File: maxima_5.html

package info (click to toggle)
maxima 5.10.0-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 44,268 kB
  • ctags: 17,987
  • sloc: lisp: 152,894; fortran: 14,667; perl: 14,204; tcl: 10,103; sh: 3,376; makefile: 2,202; ansic: 471; awk: 7
file content (2027 lines) | stat: -rw-r--r-- 82,695 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on September, 20 2006 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
            Karl Berry  <karl@freefriends.org>
            Olaf Bachmann <obachman@mathematik.uni-kl.de>
            and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>

-->
<head>
<title>Maxima Manual: 5. Operators</title>

<meta name="description" content="Maxima Manual: 5. Operators">
<meta name="keywords" content="Maxima Manual: 5. Operators">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
    color: black;
    background: white; 
    margin-left: 8%;
    margin-right: 13%;
}

h1
{
    margin-left: +8%;
    font-size: 150%;
    font-family: sans-serif
}

h2
{
    font-size: 125%;
    font-family: sans-serif
}

h3
{
    font-size: 100%;
    font-family: sans-serif
}

h2,h3,h4,h5,h6 { margin-left: +4%; }

div.textbox
{
    border: solid;
    border-width: thin;
    /* width: 100%; */
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em
}

div.titlebox
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em;
    background: rgb(200,255,255);
    font-family: sans-serif
}

div.synopsisbox
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em;
     background: rgb(255,220,255);
    /*background: rgb(200,255,255); */
    /* font-family: fixed */
}

pre.example
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 1em;
    padding-right: 1em;
    background: rgb(247,242,180); /* kind of sandy */
    /* background: rgb(200,255,255); */ /* sky blue */
    font-family: "Lucida Console", monospace
}

div.spacerbox
{
    border: none;
    padding-top: 2em;
    padding-bottom: 2em
}

div.image
{
    margin: 0;
    padding: 1em;
    text-align: center;
}
-->
</style>

<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">

<a name="Operators"></a>
<a name="SEC14"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="maxima_4.html#SEC13" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC15" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima_4.html#SEC11" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="chapter"> 5. Operators </h1>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#SEC15">5.1 nary</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">                        
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC16">5.2 nofix</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">                       
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC17">5.3 operator</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">                    
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC18">5.4 postfix</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">                     
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC19">5.5 prefix</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">                      
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC20">5.6 Definitions for Operators</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">   
</td></tr>
</table>


<hr size="6">
<a name="nary"></a>
<a name="SEC15"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC14" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC16" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC14" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC14" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 5.1 nary </h2>
<p>An <code>nary</code> operator is used to denote a function of any number of
arguments, each of which is separated by an occurrence of the
operator, e.g. A+B or A+B+C.  The <code>nary(&quot;x&quot;)</code> function is a syntax
extension function to declare x to be an <code>nary</code> operator.
Functions may be declared to be
<code>nary</code>.  If <code>declare(j,nary);</code> is done, this tells the simplifier to
simplify, e.g. <code>j(j(a,b),j(c,d))</code> to <code>j(a, b, c, d)</code>.
</p>
<p>See also <code>syntax</code>.
</p>
<hr size="6">
<a name="nofix"></a>
<a name="SEC16"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC15" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC17" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC14" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC14" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 5.2 nofix </h2>
<p><code>nofix</code> operators are used to denote functions of no arguments.
The mere presence of such an operator in a command will cause the
corresponding function to be evaluated.  For example, when one types
&quot;exit;&quot; to exit from a Maxima break, &quot;exit&quot; is behaving similar to a
<code>nofix</code> operator.  The function <code>nofix(&quot;x&quot;)</code> is a syntax extension
function which declares x to be a <code>nofix</code> operator. 
</p>
<p>See also <code>syntax</code>.
</p>
<hr size="6">
<a name="operator"></a>
<a name="SEC17"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC16" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC18" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC14" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC14" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 5.3 operator </h2>
<p>See <code>operators</code>.
</p>
<hr size="6">
<a name="postfix"></a>
<a name="SEC18"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC17" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC19" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC14" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC14" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 5.4 postfix </h2>
<p><code>postfix</code> operators like the <code>prefix</code> variety denote functions
of a single argument, but in this case the argument immediately
precedes an occurrence of the operator in the input string, e.g. 3! .
The <code>postfix(&quot;x&quot;)</code> function is a syntax extension function to declare x
to be a <code>postfix</code> operator.
</p>
<p>See also <code>syntax</code>.
</p>
<hr size="6">
<a name="prefix"></a>
<a name="SEC19"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC18" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC20" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC14" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC14" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 5.5 prefix </h2>
<p>A <code>prefix</code> operator is one which signifies a function of one
argument, which argument immediately follows an occurrence of the
operator.  <code>prefix(&quot;x&quot;)</code> is a syntax extension function to declare x to
be a <code>prefix</code> operator.
</p>
<p>See also <code>syntax</code>.
</p>
<hr size="6">
<a name="Definitions-for-Operators"></a>
<a name="SEC20"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC19" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC14" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC14" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 5.6 Definitions for Operators </h2>

<dl>
<dt><u>Operator:</u> <b>!</b>
<a name="IDX54"></a>
</dt>
<dd><p>The factorial operator.
For any complex number <code>x</code> (including integer, rational, and real numbers) except for
negative integers, <code>x!</code> is defined as <code>gamma(x+1)</code>.
</p>
<p>For an integer <code>x</code>, <code>x!</code> simplifies to the product of the integers from 1 to <code>x</code> inclusive.
<code>0!</code> simplifies to 1.
For a floating point number <code>x</code>, <code>x!</code> simplifies to the value of <code>gamma (x+1)</code>.
For <code>x</code> equal to <code>n/2</code> where <code>n</code> is an odd integer,
<code>x!</code> simplifies to a rational factor times <code>sqrt (%pi)</code>
(since <code>gamma (1/2)</code> is equal to <code>sqrt (%pi)</code>).
If <code>x</code> is anything else,
<code>x!</code> is not simplified.
</p>
<p>The variables
<code>factlim</code>, <code>minfactorial</code>, and <code>factcomb</code> control the simplification
of expressions containing factorials.
</p>
<p>The functions <code>gamma</code>, <code>bffac</code>, and <code>cbffac</code>
are varieties of the gamma function.
<code>makegamma</code> substitutes <code>gamma</code> for factorials and related functions.
</p>
<p>See also <code>binomial</code>.
</p>
<p>The factorial of an integer, half-integer, or floating point argument is simplified
unless the operand is greater than <code>factlim</code>.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) factlim : 10;
(%o1)                          10
(%i2) [0!, (7/2)!, 4.77!, 8!, 20!];
            105 sqrt(%pi)
(%o2)   [1, -------------, 81.44668037931199, 40320, 20!]
                 16
</pre></td></tr></table>
<p>The factorial of a complex number, known constant, or general expression is not simplified.
Even so it may be possible simplify the factorial after evaluating the operand.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) [(%i + 1)!, %pi!, %e!, (cos(1) + sin(1))!];
(%o1)      [(%i + 1)!, %pi!, %e!, (sin(1) + cos(1))!]
(%i2) ev (%, numer, %enumer);
(%o2) [(%i + 1)!, 7.188082728976037, 4.260820476357, 
                                               1.227580202486819]
</pre></td></tr></table>
<p>The factorial of an unbound symbol is not simplified.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) kill (foo);
(%o1)                         done
(%i2) foo!;
(%o2)                         foo!
</pre></td></tr></table>
<p>Factorials are simplified, not evaluated.
Thus <code>x!</code> may be replaced even in a quoted expression.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) '([0!, (7/2)!, 4.77!, 8!, 20!]);
          105 sqrt(%pi)
(%o1) [1, -------------, 81.44668037931199, 40320, 
               16
                                             2432902008176640000]
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Operator:</u> <b>!!</b>
<a name="IDX55"></a>
</dt>
<dd><p>The double factorial operator.
</p>
<p>For an integer, float, or rational number <code>n</code>,
<code>n!!</code> evaluates to the product <code>n (n-2) (n-4) (n-6) ... (n - 2 (k-1))</code>
where <code>k</code> is equal to <code>entier (n/2)</code>,
that is, the largest integer less than or equal to <code>n/2</code>.
Note that this definition does not coincide with other published definitions
for arguments which are not integers.
</p>
<p>For an even (or odd) integer <code>n</code>, <code>n!!</code> evaluates to the product of
all the consecutive even (or odd) integers from 2 (or 1) through <code>n</code> inclusive.
</p>
<p>For an argument <code>n</code> which is not an integer, float, or rational,
<code>n!!</code> yields a noun form <code>genfact (n, n/2, 2)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Operator:</u> <b>#</b>
<a name="IDX56"></a>
</dt>
<dd><p>Represents the negation of syntactic equality <code>=</code>.
</p>
<p>Note that because of the rules for evaluation of predicate expressions
(in particular because <code>not <var>expr</var></code> causes evaluation of <var>expr</var>),
<code>not <var>a</var> = <var>b</var></code> is equivalent to <code>is(<var>a</var> # <var>b</var>)</code>,
instead of <code><var>a</var> # <var>b</var></code>.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) a = b;
(%o1)                         a = b
(%i2) is (a = b);
(%o2)                         false
(%i3) a # b;
(%o3)                         a # b
(%i4) not a = b;
(%o4)                         true
(%i5) is (a # b);
(%o5)                         true
(%i6) is (not a = b);
(%o6)                         true
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Operator:</u> <b>.</b>
<a name="IDX57"></a>
</dt>
<dd><p>The dot operator, for matrix (non-commutative) multiplication.
When &quot;.&quot; is used in this way, spaces should be left on both sides of
it, e.g. A . B.  This distinguishes it plainly from a decimal point in
a floating point number.
</p>
<p>See also
<code>dot</code>,
<code>dot0nscsimp</code>,
<code>dot0simp</code>,
<code>dot1simp</code>,
<code>dotassoc</code>,
<code>dotconstrules</code>,
<code>dotdistrib</code>,
<code>dotexptsimp</code>,
<code>dotident</code>,
and
<code>dotscrules</code>.
</p>
</dd></dl>

