1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on September, 20 2006 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
Karl Berry <karl@freefriends.org>
Olaf Bachmann <obachman@mathematik.uni-kl.de>
and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>
-->
<head>
<title>Maxima Manual: 5. Operators</title>
<meta name="description" content="Maxima Manual: 5. Operators">
<meta name="keywords" content="Maxima Manual: 5. Operators">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
color: black;
background: white;
margin-left: 8%;
margin-right: 13%;
}
h1
{
margin-left: +8%;
font-size: 150%;
font-family: sans-serif
}
h2
{
font-size: 125%;
font-family: sans-serif
}
h3
{
font-size: 100%;
font-family: sans-serif
}
h2,h3,h4,h5,h6 { margin-left: +4%; }
div.textbox
{
border: solid;
border-width: thin;
/* width: 100%; */
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em
}
div.titlebox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(200,255,255);
font-family: sans-serif
}
div.synopsisbox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(255,220,255);
/*background: rgb(200,255,255); */
/* font-family: fixed */
}
pre.example
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 1em;
padding-right: 1em;
background: rgb(247,242,180); /* kind of sandy */
/* background: rgb(200,255,255); */ /* sky blue */
font-family: "Lucida Console", monospace
}
div.spacerbox
{
border: none;
padding-top: 2em;
padding-bottom: 2em
}
div.image
{
margin: 0;
padding: 1em;
text-align: center;
}
-->
</style>
<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Operators"></a>
<a name="SEC14"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="maxima_4.html#SEC13" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC15" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima_4.html#SEC11" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="chapter"> 5. Operators </h1>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#SEC15">5.1 nary</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC16">5.2 nofix</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC17">5.3 operator</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC18">5.4 postfix</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC19">5.5 prefix</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC20">5.6 Definitions for Operators</a></td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr size="6">
<a name="nary"></a>
<a name="SEC15"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC14" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC16" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC14" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC14" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 5.1 nary </h2>
<p>An <code>nary</code> operator is used to denote a function of any number of
arguments, each of which is separated by an occurrence of the
operator, e.g. A+B or A+B+C. The <code>nary("x")</code> function is a syntax
extension function to declare x to be an <code>nary</code> operator.
Functions may be declared to be
<code>nary</code>. If <code>declare(j,nary);</code> is done, this tells the simplifier to
simplify, e.g. <code>j(j(a,b),j(c,d))</code> to <code>j(a, b, c, d)</code>.
</p>
<p>See also <code>syntax</code>.
</p>
<hr size="6">
<a name="nofix"></a>
<a name="SEC16"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC15" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC17" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC14" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC14" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 5.2 nofix </h2>
<p><code>nofix</code> operators are used to denote functions of no arguments.
The mere presence of such an operator in a command will cause the
corresponding function to be evaluated. For example, when one types
"exit;" to exit from a Maxima break, "exit" is behaving similar to a
<code>nofix</code> operator. The function <code>nofix("x")</code> is a syntax extension
function which declares x to be a <code>nofix</code> operator.
</p>
<p>See also <code>syntax</code>.
</p>
<hr size="6">
<a name="operator"></a>
<a name="SEC17"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC16" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC18" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC14" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC14" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 5.3 operator </h2>
<p>See <code>operators</code>.
</p>
<hr size="6">
<a name="postfix"></a>
<a name="SEC18"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC17" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC19" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC14" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC14" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 5.4 postfix </h2>
<p><code>postfix</code> operators like the <code>prefix</code> variety denote functions
of a single argument, but in this case the argument immediately
precedes an occurrence of the operator in the input string, e.g. 3! .
The <code>postfix("x")</code> function is a syntax extension function to declare x
to be a <code>postfix</code> operator.
</p>
<p>See also <code>syntax</code>.
</p>
<hr size="6">
<a name="prefix"></a>
<a name="SEC19"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC18" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC20" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC14" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC14" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 5.5 prefix </h2>
<p>A <code>prefix</code> operator is one which signifies a function of one
argument, which argument immediately follows an occurrence of the
operator. <code>prefix("x")</code> is a syntax extension function to declare x to
be a <code>prefix</code> operator.
</p>
<p>See also <code>syntax</code>.
</p>
<hr size="6">
<a name="Definitions-for-Operators"></a>
<a name="SEC20"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC19" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC14" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC14" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 5.6 Definitions for Operators </h2>
<dl>
<dt><u>Operator:</u> <b>!</b>
<a name="IDX54"></a>
</dt>
<dd><p>The factorial operator.
For any complex number <code>x</code> (including integer, rational, and real numbers) except for
negative integers, <code>x!</code> is defined as <code>gamma(x+1)</code>.
</p>
<p>For an integer <code>x</code>, <code>x!</code> simplifies to the product of the integers from 1 to <code>x</code> inclusive.
<code>0!</code> simplifies to 1.
