
<dd><p>Defines and names a
replacement rule for the given pattern. If the rule named <var>rulename</var> is
applied to an expression (by <code>apply1</code>, <code>applyb1</code>, or <code>apply2</code>), every
subexpression matching the pattern will be replaced by the
replacement. All variables in the replacement which have been
assigned values by the pattern match are assigned those values in the
replacement which is then simplified.
</p>
<p>The rules themselves can be
treated as functions which transform an expression by one
operation of the pattern match and replacement.
If the match fails, the rule function returns <code>false</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>disprule</b><i> (<var>rulename_1</var>, ..., <var>rulename_2</var>)</i>
<a name="IDX1174"></a>
</dt>
<dt><u>Function:</u> <b>disprule</b><i> (all)</i>
<a name="IDX1175"></a>
</dt>
<dd><p>Display rules with the names <var>rulename_1</var>, ..., <var>rulename_n</var>,
as returned by <code>defrule</code>, <code>tellsimp</code>, or <code>tellsimpafter</code>,
or a pattern defined by <code>defmatch</code>.
Each rule is displayed with an intermediate expression label (<code>%t</code>).
</p>
<p><code>disprule (all)</code> displays all rules.
</p>
<p><code>disprule</code> quotes its arguments.
<code>disprule</code> returns the list of intermediate expression labels corresponding to the displayed rules.
</p>
<p>See also <code>letrules</code>, which displays rules defined by <code>let</code>.
</p>
<p>Examples:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) tellsimpafter (foo (x, y), bar (x) + baz (y));
(%o1) [foorule1, false]
(%i2) tellsimpafter (x + y, special_add (x, y));
(%o2) [+rule1, simplus]
(%i3) defmatch (quux, mumble (x));
(%o3) quux
(%i4) disprule (foorule1, "+rule1", quux);
(%t4) foorule1 : foo(x, y) -> baz(y) + bar(x)
(%t5) +rule1 : y + x -> special_add(x, y)
(%t6) quux : mumble(x) -> []
(%o6) [%t4, %t5, %t6]
(%i6) ''%;
(%o6) [foorule1 : foo(x, y) -> baz(y) + bar(x),
+rule1 : y + x -> special_add(x, y), quux : mumble(x) -> []]
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>let</b><i> (<var>prod</var>, <var>repl</var>, <var>predname</var>, <var>arg_1</var>, ..., <var>arg_n</var>)</i>
<a name="IDX1176"></a>
</dt>
<dt><u>Function:</u> <b>let</b><i> ([<var>prod</var>, <var>repl</var>, <var>predname</var>, <var>arg_1</var>, ..., <var>arg_n</var>], <var>package_name</var>)</i>
<a name="IDX1177"></a>
</dt>
<dd><p>Defines a substitution rule for <code>letsimp</code> such that <var>prod</var> is replaced by <var>repl</var>.
<var>prod</var> is a product of positive or negative powers of the following terms:
</p>
<ul>
<li>
Atoms which <code>letsimp</code> will search for literally unless previous
to calling <code>letsimp</code> the <code>matchdeclare</code> function is used to associate a
predicate with the atom. In this case <code>letsimp</code> will match the atom to
any term of a product satisfying the predicate.
</li><li>
Kernels such as <code>sin(x)</code>, <code>n!</code>, <code>f(x,y)</code>, etc. As with atoms above
<code>letsimp</code> will look for a literal match unless <code>matchdeclare</code> is used to
associate a predicate with the argument of the kernel.
</li></ul>
<p>A term to a positive power will only match a term having at least that
power. A term to a negative power
on the other hand will only match a term with a power at least as
negative. In the case of negative powers in <var>prod</var> the switch
<code>letrat</code> must be set to <code>true</code>.
See also <code>letrat</code>.
</p>
<p>If a predicate is included in the <code>let</code> function followed by a list of
arguments, a tentative match (i.e. one that would be accepted if the
predicate were omitted) is accepted only if
<code>predname (arg_1', ..., arg_n')</code> evaluates to <code>true</code> where <var>arg_i'</var> is the value
matched to <var>arg_i</var>. The <var>arg_i</var> may be the name of any atom or the argument
of any kernel appearing in <var>prod</var>.
<var>repl</var> may be any rational expression. If any of the atoms or arguments from <var>prod</var> appear in <var>repl</var> the
appropriate substitutions are made. </p>
<p>The global flag <code>letrat</code> controls the simplification of quotients by <code>letsimp</code>.
When <code>letrat</code> is <code>false</code>,
<code>letsimp</code> simplifies the numerator and
denominator of <var>expr</var> separately, and does not simplify the quotient.
Substitutions such as <code>n!/n</code> goes to <code>(n-1)!</code> then fail.