<dl>
<dt><u>Operator:</u> <b>:</b>
<a name="IDX58"></a>
</dt>
<dd><p>The assignment operator.  E.g. A:3 sets the variable A to 3.
</p>
</dd></dl>

<dl>
<dt><u>Operator:</u> <b>::</b>
<a name="IDX59"></a>
</dt>
<dd><p>Assignment operator.  :: assigns the value of the expression
on its right to the value of the quantity on its left, which must
evaluate to an atomic variable or subscripted variable.
</p>
</dd></dl>

<dl>
<dt><u>Operator:</u> <b>::=</b>
<a name="IDX60"></a>
</dt>
<dd><p>Macro function definition operator.
<code>::=</code> defines a function (called a &quot;macro&quot; for historical reasons)
which quotes its arguments,
and the expression which it returns (called the &quot;macro expansion&quot;)
is evaluated in the context from which the macro was called.
A macro function is otherwise the same as an ordinary function.
</p>
<p><code>macroexpand</code> returns a macro expansion (without evaluating it).
<code>macroexpand (foo (x))</code> followed by <code>''%</code> is equivalent to <code>foo (x)</code>
when <code>foo</code> is a macro function.
</p>
<p><code>::=</code> puts the name of the new macro function onto the global list <code>macros</code>.
<code>kill</code>, <code>remove</code>, and <code>remfunction</code> unbind macro function definitions
and remove names from <code>macros</code>.
</p>
<p><code>fundef</code> or <code>dispfun</code> return a macro function definition
or assign it to a label, respectively.
</p>
<p>Macro functions commonly contain <code>buildq</code> and <code>splice</code>
expressions to construct an expression,
which is then evaluated.
</p>
<p>Examples
</p>
<p>A macro function quotes its arguments,
so message (1) shows <code>y - z</code>, not the value of <code>y - z</code>.
The macro expansion (the quoted expression <code>'(print (&quot;(2) x is equal to&quot;, x))</code>
is evaluated in the context from which the macro was called,
printing message (2).
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) x: %pi;
(%o1)                          %pi
(%i2) y: 1234;
(%o2)                         1234
(%i3) z: 1729 * w;
(%o3)                        1729 w
(%i4) printq1 (x) ::= block (print (&quot;(1) x is equal to&quot;, x), '(print (&quot;(2) x is equal to&quot;, x)));
(%o4) printq1(x) ::= block(print(&quot;(1) x is equal to&quot;, x), 
                                '(print(&quot;(2) x is equal to&quot;, x)))
(%i5) printq1 (y - z);
(1) x is equal to y - z 
(2) x is equal to %pi 
(%o5)                          %pi
</pre></td></tr></table>
<p>An ordinary function evaluates is arguments, so message (1) shows the value of <code>y - z</code>.
The return value is not evaluated, so message (2) is not printed
until the explicit evaluation <code>''%</code>.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) x: %pi;
(%o1)                          %pi
(%i2) y: 1234;
(%o2)                         1234
(%i3) z: 1729 * w;
(%o3)                        1729 w
(%i4) printe1 (x) := block (print (&quot;(1) x is equal to&quot;, x), '(print (&quot;(2) x is equal to&quot;, x)));
(%o4) printe1(x) := block(print(&quot;(1) x is equal to&quot;, x), 
                                '(print(&quot;(2) x is equal to&quot;, x)))
(%i5) printe1 (y - z);
(1) x is equal to 1234 - 1729 w 
(%o5)              print((2) x is equal to, x)
(%i6) ''%;
(2) x is equal to %pi 
(%o6)                          %pi
</pre></td></tr></table>
<p><code>macroexpand</code> returns a macro expansion.
<code>macroexpand (foo (x))</code> followed by <code>''%</code> is equivalent to <code>foo (x)</code>
when <code>foo</code> is a macro function.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) x: %pi;
(%o1)                          %pi
(%i2) y: 1234;
(%o2)                         1234
(%i3) z: 1729 * w;
(%o3)                        1729 w
(%i4) g (x) ::= buildq ([x], print (&quot;x is equal to&quot;, x));
(%o4)    g(x) ::= buildq([x], print(&quot;x is equal to&quot;, x))
(%i5) macroexpand (g (y - z));
(%o5)              print(x is equal to, y - z)
(%i6) ''%;
x is equal to 1234 - 1729 w 
(%o6)                     1234 - 1729 w
(%i7) g (y - z);
x is equal to 1234 - 1729 w 
(%o7)                     1234 - 1729 w
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Operator:</u> <b>:=</b>
<a name="IDX61"></a>
</dt>
<dd><p>The function definition operator.  E.g. <code>f(x):=sin(x)</code> defines
a function <code>f</code>.
</p>
</dd></dl>