For a floating point number <code>x</code>, <code>x!</code> simplifies to the value of <code>gamma (x+1)</code>.
For <code>x</code> equal to <code>n/2</code> where <code>n</code> is an odd integer,
<code>x!</code> simplifies to a rational factor times <code>sqrt (%pi)</code>
(since <code>gamma (1/2)</code> is equal to <code>sqrt (%pi)</code>).
If <code>x</code> is anything else,
<code>x!</code> is not simplified.
</p>
<p>The variables
<code>factlim</code>, <code>minfactorial</code>, and <code>factcomb</code> control the simplification
of expressions containing factorials.
</p>
<p>The functions <code>gamma</code>, <code>bffac</code>, and <code>cbffac</code>
are varieties of the gamma function.
<code>makegamma</code> substitutes <code>gamma</code> for factorials and related functions.
</p>
<p>See also <code>binomial</code>.
</p>
<p>The factorial of an integer, half-integer, or floating point argument is simplified
unless the operand is greater than <code>factlim</code>.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) factlim : 10;
(%o1) 10
(%i2) [0!, (7/2)!, 4.77!, 8!, 20!];
105 sqrt(%pi)
(%o2) [1, -------------, 81.44668037931199, 40320, 20!]
16
</pre></td></tr></table>
<p>The factorial of a complex number, known constant, or general expression is not simplified.
Even so it may be possible simplify the factorial after evaluating the operand.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) [(%i + 1)!, %pi!, %e!, (cos(1) + sin(1))!];
(%o1) [(%i + 1)!, %pi!, %e!, (sin(1) + cos(1))!]
(%i2) ev (%, numer, %enumer);
(%o2) [(%i + 1)!, 7.188082728976037, 4.260820476357,
1.227580202486819]
</pre></td></tr></table>
<p>The factorial of an unbound symbol is not simplified.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) kill (foo);
(%o1) done
(%i2) foo!;
(%o2) foo!
</pre></td></tr></table>
<p>Factorials are simplified, not evaluated.
Thus <code>x!</code> may be replaced even in a quoted expression.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) '([0!, (7/2)!, 4.77!, 8!, 20!]);
105 sqrt(%pi)
(%o1) [1, -------------, 81.44668037931199, 40320,
16
2432902008176640000]
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Operator:</u> <b>!!</b>
<a name="IDX55"></a>
</dt>
<dd><p>The double factorial operator.
</p>
<p>For an integer, float, or rational number <code>n</code>,
<code>n!!</code> evaluates to the product <code>n (n-2) (n-4) (n-6) ... (n - 2 (k-1))</code>
where <code>k</code> is equal to <code>entier (n/2)</code>,
that is, the largest integer less than or equal to <code>n/2</code>.
Note that this definition does not coincide with other published definitions
for arguments which are not integers.
</p>
<p>For an even (or odd) integer <code>n</code>, <code>n!!</code> evaluates to the product of
all the consecutive even (or odd) integers from 2 (or 1) through <code>n</code> inclusive.
</p>
<p>For an argument <code>n</code> which is not an integer, float, or rational,
<code>n!!</code> yields a noun form <code>genfact (n, n/2, 2)</code>.
</p>
</dd></dl>
<dl>
<dt><u>Operator:</u> <b>#</b>
<a name="IDX56"></a>
</dt>
<dd><p>Represents the negation of syntactic equality <code>=</code>.
</p>
<p>Note that because of the rules for evaluation of predicate expressions
(in particular because <code>not <var>expr</var></code> causes evaluation of <var>expr</var>),
<code>not <var>a</var> = <var>b</var></code> is equivalent to <code>is(<var>a</var> # <var>b</var>)</code>,
instead of <code><var>a</var> # <var>b</var></code>.
</p>
<p>Examples:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) a = b;
(%o1) a = b
(%i2) is (a = b);
(%o2) false
(%i3) a # b;
(%o3) a # b
(%i4) not a = b;
(%o4) true
(%i5) is (a # b);
(%o5) true
(%i6) is (not a = b);
(%o6) true
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Operator:</u> <b>.</b>
<a name="IDX57"></a>
</dt>
<dd><p>The dot operator, for matrix (non-commutative) multiplication.
When "." is used in this way, spaces should be left on both sides of
it, e.g. A . B. This distinguishes it plainly from a decimal point in
a floating point number.
</p>
<p>See also
<code>dot</code>,
<code>dot0nscsimp</code>,
<code>dot0simp</code>,
<code>dot1simp</code>,
<code>dotassoc</code>,
<code>dotconstrules</code>,
<code>dotdistrib</code>,
<code>dotexptsimp</code>,
<code>dotident</code>,
and
<code>dotscrules</code>.
</p>
</dd></dl>
<dl>
<dt><u>Operator:</u> <b>:</b>
<a name="IDX58"></a>
</dt>
<dd><p>The assignment operator. E.g. A:3 sets the variable A to 3.