When <code>letrat</code> is <code>true</code>, then the numerator,
denominator, and the quotient are simplified in that order.
</p>
<p>These substitution functions allow you to work with several rule packages at once.
Each rule package can contain any number of <code>let</code>
rules and is referenced by a user-defined name.
<code>let ([<var>prod</var>, <var>repl</var>, <var>predname</var>, <var>arg_1</var>, ..., <var>arg_n</var>], <var>package_name</var>)</code>
adds the rule <var>predname</var> to the rule package <var>package_name</var>.
<code>letsimp (<var>expr</var>, <var>package_name</var>)</code>
applies the rules in <var>package_name</var>.
<code>letsimp (<var>expr</var>, <var>package_name1</var>, <var>package_name2</var>, ...)</code>
is equivalent to <code>letsimp (<var>expr</var>, <var>package_name1</var>)</code>
followed by <code>letsimp (%, <var>package_name2</var>)</code>, ....
</p>
<p><code>current_let_rule_package</code> is the name of the rule package that is
presently being used.
This variable may be assigned the name of
any rule package defined via the <code>let</code> command.
Whenever any of the functions comprising the <code>let</code> package are called with no package name,
the package named by <code>current_let_rule_package</code> is used.
If a call such as <code>letsimp (<var>expr</var>, <var>rule_pkg_name</var>)</code> is made,
the rule package <var>rule_pkg_name</var> is used for that <code>letsimp</code> command only,
and <code>current_let_rule_package</code> is not changed.
If not otherwise specified,
<code>current_let_rule_package</code> defaults to <code>default_let_rule_package</code>.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) matchdeclare ([a, a1, a2], true)$
(%i2) oneless (x, y) := is (x = y-1)$
(%i3) let (a1*a2!, a1!, oneless, a2, a1);
(%o3) a1 a2! --> a1! where oneless(a2, a1)
(%i4) letrat: true$
(%i5) let (a1!/a1, (a1-1)!);
a1!
(%o5) --- --> (a1 - 1)!
a1
(%i6) letsimp (n*m!*(n-1)!/m);
(%o6) (m - 1)! n!
(%i7) let (sin(a)^2, 1 - cos(a)^2);
2 2
(%o7) sin (a) --> 1 - cos (a)
(%i8) letsimp (sin(x)^4);
4 2
(%o8) cos (x) - 2 cos (x) + 1
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Option variable:</u> <b>letrat</b>
<a name="IDX1178"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>letrat</code> is <code>false</code>, <code>letsimp</code> simplifies the
numerator and denominator of a ratio separately,
and does not simplify the quotient.
</p>
<p>When <code>letrat</code> is <code>true</code>,
the numerator, denominator, and their quotient are simplified in that order.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) matchdeclare (n, true)$
(%i2) let (n!/n, (n-1)!);
n!
(%o2) -- --> (n - 1)!
n
(%i3) letrat: false$
(%i4) letsimp (a!/a);
a!
(%o4) --
a
(%i5) letrat: true$
(%i6) letsimp (a!/a);
(%o6) (a - 1)!
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>letrules</b><i> ()</i>
<a name="IDX1179"></a>
</dt>
<dt><u>Function:</u> <b>letrules</b><i> (<var>package_name</var>)</i>
<a name="IDX1180"></a>
</dt>
<dd><p>Displays the rules in a rule package.
<code>letrules ()</code> displays the rules in the current rule package.
<code>letrules (<var>package_name</var>)</code> displays the rules in <code>package_name</code>.
</p>
<p>The current rule package is named by <code>current_let_rule_package</code>.
If not otherwise specified, <code>current_let_rule_package</code>
defaults to <code>default_let_rule_package</code>.
</p>
<p>See also <code>disprule</code>, which displays rules defined by <code>tellsimp</code> and <code>tellsimpafter</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>letsimp</b><i> (<var>expr</var>)</i>
<a name="IDX1181"></a>
</dt>
<dt><u>Function:</u> <b>letsimp</b><i> (<var>expr</var>, <var>package_name</var>)</i>
<a name="IDX1182"></a>
</dt>
<dt><u>Function:</u> <b>letsimp</b><i> (<var>expr</var>, <var>package_name_1</var>, ..., <var>package_name_n</var>)</i>
<a name="IDX1183"></a>
</dt>
<dd><p>Repeatedly applies the substitution rules defined by <code>let</code>
until no further change is made to <var>expr</var>.
</p>
<p><code>letsimp (<var>expr</var>)</code> uses the rules from <code>current_let_rule_package</code>.
</p>
<p><code>letsimp (<var>expr</var>, <var>package_name</var>)</code> uses the rules from <var>package_name</var>
without changing <code>current_let_rule_package</code>.