<dl>
<dt><u>Operator:</u> <b>=</b>
<a name="IDX62"></a>
</dt>
<dd><p>The equation operator.
</p>
<p>An expression <code><var>a</var> = <var>b</var></code>, by itself, represents
an unevaluated equation, which might or might not hold.
Unevaluated equations may appear as arguments to <code>solve</code> and <code>algsys</code>
or some other functions.
</p>
<p>The function <code>is</code> evaluates <code>=</code> to a Boolean value.
<code>is(<var>a</var> = <var>b</var>)</code> evaluates <code><var>a</var> = <var>b</var></code> to <code>true</code> when <var>a</var> and <var>b</var>
are identical. That is, <var>a</var> and <var>b</var> are atoms which are identical,
or they are not atoms and their operators are identical and their arguments are identical.
Otherwise, <code>is(<var>a</var> = <var>b</var>)</code> evaluates to <code>false</code>;
it never evaluates to <code>unknown</code>.
When <code>is(<var>a</var> = <var>b</var>)</code> is <code>true</code>, <var>a</var> and <var>b</var> are said to be syntactically equal,
in contrast to equivalent expressions, for which <code>is(equal(<var>a</var>, <var>b</var>))</code> is <code>true</code>.
Expressions can be equivalent and not syntactically equal.
</p>
<p>The negation of <code>=</code> is represented by <code>#</code>.
As with <code>=</code>, an expression <code><var>a</var> # <var>b</var></code>, by itself, is not evaluated.
<code>is(<var>a</var> # <var>b</var>)</code> evaluates <code><var>a</var> # <var>b</var></code> to
<code>true</code> or <code>false</code>.
</p>
<p>In addition to <code>is</code>,
some other operators evaluate <code>=</code> and <code>#</code> to <code>true</code> or <code>false</code>,
namely <code>if</code>, <code>and</code>, <code>or</code>, and <code>not</code>.
</p>
<p>Note that because of the rules for evaluation of predicate expressions
(in particular because <code>not <var>expr</var></code> causes evaluation of <var>expr</var>),
<code>not <var>a</var> = <var>b</var></code> is equivalent to <code>is(<var>a</var> # <var>b</var>)</code>,
instead of <code><var>a</var> # <var>b</var></code>.
</p>
<p><code>rhs</code> and <code>lhs</code> return the right-hand and left-hand sides,
respectively, of an equation or inequation.
</p>
<p>See also <code>equal</code> and <code>notequal</code>.
</p>
<p>Examples:
</p>
<p>An expression <code><var>a</var> = <var>b</var></code>, by itself, represents
an unevaluated equation, which might or might not hold.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) eq_1 : a * x - 5 * y = 17;
(%o1)                    a x - 5 y = 17
(%i2) eq_2 : b * x + 3 * y = 29;
(%o2)                    3 y + b x = 29
(%i3) solve ([eq_1, eq_2], [x, y]);
                        196         29 a - 17 b
(%o3)          [[x = ---------, y = -----------]]
                     5 b + 3 a       5 b + 3 a
(%i4) subst (%, [eq_1, eq_2]);
         196 a     5 (29 a - 17 b)
(%o4) [--------- - --------------- = 17, 
       5 b + 3 a      5 b + 3 a
                                  196 b     3 (29 a - 17 b)
                                --------- + --------------- = 29]
                                5 b + 3 a      5 b + 3 a
(%i5) ratsimp (%);
(%o5)                  [17 = 17, 29 = 29]
</pre></td></tr></table>
<p><code>is(<var>a</var> = <var>b</var>)</code> evaluates <code><var>a</var> = <var>b</var></code> to <code>true</code> when <var>a</var> and <var>b</var>
are syntactically equal (that is, identical).
Expressions can be equivalent and not syntactically equal.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) a : (x + 1) * (x - 1);
(%o1)                    (x - 1) (x + 1)
(%i2) b : x^2 - 1;
                              2
(%o2)                        x  - 1
(%i3) [is (a = b), is (a # b)];
(%o3)                     [false, true]
(%i4) [is (equal (a, b)), is (notequal (a, b))];
(%o4)                     [true, false]
</pre></td></tr></table>
<p>Some operators evaluate <code>=</code> and <code>#</code> to <code>true</code> or <code>false</code>.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) if expand ((x + y)^2) = x^2 + 2 * x * y + y^2 then FOO else BAR;
(%o1)                          FOO
(%i2) eq_3 : 2 * x = 3 * x;
(%o2)                       2 x = 3 x
(%i3) eq_4 : exp (2) = %e^2;
                              2     2
(%o3)                       %e  = %e
(%i4) [eq_3 and eq_4, eq_3 or eq_4, not eq_3];
(%o4)                  [false, true, true]
</pre></td></tr></table>
<p>Because <code>not <var>expr</var></code> causes evaluation of <var>expr</var>,
<code>not <var>a</var> = <var>b</var></code> is equivalent to <code>is(<var>a</var> # <var>b</var>)</code>.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) [2 * x # 3 * x, not (2 * x = 3 * x)];
(%o1)                   [2 x # 3 x, true]
(%i2) is (2 * x # 3 * x);
(%o2)                         true
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Operator:</u> <b>and</b>
<a name="IDX63"></a>
</dt>
<dd><p>The logical conjunction operator.
<code>and</code> is an n-ary infix operator;
its operands are Boolean expressions, and its result is a Boolean value.
</p>
<p><code>and</code> forces evaluation (like <code>is</code>) of one or more operands,
and may force evaluation of all operands.
</p>
<p>Operands are evaluated in the order in which they appear.
<code>and</code> evaluates only as many of its operands as necessary to determine the result.
If any operand is <code>false</code>,
the result is <code>false</code> and no further operands are evaluated.
</p>
<p>The global flag <code>prederror</code> governs the behavior of <code>and</code>
when an evaluated operand cannot be determined to be <code>true</code> or <code>false</code>.
<code>and</code> prints an error message when <code>prederror</code> is <code>true</code>.
Otherwise, <code>and</code> returns <code>unknown</code>.
</p>
<p><code>and</code> is not commutative:
<code>a and b</code> might not be equal to <code>b and a</code> due to the treatment of indeterminate operands.
</p>
</dd></dl>

<dl>
<dt><u>Operator:</u> <b>or</b>
<a name="IDX64"></a>
</dt>
<dd><p>The logical disjunction operator.
<code>or</code> is an n-ary infix operator;
its operands are Boolean expressions, and its result is a Boolean value.
</p>
<p><code>or</code> forces evaluation (like <code>is</code>) of one or more operands,
and may force evaluation of all operands.
</p>
<p>Operands are evaluated in the order in which they appear.
<code>or</code> evaluates only as many of its operands as necessary to determine the result.
If any operand is <code>true</code>,
the result is <code>true</code> and no further operands are evaluated.
</p>
<p>The global flag <code>prederror</code> governs the behavior of <code>or</code>
when an evaluated operand cannot be determined to be <code>true</code> or <code>false</code>.
<code>or</code> prints an error message when <code>prederror</code> is <code>true</code>.
Otherwise, <code>or</code> returns <code>unknown</code>.
</p>
<p><code>or</code> is not commutative:
<code>a or b</code> might not be equal to <code>b or a</code> due to the treatment of indeterminate operands.
</p>
</dd></dl>

<dl>
<dt><u>Operator:</u> <b>not</b>
<a name="IDX65"></a>
</dt>
<dd><p>The logical negation operator.
<code>not</code> is a prefix operator;
its operand is a Boolean expression, and its result is a Boolean value.
</p>
<p><code>not</code> forces evaluation (like <code>is</code>) of its operand.
</p>
<p>The global flag <code>prederror</code> governs the behavior of <code>not</code>
when its operand cannot be determined to be <code>true</code> or <code>false</code>.
<code>not</code> prints an error message when <code>prederror</code> is <code>true</code>.
Otherwise, <code>not</code> returns <code>unknown</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>abs</b><i> (<var>expr</var>)</i>
<a name="IDX66"></a>
</dt>
<dd><p>Returns the absolute value <var>expr</var>.  If <var>expr</var> is complex, returns the complex
modulus of <var>expr</var>.
</p>
</dd></dl>

<dl>
<dt><u>Keyword:</u> <b>additive</b>
<a name="IDX67"></a>
</dt>
<dd><p>If <code>declare(f,additive)</code> has been executed, then:
</p>
<p>(1) If <code>f</code> is univariate, whenever the simplifier encounters <code>f</code> applied
to a sum, <code>f</code> will be distributed over that sum.  I.e. <code>f(y+x)</code> will
simplify to <code>f(y)+f(x)</code>.
</p>
<p>(2) If <code>f</code> is a function of 2 or more arguments, additivity is defined as 
additivity in the first argument to <code>f</code>, as in the case of <code>sum</code> or 
<code>integrate</code>, i.e. <code>f(h(x)+g(x),x)</code> will simplify to <code>f(h(x),x)+f(g(x),x)</code>.
This simplification does not occur when <code>f</code> is applied to expressions of
the form <code>sum(x[i],i,lower-limit,upper-limit)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Keyword:</u> <b>allbut</b>
<a name="IDX68"></a>
</dt>
<dd><p>works with the <code>part</code> commands (i.e. <code>part</code>, <code>inpart</code>, <code>substpart</code>,
<code>substinpart</code>, <code>dpart</code>, and <code>lpart</code>).  For example,
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) expr : e + d + c + b + a;
(%o1)                   e + d + c + b + a
(%i2) part (expr, [2, 5]);
(%o2)                         d + a
</pre></td></tr></table>
<p>while
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) expr : e + d + c + b + a;
(%o1)                   e + d + c + b + a
(%i2) part (expr, allbut (2, 5));
(%o2)                       e + c + b
</pre></td></tr></table>
<p><code>allbut</code> is also recognized by <code>kill</code>.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) [aa : 11, bb : 22, cc : 33, dd : 44, ee : 55];
(%o1)                 [11, 22, 33, 44, 55]
(%i2) kill (allbut (cc, dd));
(%o0)                         done
(%i1) [aa, bb, cc, dd];
(%o1)                   [aa, bb, 33, 44]
</pre></td></tr></table>
<p><code>kill(allbut(<var>a_1</var>, <var>a_2</var>, ...))</code> has the effect of <code>kill(all)</code>
except that it does not kill the symbols <var>a_1</var>, <var>a_2</var>, ... .
</p>
</dd></dl>