</p>
</dd></dl>
<dl>
<dt><u>Operator:</u> <b>::</b>
<a name="IDX59"></a>
</dt>
<dd><p>Assignment operator. :: assigns the value of the expression
on its right to the value of the quantity on its left, which must
evaluate to an atomic variable or subscripted variable.
</p>
</dd></dl>
<dl>
<dt><u>Operator:</u> <b>::=</b>
<a name="IDX60"></a>
</dt>
<dd><p>Macro function definition operator.
<code>::=</code> defines a function (called a "macro" for historical reasons)
which quotes its arguments,
and the expression which it returns (called the "macro expansion")
is evaluated in the context from which the macro was called.
A macro function is otherwise the same as an ordinary function.
</p>
<p><code>macroexpand</code> returns a macro expansion (without evaluating it).
<code>macroexpand (foo (x))</code> followed by <code>''%</code> is equivalent to <code>foo (x)</code>
when <code>foo</code> is a macro function.
</p>
<p><code>::=</code> puts the name of the new macro function onto the global list <code>macros</code>.
<code>kill</code>, <code>remove</code>, and <code>remfunction</code> unbind macro function definitions
and remove names from <code>macros</code>.
</p>
<p><code>fundef</code> or <code>dispfun</code> return a macro function definition
or assign it to a label, respectively.
</p>
<p>Macro functions commonly contain <code>buildq</code> and <code>splice</code>
expressions to construct an expression,
which is then evaluated.
</p>
<p>Examples
</p>
<p>A macro function quotes its arguments,
so message (1) shows <code>y - z</code>, not the value of <code>y - z</code>.
The macro expansion (the quoted expression <code>'(print ("(2) x is equal to", x))</code>
is evaluated in the context from which the macro was called,
printing message (2).
</p>
<table><tr><td> </td><td><pre class="example">(%i1) x: %pi;
(%o1) %pi
(%i2) y: 1234;
(%o2) 1234
(%i3) z: 1729 * w;
(%o3) 1729 w
(%i4) printq1 (x) ::= block (print ("(1) x is equal to", x), '(print ("(2) x is equal to", x)));
(%o4) printq1(x) ::= block(print("(1) x is equal to", x),
'(print("(2) x is equal to", x)))
(%i5) printq1 (y - z);
(1) x is equal to y - z
(2) x is equal to %pi
(%o5) %pi
</pre></td></tr></table>
<p>An ordinary function evaluates is arguments, so message (1) shows the value of <code>y - z</code>.
The return value is not evaluated, so message (2) is not printed
until the explicit evaluation <code>''%</code>.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) x: %pi;
(%o1) %pi
(%i2) y: 1234;
(%o2) 1234
(%i3) z: 1729 * w;
(%o3) 1729 w
(%i4) printe1 (x) := block (print ("(1) x is equal to", x), '(print ("(2) x is equal to", x)));
(%o4) printe1(x) := block(print("(1) x is equal to", x),
'(print("(2) x is equal to", x)))
(%i5) printe1 (y - z);
(1) x is equal to 1234 - 1729 w
(%o5) print((2) x is equal to, x)
(%i6) ''%;
(2) x is equal to %pi
(%o6) %pi
</pre></td></tr></table>
<p><code>macroexpand</code> returns a macro expansion.
<code>macroexpand (foo (x))</code> followed by <code>''%</code> is equivalent to <code>foo (x)</code>
when <code>foo</code> is a macro function.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) x: %pi;
(%o1) %pi
(%i2) y: 1234;
(%o2) 1234
(%i3) z: 1729 * w;
(%o3) 1729 w
(%i4) g (x) ::= buildq ([x], print ("x is equal to", x));
(%o4) g(x) ::= buildq([x], print("x is equal to", x))
(%i5) macroexpand (g (y - z));
(%o5) print(x is equal to, y - z)
(%i6) ''%;
x is equal to 1234 - 1729 w
(%o6) 1234 - 1729 w
(%i7) g (y - z);
x is equal to 1234 - 1729 w
(%o7) 1234 - 1729 w
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Operator:</u> <b>:=</b>
<a name="IDX61"></a>
</dt>
<dd><p>The function definition operator. E.g. <code>f(x):=sin(x)</code> defines
a function <code>f</code>.
</p>
</dd></dl>
<dl>
<dt><u>Operator:</u> <b>=</b>
<a name="IDX62"></a>
</dt>
<dd><p>The equation operator.
</p>
<p>An expression <code><var>a</var> = <var>b</var></code>, by itself, represents
an unevaluated equation, which might or might not hold.
Unevaluated equations may appear as arguments to <code>solve</code> and <code>algsys</code>
or some other functions.
</p>
<p>The function <code>is</code> evaluates <code>=</code> to a Boolean value.