</p>
<p><code>letsimp (<var>expr</var>, <var>package_name_1</var>, ..., <var>package_name_n</var>)</code>
is equivalent to <code>letsimp (<var>expr</var>, <var>package_name_1</var></code>,
followed by <code>letsimp (%, <var>package_name_2</var>)</code>, and so on.
</p>
</dd></dl>
<dl>
<dt><u>Option variable:</u> <b>let_rule_packages</b>
<a name="IDX1184"></a>
</dt>
<dd><p>Default value: <code>[default_let_rule_package]</code>
</p>
<p><code>let_rule_packages</code> is a list of all user-defined let rule packages
plus the default package <code>default_let_rule_package</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>matchdeclare</b><i> (<var>a_1</var>, <var>pred_1</var>, ..., <var>a_n</var>, <var>pred_n</var>)</i>
<a name="IDX1185"></a>
</dt>
<dd><p>Associates a predicate <var>pred_k</var>
with a variable or list of variables <var>a_k</var>
so that <var>a_k</var> matches expressions
for which the predicate returns anything other than <code>false</code>.
</p>
<p>A predicate is the name of a function,
or a lambda expression,
or a function call or lambda call missing the last argument,
or <code>true</code> or <code>all</code>.
Any expression matches <code>true</code> or <code>all</code>.
If the predicate is specified as a function call or lambda call,
the expression to be tested is appended to the list of arguments;
the arguments are evaluated at the time the match is evaluated.
Otherwise, the predicate is specified as a function name or lambda expression,
and the expression to be tested is the sole argument.
A predicate function need not be defined when <code>matchdeclare</code> is called;
the predicate is not evaluated until a match is attempted.
</p>
<p>A predicate may return a Boolean expression as well as <code>true</code> or <code>false</code>.
Boolean expressions are evaluated by <code>is</code> within the constructed rule function,
so it is not necessary to call <code>is</code> within the predicate.
</p>
<p>If an expression satisfies a match predicate,
the match variable is assigned the expression,
except for match variables which are operands of addition <code>+</code> or multiplication <code>*</code>.
Only addition and multiplication are handled specially;
other n-ary operators (both built-in and user-defined) are treated like ordinary functions.
</p>
<p>In the case of addition and multiplication,
the match variable may be assigned a single expression which satisfies the match predicate,
or a sum or product (respectively) of such expressions.
Such multiple-term matching is greedy:
predicates are evaluated in the order in which their associated variables
appear in the match pattern,
and a term which satisfies more than one predicate is taken by the first
predicate which it satisfies.
Each predicate is tested against all operands of the sum or product before the next predicate is evaluated.
In addition,
if 0 or 1 (respectively) satisfies a match predicate,
and there are no other terms which satisfy the predicate,
0 or 1 is assigned to the match variable associated with the predicate.
</p>
<p>The algorithm for processing addition and multiplication patterns makes some match results
(for example, a pattern in which a "match anything" variable appears)
dependent on the ordering of terms in the match pattern and in the expression to be matched.
However,
if all match predicates are mutually exclusive,
the match result is insensitive to ordering,
as one match predicate cannot accept terms matched by another.
</p>
<p>Calling <code>matchdeclare</code> with a variable <var>a</var> as an argument
changes the <code>matchdeclare</code> property for <var>a</var>, if one was already declared;
only the most recent <code>matchdeclare</code> is in effect when a rule is defined,
Later changes to the <code>matchdeclare</code> property
(via <code>matchdeclare</code> or <code>remove</code>)
do not affect existing rules.
</p>
<p><code>propvars (matchdeclare)</code> returns the list of all variables
for which there is a <code>matchdeclare</code> property.
<code>printprops (<var>a</var>, matchdeclare)</code> returns the predicate for variable <code>a</code>.
<code>printprops (all, matchdeclare)</code> returns the list of predicates for all <code>matchdeclare</code> variables.
<code>remove (<var>a</var>, matchdeclare)</code> removes the <code>matchdeclare</code> property from <var>a</var>.
</p>
<p>The functions
<code>defmatch</code>, <code>defrule</code>, <code>tellsimp</code>, <code>tellsimpafter</code>, and <code>let</code>
construct rules which test expressions against patterns.
</p>
<p><code>matchdeclare</code> quotes its arguments.
<code>matchdeclare</code> always returns <code>done</code>.