<dl>
<dt><u>Declaration:</u> <b>antisymmetric</b>
<a name="IDX69"></a>
</dt>
<dd><p>If <code>declare(h,antisymmetric)</code> is done, this tells the
simplifier that <code>h</code> is antisymmetric.  E.g. <code>h(x,z,y)</code> will simplify to
<code>- h(x, y, z)</code>.  That is, it will give (-1)^n times the result given by
<code>symmetric</code> or <code>commutative</code>, where n is the number of interchanges of two
arguments necessary to convert it to that form.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>cabs</b><i> (<var>expr</var>)</i>
<a name="IDX70"></a>
</dt>
<dd><p>Returns the complex absolute value (the complex modulus) of
<var>expr</var>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>ceiling</b><i> (<var>x</var>)</i>
<a name="IDX71"></a>
</dt>
<dd><p>When <var>x</var> is a real number, return the least integer that 
is greater than or equal to <var>x</var>.  
</p>
<p>If <var>x</var> is a constant expression (<code>10 * %pi</code>, for example), 
<code>ceiling</code> evaluates <var>x</var> using big floating point numbers, and 
applies <code>ceiling</code> to the resulting big float. Because <code>ceiling</code> uses
floating point evaluation, it's possible, although unlikely, 
that <code>ceiling</code> could return an erroneous value for constant
inputs. To guard against errors, the floating point evaluation
is done using three values for <code>fpprec</code>.
</p>
<p>For non-constant inputs, <code>ceiling</code> tries to return a simplified
value.  Here are examples of the simplifications that <code>ceiling</code>
knows about:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) ceiling (ceiling (x));
(%o1)                      ceiling(x)
(%i2) ceiling (floor (x));
(%o2)                       floor(x)
(%i3) declare (n, integer)$
(%i4) [ceiling (n), ceiling (abs (n)), ceiling (max (n, 6))];
(%o4)                [n, abs(n), max(n, 6)]
(%i5) assume (x &gt; 0, x &lt; 1)$
(%i6) ceiling (x);
(%o6)                           1
(%i7) tex (ceiling (a));
$$\left \lceil a \right \rceil$$
(%o7)                         false
</pre></td></tr></table>
<p>The function <code>ceiling</code> does not automatically map over lists or matrices.
Finally, for all inputs that are manifestly complex, <code>ceiling</code> returns 
a noun form.
</p>
<p>If the range of a function is a subset of the integers, it can be
declared to be <code>integervalued</code>. Both the <code>ceiling</code> and <code>floor</code> functions
can use this information; for example:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) declare (f, integervalued)$
(%i2) floor (f(x));
(%o2)                         f(x)
(%i3) ceiling (f(x) - 1);
(%o3)                       f(x) - 1
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>charfun</b><i> (<var>p</var>)</i>
<a name="IDX72"></a>
</dt>
<dd><p>Return 0 when the predicate <var>p</var> evaluates to <code>false</code>; return
1 when the predicate evaluates to <code>true</code>.  When the predicate
evaluates to something other than <code>true</code> or <code>false</code> (unknown), 
return a noun form.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) charfun (x &lt; 1);
(%o1)                    charfun(x &lt; 1)
(%i2) subst (x = -1, %);
(%o2)                           1
(%i3) e : charfun ('&quot;and&quot; (-1 &lt; x, x &lt; 1))$
(%i4) [subst (x = -1, e), subst (x = 0, e), subst (x = 1, e)];
(%o4)                       [0, 1, 0]
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Declaration:</u> <b>commutative</b>
<a name="IDX73"></a>
</dt>
<dd><p>If <code>declare(h,commutative)</code> is done, this tells the
simplifier that <code>h</code> is a commutative function.  E.g. <code>h(x,z,y)</code> will
simplify to <code>h(x, y, z)</code>.  This is the same as <code>symmetric</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>compare</b><i> (<var>x</var>, <var>y</var>)</i>
<a name="IDX74"></a>
</dt>
<dd><p>Return a comparison operator <var>op</var>
(<code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, <code>&gt;=</code>, <code>=</code>, or <code>#</code>) such that
<code>is (<var>x</var> <var>op</var> <var>y</var>)</code> evaluates to true;
when either <var>x</var> or <var>y</var> depends on <code>%i</code> and
<code><var>x</var> # <var>y</var></code>, return <code>notcomparable</code>;
when there is no such operator or
Maxima isn't able to determine the operator, return <code>unknown</code>.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) compare (1, 2);
(%o1)                           &lt;
(%i2) compare (1, x);
(%o2)                        unknown
(%i3) compare (%i, %i);
(%o3)                           =
(%i4) compare (%i, %i + 1);
(%o4)                     notcomparable
(%i5) compare (1/x, 0);
(%o5)                           #
(%i6) compare (x, abs(x));
(%o6)                          &lt;=
</pre></td></tr></table>
<p>The function <code>compare</code> doesn't try to determine whether the real domains of
its arguments are nonempty; thus
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) compare (acos (x^2 + 1), acos (x^2 + 1) + 1);
(%o1)                           &lt;
</pre></td></tr></table>
<p>The real domain of <code>acos (x^2 + 1)</code> is empty.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>entier</b><i> (<var>x</var>)</i>
<a name="IDX75"></a>
</dt>
<dd><p>Returns the largest integer less than or equal to <var>x</var> where <var>x</var> is numeric.  <code>fix</code> (as in
<code>fixnum</code>) is a synonym for this, so <code>fix(<var>x</var>)</code> is precisely the same.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>equal</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX76"></a>
</dt>
<dd><p>Represents equivalence, that is, equal value.
</p>
<p>By itself, <code>equal</code> does not evaluate or simplify.
The function <code>is</code> attempts to evaluate <code>equal</code> to a Boolean value.
<code>is(equal(<var>a</var>, <var>b</var>))</code> 
returns <code>true</code> (or <code>false</code>) if
and only if <var>a</var> and <var>b</var> are equal (or not equal) for all possible
values of their variables, as determined by evaluating <code>ratsimp(<var>a</var> - <var>b</var>)</code>;
if <code>ratsimp</code> returns 0, the two expressions are considered equivalent.
Two expressions may be equivalent even if they are not syntactically equal (i.e., identical).
</p>
<p>When <code>is</code> fails to reduce <code>equal</code> to <code>true</code> or <code>false</code>,
the result is governed by the global flag <code>prederror</code>.
When <code>prederror</code> is <code>true</code>,
<code>is</code> complains with an error message.
Otherwise, <code>is</code> returns <code>unknown</code>.
</p>
<p>In addition to <code>is</code>,
some other operators evaluate <code>equal</code> and <code>notequal</code> to <code>true</code> or <code>false</code>,
namely <code>if</code>, <code>and</code>, <code>or</code>, and <code>not</code>.
</p>