<code>is(<var>a</var> = <var>b</var>)</code> evaluates <code><var>a</var> = <var>b</var></code> to <code>true</code> when <var>a</var> and <var>b</var>
are identical. That is, <var>a</var> and <var>b</var> are atoms which are identical,
or they are not atoms and their operators are identical and their arguments are identical.
Otherwise, <code>is(<var>a</var> = <var>b</var>)</code> evaluates to <code>false</code>;
it never evaluates to <code>unknown</code>.
When <code>is(<var>a</var> = <var>b</var>)</code> is <code>true</code>, <var>a</var> and <var>b</var> are said to be syntactically equal,
in contrast to equivalent expressions, for which <code>is(equal(<var>a</var>, <var>b</var>))</code> is <code>true</code>.
Expressions can be equivalent and not syntactically equal.
</p>
<p>The negation of <code>=</code> is represented by <code>#</code>.
As with <code>=</code>, an expression <code><var>a</var> # <var>b</var></code>, by itself, is not evaluated.
<code>is(<var>a</var> # <var>b</var>)</code> evaluates <code><var>a</var> # <var>b</var></code> to
<code>true</code> or <code>false</code>.
</p>
<p>In addition to <code>is</code>,
some other operators evaluate <code>=</code> and <code>#</code> to <code>true</code> or <code>false</code>,
namely <code>if</code>, <code>and</code>, <code>or</code>, and <code>not</code>.
</p>
<p>Note that because of the rules for evaluation of predicate expressions
(in particular because <code>not <var>expr</var></code> causes evaluation of <var>expr</var>),
<code>not <var>a</var> = <var>b</var></code> is equivalent to <code>is(<var>a</var> # <var>b</var>)</code>,
instead of <code><var>a</var> # <var>b</var></code>.
</p>
<p><code>rhs</code> and <code>lhs</code> return the right-hand and left-hand sides,
respectively, of an equation or inequation.
</p>
<p>See also <code>equal</code> and <code>notequal</code>.
</p>
<p>Examples:
</p>
<p>An expression <code><var>a</var> = <var>b</var></code>, by itself, represents
an unevaluated equation, which might or might not hold.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) eq_1 : a * x - 5 * y = 17;
(%o1) a x - 5 y = 17
(%i2) eq_2 : b * x + 3 * y = 29;
(%o2) 3 y + b x = 29
(%i3) solve ([eq_1, eq_2], [x, y]);
196 29 a - 17 b
(%o3) [[x = ---------, y = -----------]]
5 b + 3 a 5 b + 3 a
(%i4) subst (%, [eq_1, eq_2]);
196 a 5 (29 a - 17 b)
(%o4) [--------- - --------------- = 17,
5 b + 3 a 5 b + 3 a
196 b 3 (29 a - 17 b)
--------- + --------------- = 29]
5 b + 3 a 5 b + 3 a
(%i5) ratsimp (%);
(%o5) [17 = 17, 29 = 29]
</pre></td></tr></table>
<p><code>is(<var>a</var> = <var>b</var>)</code> evaluates <code><var>a</var> = <var>b</var></code> to <code>true</code> when <var>a</var> and <var>b</var>
are syntactically equal (that is, identical).
Expressions can be equivalent and not syntactically equal.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) a : (x + 1) * (x - 1);
(%o1) (x - 1) (x + 1)
(%i2) b : x^2 - 1;
2
(%o2) x - 1
(%i3) [is (a = b), is (a # b)];
(%o3) [false, true]
(%i4) [is (equal (a, b)), is (notequal (a, b))];
(%o4) [true, false]
</pre></td></tr></table>
<p>Some operators evaluate <code>=</code> and <code>#</code> to <code>true</code> or <code>false</code>.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) if expand ((x + y)^2) = x^2 + 2 * x * y + y^2 then FOO else BAR;
(%o1) FOO
(%i2) eq_3 : 2 * x = 3 * x;
(%o2) 2 x = 3 x
(%i3) eq_4 : exp (2) = %e^2;
2 2
(%o3) %e = %e
(%i4) [eq_3 and eq_4, eq_3 or eq_4, not eq_3];
(%o4) [false, true, true]
</pre></td></tr></table>
<p>Because <code>not <var>expr</var></code> causes evaluation of <var>expr</var>,
<code>not <var>a</var> = <var>b</var></code> is equivalent to <code>is(<var>a</var> # <var>b</var>)</code>.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) [2 * x # 3 * x, not (2 * x = 3 * x)];
(%o1) [2 x # 3 x, true]
(%i2) is (2 * x # 3 * x);
(%o2) true
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Operator:</u> <b>and</b>
<a name="IDX63"></a>
</dt>
<dd><p>The logical conjunction operator.
<code>and</code> is an n-ary infix operator;
its operands are Boolean expressions, and its result is a Boolean value.
</p>
<p><code>and</code> forces evaluation (like <code>is</code>) of one or more operands,
and may force evaluation of all operands.
</p>
<p>Operands are evaluated in the order in which they appear.