</p>
<p>Examples:
</p>
<p>A predicate is the name of a function,
or a lambda expression,
or a function call or lambda call missing the last argument,
or <code>true</code> or <code>all</code>.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) matchdeclare (aa, integerp);
(%o1) done
(%i2) matchdeclare (bb, lambda ([x], x > 0));
(%o2) done
(%i3) matchdeclare (cc, freeof (%e, %pi, %i));
(%o3) done
(%i4) matchdeclare (dd, lambda ([x, y], gcd (x, y) = 1) (1728));
(%o4) done
(%i5) matchdeclare (ee, true);
(%o5) done
(%i6) matchdeclare (ff, all);
(%o6) done
</pre></td></tr></table>
<p>If an expression satisfies a match predicate,
the match variable is assigned the expression.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) matchdeclare (aa, integerp, bb, atom);
(%o1) done
(%i2) defrule (r1, bb^aa, ["integer" = aa, "atom" = bb]);
aa
(%o2) r1 : bb -> [integer = aa, atom = bb]
(%i3) r1 (%pi^8);
(%o3) [integer = 8, atom = %pi]
</pre></td></tr></table>
<p>In the case of addition and multiplication,
the match variable may be assigned a single expression which satisfies the match predicate,
or a sum or product (respectively) of such expressions.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) matchdeclare (aa, atom, bb, lambda ([x], not atom(x)));
(%o1) done
(%i2) defrule (r1, aa + bb, ["all atoms" = aa, "all nonatoms" = bb]);
bb + aa partitions `sum'
(%o2) r1 : bb + aa -> [all atoms = aa, all nonatoms = bb]
(%i3) r1 (8 + a*b + sin(x));
(%o3) [all atoms = 8, all nonatoms = sin(x) + a b]
(%i4) defrule (r2, aa * bb, ["all atoms" = aa, "all nonatoms" = bb]);
bb aa partitions `product'
(%o4) r2 : aa bb -> [all atoms = aa, all nonatoms = bb]
(%i5) r2 (8 * (a + b) * sin(x));
(%o5) [all atoms = 8, all nonatoms = (b + a) sin(x)]
</pre></td></tr></table>
<p>When matching arguments of <code>+</code> and <code>*</code>,
if all match predicates are mutually exclusive,
the match result is insensitive to ordering,
as one match predicate cannot accept terms matched by another.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) matchdeclare (aa, atom, bb, lambda ([x], not atom(x)));
(%o1) done
(%i2) defrule (r1, aa + bb, ["all atoms" = aa, "all nonatoms" = bb]);
bb + aa partitions `sum'
(%o2) r1 : bb + aa -> [all atoms = aa, all nonatoms = bb]
(%i3) r1 (8 + a*b + %pi + sin(x) - c + 2^n);
n
(%o3) [all atoms = %pi + 8, all nonatoms = sin(x) + 2 - c + a b]
(%i4) defrule (r2, aa * bb, ["all atoms" = aa, "all nonatoms" = bb]);
bb aa partitions `product'
(%o4) r2 : aa bb -> [all atoms = aa, all nonatoms = bb]
(%i5) r2 (8 * (a + b) * %pi * sin(x) / c * 2^n);
n
(b + a) 2 sin(x)
(%o5) [all atoms = 8 %pi, all nonatoms = -----------------]
c
</pre></td></tr></table>
<p>The functions <code>propvars</code> and <code>printprops</code> return information about match variables.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) matchdeclare ([aa, bb, cc], atom, [dd, ee], integerp);
(%o1) done
(%i2) matchdeclare (ff, floatnump, gg, lambda ([x], x > 100));
(%o2) done
(%i3) propvars (matchdeclare);
(%o3) [aa, bb, cc, dd, ee, ff, gg]
(%i4) printprops (ee, matchdeclare);
(%o4) [integerp(ee)]
(%i5) printprops (gg, matchdeclare);
(%o5) [lambda([x], x > 100, gg)]
(%i6) printprops (all, matchdeclare);
(%o6) [lambda([x], x > 100, gg), floatnump(ff), integerp(ee),
integerp(dd), atom(cc), atom(bb), atom(aa)]
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>matchfix</b><i> (<var>ldelimiter</var>, <var>rdelimiter</var>)</i>
<a name="IDX1186"></a>
</dt>
<dt><u>Function:</u> <b>matchfix</b><i> (<var>ldelimiter</var>, <var>rdelimiter</var>, <var>arg_pos</var>, <var>pos</var>)</i>
<a name="IDX1187"></a>
</dt>
<dd><p>Declares a matchfix operator with left and right delimiters <var>ldelimiter</var> and <var>rdelimiter</var>.
The delimiters are specified as strings.
</p>
<p>A "matchfix" operator is a function of any number of arguments,
such that the arguments occur between matching left and right delimiters.
The delimiters may be any strings, so long as the parser can
distinguish the delimiters from the operands
and other expressions and operators.
In practice this rules out unparseable delimiters such as
<code>%</code>, <code>,</code>, <code>$</code> and <code>;</code>,
and may require isolating the delimiters with white space.