<p>The negation of <code>equal</code> is <code>notequal</code>.
Note that because of the rules for evaluation of predicate expressions
(in particular because <code>not <var>expr</var></code> causes evaluation of <var>expr</var>),
<code>not equal(<var>a</var>, <var>b</var>)</code>
is equivalent to <code>is(notequal(<var>a</var>, <var>b</var>))</code>
instead of <code>notequal(<var>a</var>, <var>b</var>)</code>.
</p>
<p>Examples:
</p>
<p>By itself, <code>equal</code> does not evaluate or simplify.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) equal (x^2 - 1, (x + 1) * (x - 1));
                        2
(%o1)            equal(x  - 1, (x - 1) (x + 1))
(%i2) equal (x, x + 1);
(%o2)                    equal(x, x + 1)
(%i3) equal (x, y);
(%o3)                      equal(x, y)
</pre></td></tr></table>
<p>The function <code>is</code> attempts to evaluate <code>equal</code> to a Boolean value.
<code>is(equal(<var>a</var>, <var>b</var>))</code> returns <code>true</code> when <code>ratsimp(<var>a</var> - <var>b</var>)</code> returns 0.
Two expressions may be equivalent even if they are not syntactically equal (i.e., identical).
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) ratsimp (x^2 - 1 - (x + 1) * (x - 1));
(%o1)                           0
(%i2) is (equal (x^2 - 1, (x + 1) * (x - 1)));
(%o2)                         true
(%i3) is (x^2 - 1 = (x + 1) * (x - 1));
(%o3)                         false
(%i4) ratsimp (x - (x + 1));
(%o4)                          - 1
(%i5) is (equal (x, x + 1));
(%o5)                         false
(%i6) is (x = x + 1);
(%o6)                         false
(%i7) ratsimp (x - y);
(%o7)                         x - y
(%i8) is (equal (x, y));
Maxima was unable to evaluate the predicate:
equal(x, y)
 -- an error.  Quitting.  To debug this try debugmode(true);
(%i9) is (x = y);
(%o9)                         false
</pre></td></tr></table>
<p>When <code>is</code> fails to reduce <code>equal</code> to <code>true</code> or <code>false</code>,
the result is governed by the global flag <code>prederror</code>.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) [aa : x^2 + 2*x + 1, bb : x^2 - 2*x - 1];
                    2             2
(%o1)             [x  + 2 x + 1, x  - 2 x - 1]
(%i2) ratsimp (aa - bb);
(%o2)                        4 x + 2
(%i3) prederror : true;
(%o3)                         true
(%i4) is (equal (aa, bb));
Maxima was unable to evaluate the predicate:
       2             2
equal(x  + 2 x + 1, x  - 2 x - 1)
 -- an error.  Quitting.  To debug this try debugmode(true);
(%i5) prederror : false;
(%o5)                         false
(%i6) is (equal (aa, bb));
(%o6)                        unknown
</pre></td></tr></table>
<p>Some operators evaluate <code>equal</code> and <code>notequal</code> to <code>true</code> or <code>false</code>.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) if equal (a, b) then FOO else BAR;
Maxima was unable to evaluate the predicate:
equal(a, b)
 -- an error.  Quitting.  To debug this try debugmode(true);
(%i2) eq_1 : equal (x, x + 1);
(%o2)                    equal(x, x + 1)
(%i3) eq_2 : equal (y^2 + 2*y + 1, (y + 1)^2);
                         2                   2
(%o3)             equal(y  + 2 y + 1, (y + 1) )
(%i4) [eq_1 and eq_2, eq_1 or eq_2, not eq_1];
(%o4)                  [false, true, true]
</pre></td></tr></table>
<p>Because <code>not <var>expr</var></code> causes evaluation of <var>expr</var>,
<code>not equal(<var>a</var>, <var>b</var>)</code> is equivalent to <code>is(notequal(<var>a</var>, <var>b</var>))</code>.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) [notequal (2*z, 2*z - 1), not equal (2*z, 2*z - 1)];
(%o1)            [notequal(2 z, 2 z - 1), true]
(%i2) is (notequal (2*z, 2*z - 1));
(%o2)                         true
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>floor</b><i> (<var>x</var>)</i>
<a name="IDX77"></a>
</dt>
<dd><p>When <var>x</var> is a real number, return the largest integer that 
is less than or equal to <var>x</var>.
</p>
<p>If <var>x</var> is a constant expression (<code>10 * %pi</code>, for example), 
<code>floor</code> evaluates <var>x</var> using big floating point numbers, and 
applies floor to the resulting big float. Because floor uses
floating point evaluation, it's possible, although unlikely, 
that <code>floor</code> could return  an erroneous value for constant 
inputs.  To guard against errors, the floating point evaluation
is done using three values for <code>fpprec</code>.
</p>
<p>For non-constant inputs, <code>floor</code> tries to return a simplified
value.  Here are examples of the simplifications that <code>floor</code>
knows about:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) floor (ceiling (x));
(%o1)                      ceiling(x)
(%i2) floor (floor (x));
(%o2)                       floor(x)
(%i3) declare (n, integer)$
(%i4) [floor (n), floor (abs (n)), floor (min (n, 6))];
(%o4)                [n, abs(n), min(n, 6)]
(%i5) assume (x &gt; 0, x &lt; 1)$
(%i6) floor (x);
(%o6)                           0
(%i7) tex (floor (a));
$$\left \lfloor a \right \rfloor$$
(%o7)                         false
</pre></td></tr></table>
<p>The function <code>floor</code> does not automatically map over lists or matrices.
Finally, for all inputs that are manifestly complex, <code>floor</code> returns 
a noun form.
</p>
<p>If the range of a function is a subset of the integers, it can be
declared to be <code>integervalued</code>. Both the <code>ceiling</code> and <code>floor</code> functions
can use this information; for example:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) declare (f, integervalued)$
(%i2) floor (f(x));
(%o2)                         f(x)
(%i3) ceiling (f(x) - 1);
(%o3)                       f(x) - 1
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>notequal</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX78"></a>
</dt>
<dd><p>Represents the negation of <code>equal(<var>a</var>, <var>b</var>)</code>.
</p>
<p>Note that because of the rules for evaluation of predicate expressions
(in particular because <code>not <var>expr</var></code> causes evaluation of <var>expr</var>),
<code>not equal(<var>a</var>, <var>b</var>)</code>
is equivalent to <code>is(notequal(<var>a</var>, <var>b</var>))</code>
instead of <code>notequal(<var>a</var>, <var>b</var>)</code>.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) equal (a, b);
(%o1)                      equal(a, b)
(%i2) maybe (equal (a, b));
(%o2)                        unknown
(%i3) notequal (a, b);
(%o3)                    notequal(a, b)
(%i4) not equal (a, b);
Maxima was unable to evaluate the predicate:
equal(a, b)
 -- an error.  Quitting.  To debug this try debugmode(true);
(%i5) maybe (notequal (a, b));
(%o5)                        unknown
(%i6) maybe (not equal (a, b));
(%o6)                        unknown
(%i7) assume (a &gt; b);
(%o7)                        [a &gt; b]
(%i8) equal (a, b);
(%o8)                      equal(a, b)
(%i9) maybe (equal (a, b));
(%o9)                         false
(%i10) notequal (a, b);
(%o10)                   notequal(a, b)
(%i11) not equal (a, b);
(%o11)                        true
(%i12) maybe (notequal (a, b));
(%o12)                        true
(%i13) maybe (not equal (a, b));
(%o13)                        true
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Operator:</u> <b>eval</b>
<a name="IDX79"></a>
</dt>
<dd><p>As an argument in a call to <code>ev (<var>expr</var>)</code>,
<code>eval</code> causes an extra evaluation of <var>expr</var>.
See <code>ev</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>evenp</b><i> (<var>expr</var>)</i>
<a name="IDX80"></a>
</dt>
<dd><p>Returns <code>true</code> if <var>expr</var> is an even integer.
<code>false</code> is returned in all other cases.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>fix</b><i> (<var>x</var>)</i>
<a name="IDX81"></a>
</dt>
<dd><p>A synonym for <code>entier (<var>x</var>)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>fullmap</b><i> (<var>f</var>, <var>expr_1</var>, ...)</i>
<a name="IDX82"></a>
</dt>
<dd><p>Similar to <code>map</code>, but <code>fullmap</code> keeps mapping
down all subexpressions until the main operators are no longer the
same.
</p>
<p><code>fullmap</code> is used by the Maxima
simplifier for certain matrix manipulations; thus, Maxima sometimes generates
