1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on September, 20 2006 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
Karl Berry <karl@freefriends.org>
Olaf Bachmann <obachman@mathematik.uni-kl.de>
and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>
-->
<head>
<title>Maxima Manual: 49. dynamics</title>
<meta name="description" content="Maxima Manual: 49. dynamics">
<meta name="keywords" content="Maxima Manual: 49. dynamics">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
color: black;
background: white;
margin-left: 8%;
margin-right: 13%;
}
h1
{
margin-left: +8%;
font-size: 150%;
font-family: sans-serif
}
h2
{
font-size: 125%;
font-family: sans-serif
}
h3
{
font-size: 100%;
font-family: sans-serif
}
h2,h3,h4,h5,h6 { margin-left: +4%; }
div.textbox
{
border: solid;
border-width: thin;
/* width: 100%; */
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em
}
div.titlebox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(200,255,255);
font-family: sans-serif
}
div.synopsisbox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(255,220,255);
/*background: rgb(200,255,255); */
/* font-family: fixed */
}
pre.example
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 1em;
padding-right: 1em;
background: rgb(247,242,180); /* kind of sandy */
/* background: rgb(200,255,255); */ /* sky blue */
font-family: "Lucida Console", monospace
}
div.spacerbox
{
border: none;
padding-top: 2em;
padding-bottom: 2em
}
div.image
{
margin: 0;
padding: 1em;
text-align: center;
}
-->
</style>
<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="dynamics"></a>
<a name="SEC187"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="maxima_48.html#SEC186" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC188" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima_48.html#SEC183" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_50.html#SEC190" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="chapter"> 49. dynamics </h1>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#SEC188">49.1 Introduction to dynamics</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC189">49.2 Definitions for dynamics</a></td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr size="6">
<a name="Introduction-to-dynamics"></a>
<a name="SEC188"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC187" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC189" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC187" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC187" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_50.html#SEC190" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 49.1 Introduction to dynamics </h2>
<p>The additional package <code>dynamics</code> includes several
functions to create various graphical representations of discrete
dynamical systems and fractals, and an implementation of the Runge-Kutta
4th-order numerical method for solving systems of differential equations.
</p>
<p>To use the functions in this package you must first load it with
<code>load("dynamics")</code>.
</p>
<hr size="6">
<a name="Definitions-for-dynamics"></a>
<a name="SEC189"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC188" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="maxima_50.html#SEC190" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC187" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC187" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_50.html#SEC190" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 49.2 Definitions for dynamics </h2>
<dl>
<dt><u>Function:</u> <b>chaosgame</b><i> (<code>[[</code><var>x1</var>, <var>y1</var><code>]</code>...<code>[</code><var>xm</var>, <var>ym</var><code>]]</code>, <code>[</code><var>x0</var>, <var>y0</var><code>]</code>, <var>b</var>, <var>n</var>, ...options...);</i>
<a name="IDX1703"></a>
</dt>
<dd><p>Implements the so-called chaos game: the initial point (<var>x0</var>,
<var>y0</var>) is plotted and then one of the <var>m</var> points
<code>[</code><var>x1</var>, <var>y1</var><code>]</code>...<code>[</code><var>xm</var>, <var>ym</var><code>]</code>
will be selected at random. The next point plotted will be in the
segment from the previous point to the point chosen randomly, at a
fraction <var>b</var> of the distance from the random point. The procedure is
repeated <var>n</var> times.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>evolution</b><i> (<var>F</var>, <var>y0</var>, <var>n</var>,...options...);</i>
<a name="IDX1704"></a>
</dt>
<dd><p>Draws <var>n+1</var> points in a two-dimensional graph, where the horizontal
coordinates of the points are the integers 0, 1, 2, ..., <var>n</var>, and
the vertical coordinates are the corresponding values <var>y(n)</var> of the
sequence defined by the recurrence relation
</p><table><tr><td> </td><td><pre class="example"> y(n+1) = F(y(n))
</pre></td></tr></table>