The right delimiter can be the same or different from the left delimiter.
</p>
<p>A left delimiter can be associated with only one right delimiter;
two different matchfix operators cannot have the same left delimiter.
</p>
<p>An existing operator may be redeclared as a matchfix operator
without changing its other properties.
In particular, built-in operators such as addition <code>+</code> can
be declared matchfix,
but operator functions cannot be defined for built-in operators.
</p>
<p><code>matchfix (<var>ldelimiter</var>, <var>rdelimiter</var>, <var>arg_pos</var>, <var>pos</var>)</code>
declares the argument part-of-speech <var>arg_pos</var>
and result part-of-speech <var>pos</var>,
and the delimiters <var>ldelimiter</var> and <var>rdelimiter</var>.
</p>
<p>The function to carry out a matchfix operation is an ordinary
user-defined function.
The operator function is defined
in the usual way
with the function definition operator <code>:=</code> or <code>define</code>.
The arguments may be written between the delimiters,
or with the left delimiter as a quoted string and the arguments
following in parentheses.
<code>dispfun (<var>ldelimiter</var>)</code> displays the function definition.
</p>
<p>The only built-in matchfix operator is the list constructor <code>[ ]</code>.
Parentheses <code>( )</code> and double-quotes <code>" "</code>
act like matchfix operators,
but are not treated as such by the Maxima parser.
</p>
<p><code>matchfix</code> evaluates its arguments.
<code>matchfix</code> returns its first argument, <var>ldelimiter</var>.
</p>
<p>Examples:
</p>
<ul>
<li>
Delimiters may be almost any strings.
</li></ul>
<table><tr><td> </td><td><pre class="example">(%i1) matchfix ("@", "~");
(%o1) "@"
(%i2) @ a, b, c ~;
(%o2) @a, b, c~
(%i3) matchfix (">>", "<<");
(%o3) ">>"
(%i4) >> a, b, c <<;
(%o4) >>a, b, c<<
(%i5) matchfix ("foo", "oof");
(%o5) "foo"
(%i6) foo a, b, c oof;
(%o6) fooa, b, coof
(%i7) >> w + foo x, y oof + z << / @ p, q ~;
>>z + foox, yoof + w<<
(%o7) ----------------------
@p, q~
</pre></td></tr></table>
<ul>
<li>
Matchfix operators are ordinary user-defined functions.
</li></ul>
<table><tr><td> </td><td><pre class="example">(%i1) matchfix ("!-", "-!");
(%o1) "!-"
(%i2) !- x, y -! := x/y - y/x;
x y
(%o2) !-x, y-! := - - -
y x
(%i3) define (!-x, y-!, x/y - y/x);
x y
(%o3) !-x, y-! := - - -
y x
(%i4) define ("!-" (x, y), x/y - y/x);
x y
(%o4) !-x, y-! := - - -
y x
(%i5) dispfun ("!-");
x y
(%t5) !-x, y-! := - - -
y x
(%o5) done
(%i6) !-3, 5-!;
16
(%o6) - --
15
(%i7) "!-" (3, 5);
16
(%o7) - --
15
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>remlet</b><i> (<var>prod</var>, <var>name</var>)</i>
<a name="IDX1188"></a>
</dt>
<dt><u>Function:</u> <b>remlet</b><i> ()</i>
<a name="IDX1189"></a>
</dt>
<dt><u>Function:</u> <b>remlet</b><i> (all)</i>
<a name="IDX1190"></a>
</dt>
<dt><u>Function:</u> <b>remlet</b><i> (all, <var>name</var>)</i>
<a name="IDX1191"></a>
</dt>
<dd><p>Deletes the substitution rule, prod -> repl, most
recently defined by the <code>let</code> function. If name is supplied the rule is
deleted from the rule package name.
</p>
<p><code>remlet()</code> and <code>remlet(all)</code> delete all substitution rules from the current rule package.
If the name of a rule package is supplied,
e.g. <code>remlet (all, <var>name</var>)</code>, the rule package <var>name</var> is also deleted.
</p>
<p>If a substitution is to be changed using the same
product, <code>remlet</code> need not be called, just redefine the substitution
using the same product (literally) with the <code>let</code> function and the new
replacement and/or predicate name. Should <code>remlet (<var>prod</var>)</code> now be
called the original substitution rule is revived.
</p>
<p>See also <code>remrule</code>, which removes a rule defined by <code>tellsimp</code> or <code>tellsimpafter</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>remrule</b><i> (<var>op</var>, <var>rulename</var>)</i>
<a name="IDX1192"></a>
</dt>
<dt><u>Function:</u> <b>remrule</b><i> (<var>op</var>, all)</i>
<a name="IDX1193"></a>
</dt>
<dd><p>Removes rules defined by <code>tellsimp</code> or <code>tellsimpafter</code>.