an error message concerning <code>fullmap</code> even though <code>fullmap</code> was not
explicitly called by the user.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) a + b * c;
(%o1)                        b c + a
(%i2) fullmap (g, %);
(%o2)                   g(b) g(c) + g(a)
(%i3) map (g, %th(2));
(%o3)                     g(b c) + g(a)
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>fullmapl</b><i> (<var>f</var>, <var>list_1</var>, ...)</i>
<a name="IDX83"></a>
</dt>
<dd><p>Similar to <code>fullmap</code>, but <code>fullmapl</code> only maps onto
lists and matrices.
</p>
<p>Example:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) fullmapl (&quot;+&quot;, [3, [4, 5]], [[a, 1], [0, -1.5]]);
(%o1)                [[a + 3, 4], [4, 3.5]]
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>is</b><i> (<var>expr</var>)</i>
<a name="IDX84"></a>
</dt>
<dd><p>Attempts to determine whether the predicate <var>expr</var> 
is provable from the facts in the <code>assume</code> database.
</p>
<p>If the predicate is provably <code>true</code> or <code>false</code>,
<code>is</code> returns <code>true</code> or <code>false</code>, respectively.
Otherwise, the return value is governed by the global flag <code>prederror</code>.
When <code>prederror</code> is <code>true</code>,
<code>is</code> complains with an error message.
Otherwise, <code>is</code> returns <code>unknown</code>.
</p>
<p><code>ev(<var>expr</var>, pred)</code>
(which can be written  <code><var>expr</var>, pred</code> at the interactive prompt)
is equivalent to <code>is(<var>expr</var>)</code>.
</p>
<p>See also <code>assume</code>, <code>facts</code>, and <code>maybe</code>.
</p>
<p>Examples:
</p>
<p><code>is</code> causes evaluation of predicates.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) %pi &gt; %e;
(%o1)                       %pi &gt; %e
(%i2) is (%pi &gt; %e);
(%o2)                         true
</pre></td></tr></table>
<p><code>is</code> attempts to derive predicates from the <code>assume</code> database.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) assume (a &gt; b);
(%o1)                        [a &gt; b]
(%i2) assume (b &gt; c);
(%o2)                        [b &gt; c]
(%i3) is (a &lt; b);
(%o3)                         false
(%i4) is (a &gt; c);
(%o4)                         true
(%i5) is (equal (a, c));
(%o5)                         false
</pre></td></tr></table>
<p>If <code>is</code> can neither prove nor disprove a predicate from the <code>assume</code> database,
the global flag <code>prederror</code> governs the behavior of <code>is</code>.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) assume (a &gt; b);
(%o1)                        [a &gt; b]
(%i2) prederror: true$
(%i3) is (a &gt; 0);
Maxima was unable to evaluate the predicate:
a &gt; 0
 -- an error.  Quitting.  To debug this try debugmode(true);
(%i4) prederror: false$
(%i5) is (a &gt; 0);
(%o5)                        unknown
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>maybe</b><i> (<var>expr</var>)</i>
<a name="IDX85"></a>
</dt>
<dd><p>Attempts to determine whether the predicate <var>expr</var> 
is provable from the facts in the <code>assume</code> database.
</p>
<p>If the predicate is provably <code>true</code> or <code>false</code>,
<code>maybe</code> returns <code>true</code> or <code>false</code>, respectively.
Otherwise, <code>maybe</code> returns <code>unknown</code>.
</p>
<p><code>maybe</code> is functionally equivalent to <code>is</code> with <code>prederror: false</code>,
but the result is computed without actually assigning a value to <code>prederror</code>.
</p>
<p>See also <code>assume</code>, <code>facts</code>, and <code>is</code>.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) maybe (x &gt; 0);
(%o1)                        unknown
(%i2) assume (x &gt; 1);
(%o2)                        [x &gt; 1]
(%i3) maybe (x &gt; 0);
(%o3)                         true
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>isqrt</b><i> (<var>x</var>)</i>
<a name="IDX86"></a>
</dt>
<dd><p>Returns the &quot;integer square root&quot;
of the absolute value of <var>x</var>,
which is an integer.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>lmax</b><i> (<var>L</var>)</i>
<a name="IDX87"></a>
</dt>
<dd><p>When <var>L</var> is a list or a set, return <code>apply ('max, args (<var>L</var>))</code>.  When <var>L</var> isn't a
list or a set, signal an error.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>lmin</b><i> (<var>L</var>)</i>
<a name="IDX88"></a>
</dt>
<dd><p>When <var>L</var> is a list or a set, return <code>apply ('min, args (<var>L</var>))</code>. When <var>L</var> isn't a
list or a set, signal an error.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>max</b><i> (<var>x_1</var>, ..., <var>x_n</var>)</i>
<a name="IDX89"></a>
</dt>
<dd><p>Return a simplified value for the maximum of the expressions <var>x_1</var> through <var>x_n</var>.
When <code>get (trylevel, maxmin)</code>, is 2 or greater, <code>max</code> uses the simplification 
<code>max (e, -e) --&gt; |e|</code>.  When <code>get (trylevel, maxmin)</code> is 3 or greater, <var>max</var> tries
to eliminate expressions that are between two other arguments; for example,
<code>max (x, 2*x, 3*x) --&gt; max (x, 3*x)</code>. To set the value of <code>trylevel</code> to 2, use
<code>put (trylevel, 2, maxmin)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>min</b><i> (<var>x_1</var>, ..., <var>x_n</var>)</i>
<a name="IDX90"></a>
</dt>
<dd><p>Return a simplified value for the minimum of the expressions <code>x_1</code> through <code>x_n</code>.
When <code>get (trylevel, maxmin)</code>, is 2 or greater, <code>min</code> uses the simplification 
<code>min (e, -e) --&gt; -|e|</code>.  When <code>get (trylevel, maxmin)</code> is 3 or greater, <code>min</code> tries
to eliminate expressions that are between two other arguments; for example,
<code>min (x, 2*x, 3*x) --&gt; min (x, 3*x)</code>. To set the value of <code>trylevel</code> to 2, use
<code>put (trylevel, 2, maxmin)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>polymod</b><i> (<var>p</var>)</i>
<a name="IDX91"></a>
</dt>
<dt><u>Function:</u> <b>polymod</b><i> (<var>p</var>, <var>m</var>)</i>
<a name="IDX92"></a>
</dt>
<dd><p>Converts the polynomial <var>p</var> to a modular representation
with respect to the current modulus which is the value of the variable
<code>modulus</code>.  
</p>
<p><code>polymod (<var>p</var>, <var>m</var>)</code> specifies a modulus <var>m</var> to be used 
instead of the current value of <code>modulus</code>.
</p>
<p>See <code>modulus</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>mod</b><i> (<var>x</var>, <var>y</var>)</i>
<a name="IDX93"></a>
</dt>
<dd><p>If <var>x</var> and <var>y</var> are real numbers and <var>y</var> is nonzero,
return <code><var>x</var> - <var>y</var> * floor(<var>x</var> / <var>y</var>)</code>.
Further for all real <var>x</var>, we have <code>mod (<var>x</var>, 0) = <var>x</var></code>. For a discussion of
the definition <code>mod (<var>x</var>, 0) = <var>x</var></code>, see Section 3.4, of &quot;Concrete Mathematics,&quot; 
by Graham, Knuth, and Patashnik. The function <code>mod (<var>x</var>, 1)</code> 
is a sawtooth function with period 1 with <code>mod (1, 1) = 0</code> and 
<code>mod (0, 1) = 0</code>.
</p>
<p>To find the principal argument (a number in the interval <code>(-%pi, %pi]</code>) of a 
complex number, use the function <code><var>x</var> |-&gt; %pi - mod (%pi - <var>x</var>, 2*%pi)</code>, where 
<var>x</var> is an argument.
</p>
<p>When <var>x</var> and <var>y</var> are constant expressions (<code>10 * %pi</code>, for example), <code>mod</code>
uses the same big float evaluation scheme that <code>floor</code> and <code>ceiling</code> uses.
Again, it's possible, although unlikely, that <code>mod</code> could return an
erroneous value in such cases.
</p>
<p>For nonnumerical arguments <var>x</var> or <var>y</var>, <code>mod</code> knows several simplification 
rules:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) mod (x, 0);
(%o1)                           x
(%i2) mod (a*x, a*y);
(%o2)                      a mod(x, y)
(%i3) mod (0, x);
(%o3)                           0
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>oddp</b><i> (<var>expr</var>)</i>
<a name="IDX94"></a>
</dt>
<dd><p>is <code>true</code> if <var>expr</var> is an odd integer.
<code>false</code> is returned in all other cases.
</p>
</dd></dl>