<code>and</code> evaluates only as many of its operands as necessary to determine the result.
If any operand is <code>false</code>,
the result is <code>false</code> and no further operands are evaluated.
</p>
<p>The global flag <code>prederror</code> governs the behavior of <code>and</code>
when an evaluated operand cannot be determined to be <code>true</code> or <code>false</code>.
<code>and</code> prints an error message when <code>prederror</code> is <code>true</code>.
Otherwise, <code>and</code> returns <code>unknown</code>.
</p>
<p><code>and</code> is not commutative:
<code>a and b</code> might not be equal to <code>b and a</code> due to the treatment of indeterminate operands.
</p>
</dd></dl>
<dl>
<dt><u>Operator:</u> <b>or</b>
<a name="IDX64"></a>
</dt>
<dd><p>The logical disjunction operator.
<code>or</code> is an n-ary infix operator;
its operands are Boolean expressions, and its result is a Boolean value.
</p>
<p><code>or</code> forces evaluation (like <code>is</code>) of one or more operands,
and may force evaluation of all operands.
</p>
<p>Operands are evaluated in the order in which they appear.
<code>or</code> evaluates only as many of its operands as necessary to determine the result.
If any operand is <code>true</code>,
the result is <code>true</code> and no further operands are evaluated.
</p>
<p>The global flag <code>prederror</code> governs the behavior of <code>or</code>
when an evaluated operand cannot be determined to be <code>true</code> or <code>false</code>.
<code>or</code> prints an error message when <code>prederror</code> is <code>true</code>.
Otherwise, <code>or</code> returns <code>unknown</code>.
</p>
<p><code>or</code> is not commutative:
<code>a or b</code> might not be equal to <code>b or a</code> due to the treatment of indeterminate operands.
</p>
</dd></dl>
<dl>
<dt><u>Operator:</u> <b>not</b>
<a name="IDX65"></a>
</dt>
<dd><p>The logical negation operator.
<code>not</code> is a prefix operator;
its operand is a Boolean expression, and its result is a Boolean value.
</p>
<p><code>not</code> forces evaluation (like <code>is</code>) of its operand.
</p>
<p>The global flag <code>prederror</code> governs the behavior of <code>not</code>
when its operand cannot be determined to be <code>true</code> or <code>false</code>.
<code>not</code> prints an error message when <code>prederror</code> is <code>true</code>.
Otherwise, <code>not</code> returns <code>unknown</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>abs</b><i> (<var>expr</var>)</i>
<a name="IDX66"></a>
</dt>
<dd><p>Returns the absolute value <var>expr</var>. If <var>expr</var> is complex, returns the complex
modulus of <var>expr</var>.
</p>
</dd></dl>
<dl>
<dt><u>Keyword:</u> <b>additive</b>
<a name="IDX67"></a>
</dt>
<dd><p>If <code>declare(f,additive)</code> has been executed, then:
</p>
<p>(1) If <code>f</code> is univariate, whenever the simplifier encounters <code>f</code> applied
to a sum, <code>f</code> will be distributed over that sum. I.e. <code>f(y+x)</code> will
simplify to <code>f(y)+f(x)</code>.
</p>
<p>(2) If <code>f</code> is a function of 2 or more arguments, additivity is defined as
additivity in the first argument to <code>f</code>, as in the case of <code>sum</code> or
<code>integrate</code>, i.e. <code>f(h(x)+g(x),x)</code> will simplify to <code>f(h(x),x)+f(g(x),x)</code>.
This simplification does not occur when <code>f</code> is applied to expressions of
the form <code>sum(x[i],i,lower-limit,upper-limit)</code>.
</p>
</dd></dl>
<dl>
<dt><u>Keyword:</u> <b>allbut</b>
<a name="IDX68"></a>
</dt>
<dd><p>works with the <code>part</code> commands (i.e. <code>part</code>, <code>inpart</code>, <code>substpart</code>,
<code>substinpart</code>, <code>dpart</code>, and <code>lpart</code>). For example,
</p>
<table><tr><td> </td><td><pre class="example">(%i1) expr : e + d + c + b + a;
(%o1) e + d + c + b + a
(%i2) part (expr, [2, 5]);
(%o2) d + a
</pre></td></tr></table>
<p>while
</p>
<table><tr><td> </td><td><pre class="example">(%i1) expr : e + d + c + b + a;
(%o1) e + d + c + b + a
(%i2) part (expr, allbut (2, 5));
(%o2) e + c + b
</pre></td></tr></table>
<p><code>allbut</code> is also recognized by <code>kill</code>.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) [aa : 11, bb : 22, cc : 33, dd : 44, ee : 55];
(%o1) [11, 22, 33, 44, 55]
(%i2) kill (allbut (cc, dd));
(%o0) done
(%i1) [aa, bb, cc, dd];
(%o1) [aa, bb, 33, 44]
</pre></td></tr></table>
<p><code>kill(allbut(<var>a_1</var>, <var>a_2</var>, ...))</code> has the effect of <code>kill(all)</code>
except that it does not kill the symbols <var>a_1</var>, <var>a_2</var>, ... .