</p>
<p><code>remrule (<var>op</var>, <var>rulename</var>)</code>
removes the rule with the name <code>rulename</code> from the operator <var>op</var>.
When <var>op</var> is a built-in or user-defined operator
(as defined by <code>infix</code>, <code>prefix</code>, etc.),
<var>op</var> and <var>rulename</var> must be enclosed in double quote marks.
</p>
<p><code>remrule (<var>op</var>, all)</code> removes all rules for the operator <var>op</var>.
</p>
<p>See also <code>remlet</code>, which removes a rule defined by <code>let</code>.
</p>
<p>Examples:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) tellsimp (foo (aa, bb), bb - aa);
(%o1) [foorule1, false]
(%i2) tellsimpafter (aa + bb, special_add (aa, bb));
(%o2) [+rule1, simplus]
(%i3) infix ("@");
(%o3) @
(%i4) tellsimp (aa @ bb, bb/aa);
(%o4) [@rule1, false]
(%i5) tellsimpafter (quux (%pi, %e), %pi - %e);
(%o5) [quuxrule1, false]
(%i6) tellsimpafter (quux (%e, %pi), %pi + %e);
(%o6) [quuxrule2, quuxrule1, false]
(%i7) [foo (aa, bb), aa + bb, aa @ bb, quux (%pi, %e), quux (%e, %pi)];
bb
(%o7) [bb - aa, special_add(aa, bb), --, %pi - %e, %pi + %e]
aa
(%i8) remrule (foo, foorule1);
(%o8) foo
(%i9) remrule ("+", "+rule1");
(%o9) +
(%i10) remrule ("@", "@rule1");
(%o10) @
(%i11) remrule (quux, all);
(%o11) quux
(%i12) [foo (aa, bb), aa + bb, aa @ bb, quux (%pi, %e), quux (%e, %pi)];
(%o12) [foo(aa, bb), bb + aa, aa @ bb, quux(%pi, %e),
quux(%e, %pi)]
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>tellsimp</b><i> (<var>pattern</var>, <var>replacement</var>)</i>
<a name="IDX1194"></a>
</dt>
<dd><p>is similar to <code>tellsimpafter</code> but places
new information before old so that it is applied before the built-in
simplification rules.
</p>
<p><code>tellsimp</code> is used when it is important to modify
the expression before the simplifier works on it, for instance if the
simplifier "knows" something about the expression, but what it returns
is not to your liking.
If the simplifier "knows" something about the
main operator of the expression, but is simply not doing enough for
you, you probably want to use <code>tellsimpafter</code>.
</p>
<p>The pattern may not be a
sum, product, single variable, or number.
</p>
<p><code>rules</code> is the list of rules defined by
<code>defrule</code>, <code>defmatch</code>, <code>tellsimp</code>, and <code>tellsimpafter</code>.
</p>
<p>Examples:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) matchdeclare (x, freeof (%i));
(%o1) done
(%i2) %iargs: false$
(%i3) tellsimp (sin(%i*x), %i*sinh(x));
(%o3) [sinrule1, simp-%sin]
(%i4) trigexpand (sin (%i*y + x));
(%o4) sin(x) cos(%i y) + %i cos(x) sinh(y)
(%i5) %iargs:true$
(%i6) errcatch(0^0);
0
0 has been generated
(%o6) []
(%i7) ev (tellsimp (0^0, 1), simp: false);
(%o7) [^rule1, simpexpt]
(%i8) 0^0;
(%o8) 1
(%i9) remrule ("^", %th(2)[1]);
(%o9) ^
(%i10) tellsimp (sin(x)^2, 1 - cos(x)^2);
(%o10) [^rule2, simpexpt]
(%i11) (1 + sin(x))^2;
2
(%o11) (sin(x) + 1)
(%i12) expand (%);
2
(%o12) 2 sin(x) - cos (x) + 2
(%i13) sin(x)^2;
2
(%o13) 1 - cos (x)
(%i14) kill (rules);
(%o14) done
(%i15) matchdeclare (a, true);
(%o15) done
(%i16) tellsimp (sin(a)^2, 1 - cos(a)^2);
(%o16) [^rule3, simpexpt]
(%i17) sin(y)^2;
2
(%o17) 1 - cos (y)
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>tellsimpafter</b><i> (<var>pattern</var>, <var>replacement</var>)</i>
<a name="IDX1195"></a>
</dt>
<dd><p>Defines a simplification rule which the Maxima simplifier
applies after built-in simplification rules.