<p>With initial value <var>y(0)</var> equal to <var>y0</var>. <var>F</var> must be an
expression that depends only on the variable <var>y</var> (and not on <var>n</var>),
<var>y0</var> must be a real number and <var>n</var> must be a positive integer.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>evolution2d</b><i> (<code>[</code><var>F</var>, <var>G</var><code>]</code>, <code>[</code><var>x0</var>, <var>y0</var><code>]</code>, <var>n</var>, ...options...);</i>
<a name="IDX1705"></a>
</dt>
<dd><p>Shows, in a two-dimensional plot, the first <var>n+1</var> points in the
sequence of points defined by the two-dimensional discrete dynamical
system with recurrence relations
</p><table><tr><td> </td><td><pre class="example"> x(n+1) = F(x(n), y(n)) y(n+1) = G(x(n), y(n))
</pre></td></tr></table>
<p>With initial values <var>x0</var> and <var>y0</var>. <var>F</var> and <var>G</var> must be
two expressions that depend just on <var>x</var> and <var>y</var>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>ifs</b><i> (<code>[</code><var>r1</var>,...,<var>rm</var><code>]</code>,<code>[</code><var>A1</var>,...,<var>Am</var><code>]</code>, <code>[[</code><var>x1</var>,<var>y1</var><code>]</code>...<code>[</code><var>xm</var>, <var>ym</var><code>]]</code>, <code>[</code><var>x0</var>,<var>y0</var><code>]</code>, <var>n</var>, ...options...);</i>
<a name="IDX1706"></a>
</dt>
<dd><p>Implements the Iterated Function System method. This method is similar
to the method described in the function <code>chaosgame</code>, but instead of
shrinking the segment from the current point to the randomly chosen
point, the 2 components of that segment will be multiplied by the 2 by 2
matrix <var>Ai</var> that corresponds to the point chosen randomly.
</p>
<p>The random choice of one of the <var>m</var> attractive points can be made with
a non-uniform probability distribution defined by the weights
<var>r1</var>,...,<var>rm</var>. Those weights are given in cumulative form; for instance if there are 3 points with probabilities 0.2, 0.5 and
0.3, the weights <var>r1</var>, <var>r2</var> and <var>r3</var> could be 2, 7 and 10.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>orbits</b><i> (<var>F</var>, <var>y0</var>, <var>n1</var>, <var>n2</var>, [<var>x</var>, <var>x0</var>, <var>xf</var>, <var>xstep</var>], ...options...);</i>
<a name="IDX1707"></a>
</dt>
<dd><p>Draws the orbits diagram for a family of one-dimensional
discrete dynamical systems, with one parameter <var>x</var>; that kind of
diagram is used to study the bifurcations of a one-dimensional discrete
system.
</p>
<p>The function <var>F(y)</var> defines a sequence with a starting value of
<var>y0</var>, as in the case of the function <code>evolution</code>, but in this
case that function will also depend on a parameter <var>x</var> that will
take values in the interval from <var>x0</var> to <var>xf</var> with increments of
<var>xstep</var>. Each value used for the parameter <var>x</var> is shown on the
horizontal axis. The vertical axis will show the <var>n2</var> values
of the sequence <var>y(n1+1)</var>,..., <var>y(n1+n2+1)</var> obtained after letting
the sequence evolve <var>n1</var> iterations.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>rk</b><i> (ODE, var, initial, domain)</i>
<a name="IDX1708"></a>
</dt>
<dt><u>Function:</u> <b>rk</b><i> ([ODE1,...,ODEm], [v1,...,vm], [init1,...,initm], domain)</i>
<a name="IDX1709"></a>
</dt>
<dd><p>The first form solves numerically one first-order ordinary differential
equation, and the second form solves a system of m of those equations,
using the 4th order Runge-Kutta method. var represents the dependent
variable. ODE must be an expression that depends only on the independent
and dependent variables and represents the derivative of the dependent
variable with respect to the independent variable.
</p>
<p>The independent variable is specified with <code>domain</code>, which must be a
list of four elements such as:
</p><table><tr><td> </td><td><pre class="example">[t, 0, 10, 0.1]
</pre></td></tr></table><p>the first element of the list identifies the independent variable, the
second and third elements are the initial and final values for that
variable, and the last element sets the increments that should be used
within that interval.
</p>
<p>If <var>m</var> equations are going to be solved, there should be <var>m</var>
dependent variables <var>v1</var>, <var>v2</var>, ..., <var>vm</var>. The initial values
for those variables will be <var>init1</var>, <var>init2</var>, ..., <var>initm</var>.
There will still be just one independent variable defined by <code>domain</code>,
as in the previous case. <var>ODE1</var>, ..., <var>ODEm</var>
are the expressions for the derivatives of each dependent variable in
terms of the independent variable. The only variables that may appear in
those expressions are the independent variable and any of the dependent
variables.