</p>
</dd></dl>
<dl>
<dt><u>Declaration:</u> <b>antisymmetric</b>
<a name="IDX69"></a>
</dt>
<dd><p>If <code>declare(h,antisymmetric)</code> is done, this tells the
simplifier that <code>h</code> is antisymmetric. E.g. <code>h(x,z,y)</code> will simplify to
<code>- h(x, y, z)</code>. That is, it will give (-1)^n times the result given by
<code>symmetric</code> or <code>commutative</code>, where n is the number of interchanges of two
arguments necessary to convert it to that form.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>cabs</b><i> (<var>expr</var>)</i>
<a name="IDX70"></a>
</dt>
<dd><p>Returns the complex absolute value (the complex modulus) of
<var>expr</var>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>ceiling</b><i> (<var>x</var>)</i>
<a name="IDX71"></a>
</dt>
<dd><p>When <var>x</var> is a real number, return the least integer that
is greater than or equal to <var>x</var>.
</p>
<p>If <var>x</var> is a constant expression (<code>10 * %pi</code>, for example),
<code>ceiling</code> evaluates <var>x</var> using big floating point numbers, and
applies <code>ceiling</code> to the resulting big float. Because <code>ceiling</code> uses
floating point evaluation, it's possible, although unlikely,
that <code>ceiling</code> could return an erroneous value for constant
inputs. To guard against errors, the floating point evaluation
is done using three values for <code>fpprec</code>.
</p>
<p>For non-constant inputs, <code>ceiling</code> tries to return a simplified
value. Here are examples of the simplifications that <code>ceiling</code>
knows about:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) ceiling (ceiling (x));
(%o1) ceiling(x)
(%i2) ceiling (floor (x));
(%o2) floor(x)
(%i3) declare (n, integer)$
(%i4) [ceiling (n), ceiling (abs (n)), ceiling (max (n, 6))];
(%o4) [n, abs(n), max(n, 6)]
(%i5) assume (x > 0, x < 1)$
(%i6) ceiling (x);
(%o6) 1
(%i7) tex (ceiling (a));
$$\left \lceil a \right \rceil$$
(%o7) false
</pre></td></tr></table>
<p>The function <code>ceiling</code> does not automatically map over lists or matrices.
Finally, for all inputs that are manifestly complex, <code>ceiling</code> returns
a noun form.
</p>
<p>If the range of a function is a subset of the integers, it can be
declared to be <code>integervalued</code>. Both the <code>ceiling</code> and <code>floor</code> functions
can use this information; for example:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) declare (f, integervalued)$
(%i2) floor (f(x));
(%o2) f(x)
(%i3) ceiling (f(x) - 1);
(%o3) f(x) - 1
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>charfun</b><i> (<var>p</var>)</i>
<a name="IDX72"></a>
</dt>
<dd><p>Return 0 when the predicate <var>p</var> evaluates to <code>false</code>; return
1 when the predicate evaluates to <code>true</code>. When the predicate
evaluates to something other than <code>true</code> or <code>false</code> (unknown),
return a noun form.
</p>
<p>Examples:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) charfun (x < 1);
(%o1) charfun(x < 1)
(%i2) subst (x = -1, %);
(%o2) 1
(%i3) e : charfun ('"and" (-1 < x, x < 1))$
(%i4) [subst (x = -1, e), subst (x = 0, e), subst (x = 1, e)];
(%o4) [0, 1, 0]
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Declaration:</u> <b>commutative</b>
<a name="IDX73"></a>
</dt>
<dd><p>If <code>declare(h,commutative)</code> is done, this tells the
simplifier that <code>h</code> is a commutative function. E.g. <code>h(x,z,y)</code> will
simplify to <code>h(x, y, z)</code>. This is the same as <code>symmetric</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>compare</b><i> (<var>x</var>, <var>y</var>)</i>
<a name="IDX74"></a>
</dt>
<dd><p>Return a comparison operator <var>op</var>
(<code><</code>, <code><=</code>, <code>></code>, <code>>=</code>, <code>=</code>, or <code>#</code>) such that
<code>is (<var>x</var> <var>op</var> <var>y</var>)</code> evaluates to true;
when either <var>x</var> or <var>y</var> depends on <code>%i</code> and
<code><var>x</var> # <var>y</var></code>, return <code>notcomparable</code>;
when there is no such operator or
Maxima isn't able to determine the operator, return <code>unknown</code>.