<dl>
<dt><u>Operator:</u> <b>pred</b>
<a name="IDX95"></a>
</dt>
<dd><p>As an argument in a call to <code>ev (<var>expr</var>)</code>,
<code>pred</code> causes predicates (expressions which evaluate to <code>true</code>
or <code>false</code>) to be evaluated.
See <code>ev</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>make_random_state</b><i> (<var>n</var>)</i>
<a name="IDX96"></a>
</dt>
<dt><u>Function:</u> <b>make_random_state</b><i> (<var>s</var>)</i>
<a name="IDX97"></a>
</dt>
<dt><u>Function:</u> <b>make_random_state</b><i> (true)</i>
<a name="IDX98"></a>
</dt>
<dt><u>Function:</u> <b>make_random_state</b><i> (false)</i>
<a name="IDX99"></a>
</dt>
<dd>
<p>A random state object represents the state of the random number generator.
The state comprises 627 32-bit words.
</p>
<p><code>make_random_state (<var>n</var>)</code> returns a new random state object
created from an integer seed value equal to <var>n</var> modulo 2^32.
<var>n</var> may be negative.
</p>

<p><code>make_random_state (<var>s</var>)</code> returns a copy of the random state <var>s</var>.
</p>
<p><code>make_random_state (true)</code> returns a new random state object,
using the current computer clock time as the seed.
</p>
<p><code>make_random_state (false)</code> returns a copy of the current state
of the random number generator.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>set_random_state</b><i> (<var>s</var>)</i>
<a name="IDX100"></a>
</dt>
<dd><p>Copies <var>s</var> to the random number generator state.
</p>
<p><code>set_random_state</code> always returns <code>done</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>random</b><i> (<var>x</var>)</i>
<a name="IDX101"></a>
</dt>
<dd><p>Returns a pseudorandom number. If <var>x</var> is an integer, <code>random (<var>x</var>)</code> returns an
integer from 0 through <code><var>x</var> - 1</code> inclusive. If <var>x</var> is a floating point number,
<code>random (<var>x</var>)</code> returns a nonnegative floating point number less than <var>x</var>.
<code>random</code> complains with an error if <var>x</var> is neither an integer nor a float,
or if <var>x</var> is not positive.
</p>
<p>The functions <code>make_random_state</code> and <code>set_random_state</code>
maintain the state of the random number generator.
</p>
<p>The Maxima random number generator is an implementation of the Mersenne twister MT 19937.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) s1: make_random_state (654321)$
(%i2) set_random_state (s1);
(%o2)                         done
(%i3) random (1000);
(%o3)                          768
(%i4) random (9573684);
(%o4)                        7657880
(%i5) random (2^75);
(%o5)                11804491615036831636390
(%i6) s2: make_random_state (false)$
(%i7) random (1.0);
(%o7)                   .2310127244107132
(%i8) random (10.0);
(%o8)                   4.394553645870825
(%i9) random (100.0);
(%o9)                   32.28666704056853
(%i10) set_random_state (s2);
(%o10)                        done
(%i11) random (1.0);
(%o11)                  .2310127244107132
(%i12) random (10.0);
(%o12)                  4.394553645870825
(%i13) random (100.0);
(%o13)                  32.28666704056853
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>rationalize</b><i> (<var>expr</var>)</i>
<a name="IDX102"></a>
</dt>
<dd><p>Convert all double floats and big floats in the Maxima expression
<var>expr</var> to their exact rational equivalents. If you are not familiar with
the binary representation of floating point numbers, you might
be surprised that <code>rationalize (0.1)</code> does not equal 1/10.  This behavior
isn't special to Maxima - the number 1/10 has a repeating, not a terminating,
binary representation.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) rationalize (0.5);
                                1
(%o1)                           -
                                2
(%i2) rationalize (0.1);
                               1
(%o2)                          --
                               10
(%i3) fpprec : 5$
(%i4) rationalize (0.1b0);
                             209715
(%o4)                        -------
                             2097152
(%i5) fpprec : 20$
(%i6) rationalize (0.1b0);
                     236118324143482260685
(%o6)                ----------------------
                     2361183241434822606848
(%i7) rationalize (sin (0.1*x + 5.6));
                              x    28
(%o7)                     sin(-- + --)
                              10   5
</pre></td></tr></table>
<p>Example use:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) unitfrac(r) := block([uf : [], q],
    if not(ratnump(r)) then error(&quot;The input to 'unitfrac' must be a rational number&quot;),
    while r # 0 do (
        uf : cons(q : 1/ceiling(1/r), uf),
        r : r - q),
    reverse(uf));
(%o1) unitfrac(r) := block([uf : [], q], 
if not ratnump(r) then error(&quot;The input to 'unitfrac' must be a rational number&quot;
                                     1
), while r # 0 do (uf : cons(q : ----------, uf), r : r - q), 
                                         1
                                 ceiling(-)
                                         r
reverse(uf))
(%i2) unitfrac (9/10);
                            1  1  1
(%o2)                      [-, -, --]
                            2  3  15
(%i3) apply (&quot;+&quot;, %);
                               9
(%o3)                          --
                               10
(%i4) unitfrac (-9/10);
                                  1
(%o4)                       [- 1, --]
                                  10
(%i5) apply (&quot;+&quot;, %);
                                9
(%o5)                         - --
                                10
(%i6) unitfrac (36/37);
                        1  1  1  1    1
(%o6)                  [-, -, -, --, ----]
                        2  3  8  69  6808
(%i7) apply (&quot;+&quot;, %);
                               36
(%o7)                          --
                               37
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>sign</b><i> (<var>expr</var>)</i>
<a name="IDX103"></a>
</dt>
<dd><p>Attempts to determine the sign of <var>expr</var>
on the basis of the facts in the current data base.  It returns one of
the following answers: <code>pos</code> (positive), <code>neg</code> (negative), <code>zero</code>, <code>pz</code>
(positive or zero), <code>nz</code> (negative or zero), <code>pn</code> (positive or negative),
or <code>pnz</code> (positive, negative, or zero, i.e. nothing known).
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>signum</b><i> (<var>x</var>)</i>
<a name="IDX104"></a>
</dt>
<dd><p>For numeric <var>x</var>, returns 0 if <var>x</var> is 0, otherwise returns -1 or +1
as <var>x</var> is less than or greater than 0, respectively.
</p>
<p>If <var>x</var> is not numeric then a simplified but equivalent form is returned.
For example, <code>signum(-x)</code> gives <code>-signum(x)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>sort</b><i> (<var>L</var>, <var>P</var>)</i>
<a name="IDX105"></a>
</dt>
<dt><u>Function:</u> <b>sort</b><i> (<var>L</var>)</i>
<a name="IDX106"></a>
</dt>
<dd><p>Sorts a list <var>L</var> according to a predicate <code>P</code> of two arguments,
such that <code><var>P</var> (<var>L</var>[k], <var>L</var>[k + 1])</code> is <code>true</code>
for any two successive elements.
The predicate may be specified as the name of a function or binary infix operator,
or as a <code>lambda</code> expression.
If specified as the name of an operator,
the name is enclosed in &quot;double quotes&quot;.
</p>
<p>The sorted list is returned as a new object;
the argument <var>L</var> is not modified.
To construct the return value,
<code>sort</code> makes a shallow copy of the elements of <var>L</var>.
</p>
<p>If the predicate <var>P</var> is not a total order on the elements of <var>L</var>,
then <code>sort</code> might run to completion without error,
but the result is undefined.
<code>sort</code> complains if the predicate evaluates to something other
than <code>true</code> or <code>false</code>.
</p>
<p><code>sort (<var>L</var>)</code> is equivalent to <code>sort (<var>L</var>, orderlessp)</code>.
That is, the default sorting order is ascending,
as determined by <code>orderlessp</code>.
All Maxima atoms and expressions are comparable under <code>orderlessp</code>,
although there are isolated examples of expressions for which <code>orderlessp</code> is not transitive;
this is a bug.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) sort ([11, -17, 29b0, 7.55, 3, -5/2, b + a, 9 * c, 19 - 3 * x]);
               5
(%o1) [- 17, - -, 3, 7.55, 11, 2.9b1, b + a, 9 c, 19 - 3 x]
               2
(%i2) sort ([11, -17, 29b0, 7.55, 3, -5/2, b + a, 9 * c, 19 - 3 * x], ordergreatp);
                                                   5
(%o2) [19 - 3 x, 9 c, b + a, 2.9b1, 11, 7.55, 3, - -, - 17]
                                                   2
(%i3) sort ([%pi, 3, 4, %e, %gamma]);
(%o3)                [3, 4, %e, %gamma, %pi]
(%i4) sort ([%pi, 3, 4, %e, %gamma], &quot;&lt;&quot;);
(%o4)                [%gamma, %e, 3, %pi, 4]
(%i5) my_list : [[aa, hh, uu], [ee, cc], [zz, xx, mm, cc], [%pi, %e]];
(%o5) [[aa, hh, uu], [ee, cc], [zz, xx, mm, cc], [%pi, %e]]
(%i6) sort (my_list);
(%o6) [[%pi, %e], [aa, hh, uu], [ee, cc], [zz, xx, mm, cc]]
(%i7) sort (my_list, lambda ([a, b], orderlessp (reverse (a), reverse (b))));
(%o7) [[%pi, %e], [ee, cc], [zz, xx, mm, cc], [aa, hh, uu]]
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>sqrt</b><i> (<var>x</var>)</i>
<a name="IDX107"></a>
</dt>
<dd><p>The square root of <var>x</var>. It is represented internally by
<code><var>x</var>^(1/2)</code>.  See also <code>rootscontract</code>.
</p>
<p><code>radexpand</code> if <code>true</code> will cause nth roots of factors of a product
which are powers of n to be pulled outside of the radical, e.g.
<code>sqrt(16*x^2)</code> will become <code>4*x</code> only if <code>radexpand</code> is <code>true</code>.
</p>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>sqrtdispflag</b>
<a name="IDX108"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>sqrtdispflag</code> is <code>false</code>,
causes <code>sqrt</code> to display with exponent 1/2.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>sublis</b><i> (<var>list</var>, <var>expr</var>)</i>
<a name="IDX109"></a>
</dt>
<dd><p>Makes multiple parallel substitutions into an expression.
</p>
<p>The variable <code>sublis_apply_lambda</code> controls simplification after
<code>sublis</code>.
</p>
<p>Example:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) sublis ([a=b, b=a], sin(a) + cos(b));
(%o1)                    sin(b) + cos(a)
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>sublist</b><i> (<var>list</var>, <var>p</var>)</i>
<a name="IDX110"></a>
</dt>
<dd><p>Returns the list of elements of <var>list</var> for which the
predicate <code>p</code> returns <code>true</code>.
</p>
<p>Example:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) L: [1, 2, 3, 4, 5, 6];
(%o1)                  [1, 2, 3, 4, 5, 6]
(%i2) sublist (L, evenp);
(%o2)                       [2, 4, 6]
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Option variable:</u> <b>sublis_apply_lambda</b>
<a name="IDX111"></a>
</dt>
<dd><p>Default value: <code>true</code> - controls whether <code>lambda</code>'s
substituted are applied in simplification after <code>sublis</code> is used or
whether you have to do an <code>ev</code> to get things to apply. <code>true</code> means do the
application.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>subst</b><i> (<var>a</var>, <var>b</var>, <var>c</var>)</i>
<a name="IDX112"></a>
</dt>
<dd><p>Substitutes <var>a</var> for <var>b</var> in <var>c</var>.  <var>b</var> must be an atom or a
complete subexpression of <var>c</var>.  For example, <code>x+y+z</code> is a complete
subexpression of <code>2*(x+y+z)/w</code> while <code>x+y</code> is not. When <var>b</var> does not have
these characteristics, one may sometimes use <code>substpart</code> or <code>ratsubst</code>
(see below).  Alternatively, if <var>b</var> is of the form <code>e/f</code> then one could
use <code>subst (a*f, e, c)</code> while if <var>b</var> is of the form <code>e^(1/f)</code> then one could
use <code>subst (a^f, e, c)</code>.  The <code>subst</code> command also discerns the <code>x^y</code> in <code>x^-y</code>
so that <code>subst (a, sqrt(x), 1/sqrt(x))</code> yields <code>1/a</code>.  <var>a</var> and <var>b</var> may also be
operators of an expression enclosed in double-quotes <code>&quot;</code> or they may be function
names.  If one wishes to substitute for the independent variable in
derivative forms then the <code>at</code> function (see below) should be used.
</p>
<p><code>subst</code> is an alias for <code>substitute</code>.
</p>
<p><code>subst (<var>eq_1</var>, <var>expr</var>)</code> or <code>subst ([<var>eq_1</var>, ..., <var>eq_k</var>], <var>expr</var>)</code>
are other permissible
forms.  The <var>eq_i</var> are equations indicating substitutions to be made.
For each equation, the right side will be substituted for the left in
the expression <var>expr</var>.
</p>
<p><code>exptsubst</code> if <code>true</code> permits substitutions
like <code>y</code> for <code>%e^x</code> in <code>%e^(a*x)</code> to take place.
</p>
<p>When <code>opsubst</code> is <code>false</code>,
<code>subst</code> will not attempt to substitute into the operator of an expression.
E.g. <code>(opsubst: false, subst (x^2, r, r+r[0]))</code> will work.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) subst (a, x+y, x + (x+y)^2 + y);
                                    2
(%o1)                      y + x + a
(%i2) subst (-%i, %i, a + b*%i);
(%o2)                       a - %i b
</pre></td></tr></table>