</p>
<p>The result will be a list of lists with <var>m</var>+1 elements. Those <var>m</var>+1
elements will be the value of the independent variable, followed by the
values of the dependent variables corresponding to that point in the interval
of integration. If at some point one of the variables becomes too large,
the list will stop there. Otherwise, the list will extend until the last
value of the independent variable specified by <code>domain</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>staircase</b><i> (<var>F</var>, <var>y0</var>, <var>n</var>, ...options...);</i>
<a name="IDX1710"></a>
</dt>
<dd><p>Draws a staircase diagram for the sequence defined by the recurrence
relation
</p><table><tr><td> </td><td><pre class="example"> y(n+1) = F(y(n))
</pre></td></tr></table>
<p>The interpretation and allowed values of the input parameters is the
same as for the function <code>evolution</code>. A staircase diagram consists
of a plot of the function <var>F(y)</var>, together with the line
<var>G(y)</var> <code>=</code> <var>y</var>. A vertical segment is drawn from the
point (<var>y0</var>, <var>y0</var>) on that line until the point where it
intersects the function <var>F</var>. From that point a horizontal segment is
drawn until it reaches the point (<var>y1</var>, <var>y1</var>) on the line, and
the procedure is repeated <var>n</var> times until the point (<var>yn</var>, <var>yn</var>)
is reached.
</p>
</dd></dl>
<p><b>Options</b>
</p>
<p>The options accepted by the functions that plot graphs are:
</p>
<ul>
<li>
Option: <code>domain</code> sets the minimum and maximum values for the plot of the
function <var>F</var> shown by <code>staircase</code>.
<table><tr><td> </td><td><pre class="example">[domain, -2, 3.5]
</pre></td></tr></table>
</li><li>
Option: <code>pointsize</code> defines the radius of each point plotted, in units of
points.
<table><tr><td> </td><td><pre class="example">[pointsize, 1.5]
</pre></td></tr></table><p>The default value is 1.
</p>
</li><li>
Option: <code>xaxislabel</code> is a label to put on the horizontal axis.
<table><tr><td> </td><td><pre class="example">[xaxislabel, "time"]
</pre></td></tr></table>
</li><li>
Option: <code>xcenter</code> is the x coordinate of the point at the center of
the plot. This option is not used by the function <code>orbits</code>.
<table><tr><td> </td><td><pre class="example">[xcenter,3.45]
</pre></td></tr></table>
</li><li>
Option: <code>xradius</code> is half of the length of the range of values that
will be shown in the x direction. This option is not used by the
function <code>orbits</code>.
<table><tr><td> </td><td><pre class="example">[xradius,12.5]
</pre></td></tr></table>
</li><li>
Option: <code>yaxislabel</code> is a label to put on the vertical axis.
<table><tr><td> </td><td><pre class="example">[yaxislabel, "temperature"]
</pre></td></tr></table>
</li><li>
Option: <code>ycenter</code> is the y coordinate of the point at the center of
the plot.
<table><tr><td> </td><td><pre class="example">[ycenter,4.5]
</pre></td></tr></table>
</li><li>
Option: <code>yradius</code> is half of the length of the range of values that
will be shown in the y direction.
<table><tr><td> </td><td><pre class="example">[yradius,15]
</pre></td></tr></table>
</li></ul>
<p><b>Examples</b>
</p>
<p>Graphical representation and staircase diagram for the sequence:
2, cos(2), cos(cos(2)),...
</p>
<table><tr><td> </td><td><pre class="example">(%i1) load("dynamics")$
(%i2) evolution(cos(y), 2, 11, [yaxislabel, "y"], [xaxislabel,"n"]);
(%i3) staircase(cos(y), 1, 11, [domain, 0, 1.2]);
</pre></td></tr></table>
<p><div class="image"><img src="./figures/dynamics1.gif" alt="figures/dynamics1"></div>
<div class="image"><img src="./figures/dynamics2.gif" alt="figures/dynamics2"></div>
</p>
<p>If your system is slow, you'll have to reduce the number of iterations in
the following examples. And the pointsize that gives the best results
depends on the monitor and the resolution being used.