</p>
<p>Examples:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) compare (1, 2);
(%o1) <
(%i2) compare (1, x);
(%o2) unknown
(%i3) compare (%i, %i);
(%o3) =
(%i4) compare (%i, %i + 1);
(%o4) notcomparable
(%i5) compare (1/x, 0);
(%o5) #
(%i6) compare (x, abs(x));
(%o6) <=
</pre></td></tr></table>
<p>The function <code>compare</code> doesn't try to determine whether the real domains of
its arguments are nonempty; thus
</p>
<table><tr><td> </td><td><pre class="example">(%i1) compare (acos (x^2 + 1), acos (x^2 + 1) + 1);
(%o1) <
</pre></td></tr></table>
<p>The real domain of <code>acos (x^2 + 1)</code> is empty.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>entier</b><i> (<var>x</var>)</i>
<a name="IDX75"></a>
</dt>
<dd><p>Returns the largest integer less than or equal to <var>x</var> where <var>x</var> is numeric. <code>fix</code> (as in
<code>fixnum</code>) is a synonym for this, so <code>fix(<var>x</var>)</code> is precisely the same.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>equal</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX76"></a>
</dt>
<dd><p>Represents equivalence, that is, equal value.
</p>
<p>By itself, <code>equal</code> does not evaluate or simplify.
The function <code>is</code> attempts to evaluate <code>equal</code> to a Boolean value.
<code>is(equal(<var>a</var>, <var>b</var>))</code>
returns <code>true</code> (or <code>false</code>) if
and only if <var>a</var> and <var>b</var> are equal (or not equal) for all possible
values of their variables, as determined by evaluating <code>ratsimp(<var>a</var> - <var>b</var>)</code>;
if <code>ratsimp</code> returns 0, the two expressions are considered equivalent.
Two expressions may be equivalent even if they are not syntactically equal (i.e., identical).
</p>
<p>When <code>is</code> fails to reduce <code>equal</code> to <code>true</code> or <code>false</code>,
the result is governed by the global flag <code>prederror</code>.
When <code>prederror</code> is <code>true</code>,
<code>is</code> complains with an error message.
Otherwise, <code>is</code> returns <code>unknown</code>.
</p>
<p>In addition to <code>is</code>,
some other operators evaluate <code>equal</code> and <code>notequal</code> to <code>true</code> or <code>false</code>,
namely <code>if</code>, <code>and</code>, <code>or</code>, and <code>not</code>.
</p>
<p>The negation of <code>equal</code> is <code>notequal</code>.
Note that because of the rules for evaluation of predicate expressions
(in particular because <code>not <var>expr</var></code> causes evaluation of <var>expr</var>),
<code>not equal(<var>a</var>, <var>b</var>)</code>
is equivalent to <code>is(notequal(<var>a</var>, <var>b</var>))</code>
instead of <code>notequal(<var>a</var>, <var>b</var>)</code>.
</p>
<p>Examples:
</p>
<p>By itself, <code>equal</code> does not evaluate or simplify.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) equal (x^2 - 1, (x + 1) * (x - 1));
2
(%o1) equal(x - 1, (x - 1) (x + 1))
(%i2) equal (x, x + 1);
(%o2) equal(x, x + 1)
(%i3) equal (x, y);
(%o3) equal(x, y)
</pre></td></tr></table>
<p>The function <code>is</code> attempts to evaluate <code>equal</code> to a Boolean value.
<code>is(equal(<var>a</var>, <var>b</var>))</code> returns <code>true</code> when <code>ratsimp(<var>a</var> - <var>b</var>)</code> returns 0.
Two expressions may be equivalent even if they are not syntactically equal (i.e., identical).
</p>
<table><tr><td> </td><td><pre class="example">(%i1) ratsimp (x^2 - 1 - (x + 1) * (x - 1));
(%o1) 0
(%i2) is (equal (x^2 - 1, (x + 1) * (x - 1)));
(%o2) true
(%i3) is (x^2 - 1 = (x + 1) * (x - 1));
(%o3) false
(%i4) ratsimp (x - (x + 1));
(%o4) - 1
(%i5) is (equal (x, x + 1));
(%o5) false
(%i6) is (x = x + 1);
(%o6) false
(%i7) ratsimp (x - y);
(%o7) x - y
(%i8) is (equal (x, y));
Maxima was unable to evaluate the predicate:
equal(x, y)
-- an error. Quitting. To debug this try debugmode(true);
(%i9) is (x = y);
(%o9) false
</pre></td></tr></table>
<p>When <code>is</code> fails to reduce <code>equal</code> to <code>true</code> or <code>false</code>,
the result is governed by the global flag <code>prederror</code>.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) [aa : x^2 + 2*x + 1, bb : x^2 - 2*x - 1];
2 2
(%o1) [x + 2 x + 1, x - 2 x - 1]
(%i2) ratsimp (aa - bb);
(%o2) 4 x + 2
(%i3) prederror : true;
(%o3) true
(%i4) is (equal (aa, bb));
Maxima was unable to evaluate the predicate:
2 2
equal(x + 2 x + 1, x - 2 x - 1)