<var>pattern</var> is an expression, comprising pattern variables (declared by <code>matchdeclare</code>)
and other atoms and operators, considered literals for the purpose of pattern matching.
<var>replacement</var> is substituted for an actual expression which matches <var>pattern</var>;
pattern variables in <var>replacement</var> are assigned the values matched in the actual expression.
</p>
<p><var>pattern</var> may be any nonatomic expression
in which the main operator is not a pattern variable;
the simplification rule is associated with the main operator.
The names of functions (with one exception, described below), lists, and arrays
may appear in <var>pattern</var> as the main operator only as literals (not pattern variables);
this rules out expressions such as <code>aa(x)</code> and <code>bb[y]</code> as patterns,
if <code>aa</code> and <code>bb</code> are pattern variables.
Names of functions, lists, and arrays which are pattern variables may appear as operators
other than the main operator in <var>pattern</var>.
</p>
<p>There is one exception to the above rule concerning names of functions.
The name of a subscripted function in an expression such as <code>aa[x](y)</code>
may be a pattern variable,
because the main operator is not <code>aa</code> but rather the Lisp atom <code>mqapply</code>.
This is a consequence of the representation of expressions involving subscripted functions.
</p>
<p>Simplification rules are applied after evaluation
(if not suppressed through quotation or the flag <code>noeval</code>).
Rules established by <code>tellsimpafter</code> are applied in the order they were defined,
and after any built-in rules.
Rules are applied bottom-up, that is,
applied first to subexpressions before application to the whole expression.
It may be necessary to repeatedly simplify a result
(for example, via the quote-quote operator <code>''</code> or the flag <code>infeval</code>)
to ensure that all rules are applied.
</p>
<p>Pattern variables are treated as local variables in simplification rules.
Once a rule is defined, the value of a pattern variable
does not affect the rule, and is not affected by the rule.
An assignment to a pattern variable which results from a successful rule match
does not affect the current assignment (or lack of it) of the pattern variable.
However,
as with all atoms in Maxima,
the properties of pattern variables (as declared by <code>put</code> and related functions) are global.
</p>
<p>The rule constructed by <code>tellsimpafter</code> is named after the main operator of <code>pattern</code>.
Rules for built-in operators,
and user-defined operators
defined by <code>infix</code>, <code>prefix</code>, <code>postfix</code>, <code>matchfix</code>, and <code>nofix</code>,
have names which are Maxima strings.
Rules for other functions have names which are ordinary Maxima identifiers.
</p>
<p>The treatment of noun and verb forms is slightly confused. If a rule is defined for a noun (or verb) form
and a rule for the corresponding verb (or noun) form already exists,
the newly-defined rule applies to both forms (noun and verb).
If a rule for the corresponding verb (or noun) form does not exist,
the newly-defined rule applies only to the noun (or verb) form.
</p>
<p>The rule constructed by <code>tellsimpafter</code> is an ordinary Lisp function.
If the name of the rule is <code>$foorule1</code>,
the construct <code>:lisp (trace $foorule1)</code> traces the function,
and <code>:lisp (symbol-function '$foorule1</code> displays its definition.
</p>
<p><code>tellsimpafter</code> quotes its arguments.
<code>tellsimpafter</code> returns the list of rules for the main operator of <var>pattern</var>,
including the newly established rule.
</p>
<p>See also <code>matchdeclare</code>, <code>defmatch</code>, <code>defrule</code>, <code>tellsimp</code>, <code>let</code>,
<code>kill</code>, <code>remrule</code>, and <code>clear_rules</code>.
</p>
<p>Examples:
</p>
<p><var>pattern</var> may be any nonatomic expression in which the
main operator is not a pattern variable.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) matchdeclare (aa, atom, [ll, mm], listp, xx, true)$
(%i2) tellsimpafter (sin (ll), map (sin, ll));
(%o2) [sinrule1, simp-%sin]
(%i3) sin ([1/6, 1/4, 1/3, 1/2, 1]*%pi);
1 sqrt(2) sqrt(3)
(%o3) [-, -------, -------, 1, 0]
2 2 2
(%i4) tellsimpafter (ll^mm, map ("^", ll, mm));
(%o4) [^rule1, simpexpt]
(%i5) [a, b, c]^[1, 2, 3];
2 3
(%o5) [a, b , c ]
(%i6) tellsimpafter (foo (aa (xx)), aa (foo (xx)));
(%o6) [foorule1, false]
(%i7) foo (bar (u - v));
(%o7) bar(foo(u - v))
</pre></td></tr></table>
<p>Rules are applied in the order they were defined.