<p>For further examples, do <code>example (subst)</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>substinpart</b><i> (<var>x</var>, <var>expr</var>, <var>n_1</var>, ..., <var>n_k</var>)</i>
<a name="IDX113"></a>
</dt>
<dd><p>Similar to <code>substpart</code>, but <code>substinpart</code> works on the
internal representation of <var>expr</var>.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) x . 'diff (f(x), x, 2);
                              2
                             d
(%o1)                   x . (--- (f(x)))
                               2
                             dx
(%i2) substinpart (d^2, %, 2);
                                  2
(%o2)                        x . d
(%i3) substinpart (f1, f[1](x + 1), 0);
(%o3)                       f1(x + 1)
</pre></td></tr></table>
<p>If the last argument to a part function is a list of indices then
several subexpressions are picked out, each one corresponding to an
index of the list.  Thus
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) part (x + y + z, [1, 3]);
(%o1)                         z + x
</pre></td></tr></table>
<p><code>piece</code> holds the value of the last expression selected when using the
part functions.  It is set during the execution of the function and
thus may be referred to in the function itself as shown below.
If <code>partswitch</code> is set to <code>true</code> then <code>end</code> is returned when a
selected part of an expression doesn't exist, otherwise an error
message is given.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) expr: 27*y^3 + 54*x*y^2 + 36*x^2*y + y + 8*x^3 + x + 1;
              3         2       2            3
(%o1)     27 y  + 54 x y  + 36 x  y + y + 8 x  + x + 1
(%i2) part (expr, 2, [1, 3]);
                                  2
(%o2)                         54 y
(%i3) sqrt (piece/54);
(%o3)                        abs(y)
(%i4) substpart (factor (piece), expr, [1, 2, 3, 5]);
                               3
(%o4)               (3 y + 2 x)  + y + x + 1
(%i5) expr: 1/x + y/x - 1/z;
                             1   y   1
(%o5)                      - - + - + -
                             z   x   x
(%i6) substpart (xthru (piece), expr, [2, 3]);
                            y + 1   1
(%o6)                       ----- - -
                              x     z
</pre></td></tr></table>
<p>Also, setting the option <code>inflag</code> to <code>true</code> and calling <code>part</code> or <code>substpart</code> is 
the same as calling <code>inpart</code> or <code>substinpart</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>substpart</b><i> (<var>x</var>, <var>expr</var>, <var>n_1</var>, ..., <var>n_k</var>)</i>
<a name="IDX114"></a>
</dt>
<dd><p>Substitutes <var>x</var> for the subexpression
picked out by the rest of the arguments as in <code>part</code>.  It returns the
new value of <var>expr</var>.  <var>x</var> may be some operator to be substituted for an
operator of <var>expr</var>.  In some cases <var>x</var> needs to be enclosed in double-quotes <code>&quot;</code>
(e.g.  <code>substpart (&quot;+&quot;, a*b, 0)</code> yields <code>b + a</code>).
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) 1/(x^2 + 2);
                               1
(%o1)                        ------
                              2
                             x  + 2
(%i2) substpart (3/2, %, 2, 1, 2);
                               1
(%o2)                       --------
                             3/2
                            x    + 2
(%i3) a*x + f(b, y);
(%o3)                     a x + f(b, y)
(%i4) substpart (&quot;+&quot;, %, 1, 0);
(%o4)                    x + f(b, y) + a
</pre></td></tr></table>
<p>Also, setting the option <code>inflag</code> to <code>true</code> and calling <code>part</code> or <code>substpart</code> is 
the same as calling <code>inpart</code> or <code>substinpart</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>subvarp</b><i> (<var>expr</var>)</i>
<a name="IDX115"></a>
</dt>
<dd><p>Returns <code>true</code> if <var>expr</var> is a subscripted variable, for example
<code>a[i]</code>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>symbolp</b><i> (<var>expr</var>)</i>
<a name="IDX116"></a>
</dt>
<dd><p>Returns <code>true</code> if <var>expr</var> is a symbol, else <code>false</code>.
In effect, <code>symbolp(x)</code> is equivalent to the predicate <code>atom(x) and not numberp(x)</code>.
</p>
<p>See also <a href="maxima_6.html#SEC26">Identifiers</a>.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>unorder</b><i> ()</i>
<a name="IDX117"></a>
</dt>
<dd><p>Disables the aliasing created by the last use of the ordering
commands <code>ordergreat</code> and <code>orderless</code>. <code>ordergreat</code> and <code>orderless</code> may not
be used more than one time each without calling <code>unorder</code>. 
See also <code>ordergreat</code> and <code>orderless</code>.
</p>
<p>Examples:
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) unorder();
(%o1)                          []
(%i2) b*x + a^2;
                                   2
(%o2)                       b x + a
(%i3) ordergreat (a);
(%o3)                         done
(%i4) b*x + a^2;
 %th(1) - %th(3);
                             2
(%o4)                       a  + b x
(%i5) unorder();
                              2    2
(%o5)                        a  - a
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>vectorpotential</b><i> (<var>givencurl</var>)</i>
<a name="IDX118"></a>
</dt>
<dd><p>Returns the vector potential of a given
curl vector, in the current coordinate system.
<code>potentialzeroloc</code> has a similar role as for <code>potential</code>, but the order of
the left-hand sides of the equations must be a cyclic permutation of
the coordinate variables.
</p>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>xthru</b><i> (<var>expr</var>)</i>
<a name="IDX119"></a>
</dt>
<dd><p>Combines all terms of <var>expr</var> (which should be a sum) over a
common denominator without expanding products and exponentiated sums
as <code>ratsimp</code> does.  <code>xthru</code> cancels common factors in the numerator and
denominator of rational expressions but only if the factors are
explicit.
</p>
<p>Sometimes it is better to use <code>xthru</code> before <code>ratsimp</code>ing an
expression in order to cause explicit factors of the gcd of the
numerator and denominator to be canceled thus simplifying the
expression to be <code>ratsimp</code>ed.
</p>
<table><tr><td>&nbsp;</td><td><pre class="example">(%i1) ((x+2)^20 - 2*y)/(x+y)^20 + (x+y)^(-19) - x/(x+y)^20;
                                20
                 1       (x + 2)   - 2 y       x
(%o1)        --------- + --------------- - ---------
                    19             20             20
             (y + x)        (y + x)        (y + x)
(%i2) xthru (%);
                                 20
                          (x + 2)   - y
(%o2)                     -------------
                                   20
                            (y + x)
</pre></td></tr></table>
</dd></dl>

<dl>
<dt><u>Function:</u> <b>zeroequiv</b><i> (<var>expr</var>, <var>v</var>)</i>
<a name="IDX120"></a>
</dt>
<dd><p>Tests whether the expression <var>expr</var> in the variable
<var>v</var> is equivalent to zero, returning <code>true</code>, <code>false</code>, or
<code>dontknow</code>.
</p>
<p><code>zeroequiv</code> has these restrictions:
</p><ol>
<li>
Do not use functions that Maxima does not know how to
differentiate and evaluate.
</li><li>
If the expression has poles on the real line, there may be errors
in the result (but this is unlikely to occur).
</li><li>
If the expression contains functions which are not solutions to
first order differential equations (e.g.  Bessel functions) there may
be incorrect results.
</li><li>
The algorithm uses evaluation at randomly chosen points for
carefully selected subexpressions.  This is always a somewhat
hazardous business, although the algorithm tries to minimize the
potential for error.
</li></ol>

<p>For example <code>zeroequiv (sin(2*x) - 2*sin(x)*cos(x), x)</code> returns
<code>true</code> and <code>zeroequiv (%e^x + x, x)</code> returns <code>false</code>.
On the other hand <code>zeroequiv (log(a*b) - log(a) - log(b), a)</code> returns <code>dontknow</code> because
of the presence of an extra parameter <code>b</code>.
</p>
</dd></dl>

<hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC14" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
 <font size="-1">
  This document was generated by <em>Robert Dodier</em> on <em>September, 20 2006</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
 </font>
 <br>

</p>
</body>
</html>