</p>
<p>Orbits diagram for the quadratic map
</p><table><tr><td> </td><td><pre class="example"> y(n+1) = x + y(n)^2
</pre></td></tr></table>
<table><tr><td> </td><td><pre class="example">(%i4) orbits(y^2+x, 0, 50, 200, [x, -2, 0.25, 0.01], [pointsize, 0.9]);
</pre></td></tr></table>
<p><div class="image"><img src="./figures/dynamics3.gif" alt="figures/dynamics3"></div>
</p>
<p>To enlarge the region around the lower bifurcation near x <code>=</code> -1.25 use:
</p><table><tr><td> </td><td><pre class="example">(%i5) orbits(x+y^2, 0, 100, 400, [x,-1,-1.53,-0.001], [pointsize,0.9],
[ycenter,-1.2], [yradius,0.4]);
</pre></td></tr></table>
<p><div class="image"><img src="./figures/dynamics4.gif" alt="figures/dynamics4"></div>
</p>
<p>Evolution of a two-dimensional system that leads to a fractal:
</p>
<table><tr><td> </td><td><pre class="example">(%i6) f: 0.6*x*(1+2*x)+0.8*y*(x-1)-y^2-0.9$
(%i7) g: 0.1*x*(1-6*x+4*y)+0.1*y*(1+9*y)-0.4$
(%i8) evolution2d([f,g],[-0.5,0],50000,[pointsize,0.7]);
</pre></td></tr></table>
<p><div class="image"><img src="./figures/dynamics5.gif" alt="figures/dynamics5"></div>
</p>
<p>And an enlargement of a small region in that fractal:
</p>
<table><tr><td> </td><td><pre class="example">(%i9) evolution2d([f,g],[-0.5,0],300000,[pointsize,0.7], [xcenter,-0.7],
[ycenter,-0.3],[xradius,0.1],[yradius,0.1]);
</pre></td></tr></table>
<p><div class="image"><img src="./figures/dynamics6.gif" alt="figures/dynamics6"></div>
</p>
<p>A plot of Sierpinsky's triangle, obtained with the chaos game:
</p>
<table><tr><td> </td><td><pre class="example">(%i9) chaosgame([[0, 0], [1, 0], [0.5, sqrt(3)/2]], [0.1, 0.1], 1/2,
30000, [pointsize,0.7]);
</pre></td></tr></table>
<p><div class="image"><img src="./figures/dynamics7.gif" alt="figures/dynamics7"></div>
</p>
<p>Barnsley's fern, obtained with an Iterated Function System:
</p>
<table><tr><td> </td><td><pre class="example">(%i10) a1: matrix([0.85,0.04],[-0.04,0.85])$
(%i11) a2: matrix([0.2,-0.26],[0.23,0.22])$
(%i12) a3: matrix([-0.15,0.28],[0.26,0.24])$
(%i13) a4: matrix([0,0],[0,0.16])$
(%i14) p1: [0,1.6]$
(%i15) p2: [0,1.6]$
(%i16) p3: [0,0.44]$
(%i17) p4: [0,0]$
(%i18) w: [85,92,99,100]$
(%i19) ifs(w,[a1,a2,a3,a4],[p1,p2,p3,p4],[5,0],50000,[pointsize,0.9]);
</pre></td></tr></table>
<p><div class="image"><img src="./figures/dynamics8.gif" alt="figures/dynamics8"></div>
</p>
<p>To solve numerically the differential equation
</p>
<table><tr><td> </td><td><pre class="example"> dx/dt = t - x^2
</pre></td></tr></table>
<p>With initial value x(t=0) = 1, in the interval of t from 0 to 8 and with
increments of 0.1 for t, use:
</p>
<table><tr><td> </td><td><pre class="example">(%i20) results: rk(t-x^2,x,1,[t,0,8,0.1])$
</pre></td></tr></table>
<p>the results will be saved in the list results.
</p>
<p>To solve numerically the system:
</p>
<table><tr><td> </td><td><pre class="example"> dx/dt = 4-x^2-4*y^2 dy/dt = y^2-x^2+1
</pre></td></tr></table>
<p>for t between 0 and 4, and with values of -1.25 and 0.75 for x and y at t=0
</p>
<table><tr><td> </td><td><pre class="example">(%i21) sol: rk([4-x^2-4*y^2,y^2-x^2+1],[x,y],[-1.25,0.75],[t,0,4,0.02])$
</pre></td></tr></table>
<hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC187" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="maxima_50.html#SEC190" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
<font size="-1">
This document was generated by <em>Robert Dodier</em> on <em>September, 20 2006</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
</font>
<br>
</p>
</body>
</html>
|