If two rules can match an expression,
the rule which was defined first is applied.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) matchdeclare (aa, integerp);
(%o1) done
(%i2) tellsimpafter (foo (aa), bar_1 (aa));
(%o2) [foorule1, false]
(%i3) tellsimpafter (foo (aa), bar_2 (aa));
(%o3) [foorule2, foorule1, false]
(%i4) foo (42);
(%o4) bar_1(42)
</pre></td></tr></table>
<p>Pattern variables are treated as local variables in simplification rules.
(Compare to <code>defmatch</code>, which treats pattern variables as global variables.)
</p>
<table><tr><td> </td><td><pre class="example">(%i1) matchdeclare (aa, integerp, bb, atom);
(%o1) done
(%i2) tellsimpafter (foo(aa, bb), bar('aa=aa, 'bb=bb));
(%o2) [foorule1, false]
(%i3) bb: 12345;
(%o3) 12345
(%i4) foo (42, %e);
(%o4) bar(aa = 42, bb = %e)
(%i5) bb;
(%o5) 12345
</pre></td></tr></table>
<p>As with all atoms, properties of pattern variables are global even though values are local.
In this example, an assignment property is declared via <code>define_variable</code>.
This is a property of the atom <code>bb</code> throughout Maxima.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) matchdeclare (aa, integerp, bb, atom);
(%o1) done
(%i2) tellsimpafter (foo(aa, bb), bar('aa=aa, 'bb=bb));
(%o2) [foorule1, false]
(%i3) foo (42, %e);
(%o3) bar(aa = 42, bb = %e)
(%i4) define_variable (bb, true, boolean);
(%o4) true
(%i5) foo (42, %e);
Error: bb was declared mode boolean, has value: %e
-- an error. Quitting. To debug this try debugmode(true);
</pre></td></tr></table>
<p>Rules are named after main operators.
Names of rules for built-in and user-defined operators are strings,
while names for other functions are ordinary identifiers.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) tellsimpafter (foo (%pi + %e), 3*%pi);
(%o1) [foorule1, false]
(%i2) tellsimpafter (foo (%pi * %e), 17*%e);
(%o2) [foorule2, foorule1, false]
(%i3) tellsimpafter (foo (%i ^ %e), -42*%i);
(%o3) [foorule3, foorule2, foorule1, false]
(%i4) tellsimpafter (foo (9) + foo (13), quux (22));
(%o4) [+rule1, simplus]
(%i5) tellsimpafter (foo (9) * foo (13), blurf (22));
(%o5) [*rule1, simptimes]
(%i6) tellsimpafter (foo (9) ^ foo (13), mumble (22));
(%o6) [^rule1, simpexpt]
(%i7) rules;
(%o7) [trigrule0, trigrule1, trigrule2, trigrule3, trigrule4,
htrigrule1, htrigrule2, htrigrule3, htrigrule4, foorule1,
foorule2, foorule3, +rule1, *rule1, ^rule1]
(%i8) foorule_name: first (%o1);
(%o8) foorule1
(%i9) plusrule_name: first (%o4);
(%o9) +rule1
(%i10) [?mstringp (foorule_name), symbolp (foorule_name)];
(%o10) [false, true]
(%i11) [?mstringp (plusrule_name), symbolp (plusrule_name)];
(%o11) [true, true]
(%i12) remrule (foo, foorule1);
(%o12) foo
(%i13) remrule ("^", "^rule1");
(%o13) ^
</pre></td></tr></table>
<p>A worked example: anticommutative multiplication.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) gt (i, j) := integerp(j) and i < j;
(%o1) gt(i, j) := integerp(j) and i < j
(%i2) matchdeclare (i, integerp, j, gt(i));
(%o2) done
(%i3) tellsimpafter (s[i]^^2, 1);
(%o3) [^^rule1, simpncexpt]
(%i4) tellsimpafter (s[i] . s[j], -s[j] . s[i]);
(%o4) [.rule1, simpnct]
(%i5) s[1] . (s[1] + s[2]);
(%o5) s . (s + s )
1 2 1
(%i6) expand (%);
(%o6) 1 - s . s
2 1
(%i7) factor (expand (sum (s[i], i, 0, 9)^^5));
(%o7) 100 (s + s + s + s + s + s + s + s + s + s )
9 8 7 6 5 4 3 2 1 0
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>clear_rules</b><i> ()</i>
<a name="IDX1196"></a>
</dt>
<dd><p>Executes <code>kill (rules)</code> and then resets the next rule number to 1
for addition <code>+</code>, multiplication <code>*</code>, and exponentiation <code>^</code>.
</p>
</dd></dl>
<hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC142" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="maxima_38.html#SEC145" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
<font size="-1">
This document was generated by <em>Robert Dodier</em> on <em>September, 20 2006</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
</font>
<br>
</p>
</body>
</html>
|