-- an error. Quitting. To debug this try debugmode(true);
(%i5) prederror : false;
(%o5) false
(%i6) is (equal (aa, bb));
(%o6) unknown
</pre></td></tr></table>
<p>Some operators evaluate <code>equal</code> and <code>notequal</code> to <code>true</code> or <code>false</code>.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) if equal (a, b) then FOO else BAR;
Maxima was unable to evaluate the predicate:
equal(a, b)
-- an error. Quitting. To debug this try debugmode(true);
(%i2) eq_1 : equal (x, x + 1);
(%o2) equal(x, x + 1)
(%i3) eq_2 : equal (y^2 + 2*y + 1, (y + 1)^2);
2 2
(%o3) equal(y + 2 y + 1, (y + 1) )
(%i4) [eq_1 and eq_2, eq_1 or eq_2, not eq_1];
(%o4) [false, true, true]
</pre></td></tr></table>
<p>Because <code>not <var>expr</var></code> causes evaluation of <var>expr</var>,
<code>not equal(<var>a</var>, <var>b</var>)</code> is equivalent to <code>is(notequal(<var>a</var>, <var>b</var>))</code>.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) [notequal (2*z, 2*z - 1), not equal (2*z, 2*z - 1)];
(%o1) [notequal(2 z, 2 z - 1), true]
(%i2) is (notequal (2*z, 2*z - 1));
(%o2) true
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>floor</b><i> (<var>x</var>)</i>
<a name="IDX77"></a>
</dt>
<dd><p>When <var>x</var> is a real number, return the largest integer that
is less than or equal to <var>x</var>.
</p>
<p>If <var>x</var> is a constant expression (<code>10 * %pi</code>, for example),
<code>floor</code> evaluates <var>x</var> using big floating point numbers, and
applies floor to the resulting big float. Because floor uses
floating point evaluation, it's possible, although unlikely,
that <code>floor</code> could return an erroneous value for constant
inputs. To guard against errors, the floating point evaluation
is done using three values for <code>fpprec</code>.
</p>
<p>For non-constant inputs, <code>floor</code> tries to return a simplified
value. Here are examples of the simplifications that <code>floor</code>
knows about:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) floor (ceiling (x));
(%o1) ceiling(x)
(%i2) floor (floor (x));
(%o2) floor(x)
(%i3) declare (n, integer)$
(%i4) [floor (n), floor (abs (n)), floor (min (n, 6))];
(%o4) [n, abs(n), min(n, 6)]
(%i5) assume (x > 0, x < 1)$
(%i6) floor (x);
(%o6) 0
(%i7) tex (floor (a));
$$\left \lfloor a \right \rfloor$$
(%o7) false
</pre></td></tr></table>
<p>The function <code>floor</code> does not automatically map over lists or matrices.
Finally, for all inputs that are manifestly complex, <code>floor</code> returns
a noun form.
</p>
<p>If the range of a function is a subset of the integers, it can be
declared to be <code>integervalued</code>. Both the <code>ceiling</code> and <code>floor</code> functions
can use this information; for example:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) declare (f, integervalued)$
(%i2) floor (f(x));
(%o2) f(x)
(%i3) ceiling (f(x) - 1);
(%o3) f(x) - 1
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>notequal</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX78"></a>
</dt>
<dd><p>Represents the negation of <code>equal(<var>a</var>, <var>b</var>)</code>.
</p>
<p>Note that because of the rules for evaluation of predicate expressions
(in particular because <code>not <var>expr</var></code> causes evaluation of <var>expr</var>),
<code>not equal(<var>a</var>, <var>b</var>)</code>
is equivalent to <code>is(notequal(<var>a</var>, <var>b</var>))</code>
instead of <code>notequal(<var>a</var>, <var>b</var>)</code>.
</p>
<p>Examples:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) equal (a, b);
(%o1) equal(a, b)
(%i2) maybe (equal (a, b));
(%o2) unknown
(%i3) notequal (a, b);
(%o3) notequal(a, b)
(%i4) not equal (a, b);
Maxima was unable to evaluate the predicate:
equal(a, b)
-- an error. Quitting. To debug this try debugmode(true);
(%i5) maybe (notequal (a, b));
(%o5) unknown
(%i6) maybe (not equal (a, b));
(%o6) unknown
(%i7) assume (a > b);
(%o7) [a > b]
(%i8) equal (a, b);
(%o8) equal(a, b)
(%i9) maybe (equal (a, b));
(%o9) false
(%i10) notequal (a, b);
(%o10) notequal(a, b)
(%i11) not equal (a, b);
(%o11) true
(%i12) maybe (notequal (a, b));
(%o12) true
(%i13) maybe (not equal (a, b));
(%o13) true
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Operator:</u> <b>eval</b>
<a name="IDX79"></a>
</dt>
<dd><p>As an argument in a call to <code>ev (<var>expr</var>)</code>,
<code>eval</code> causes an extra evaluation of <var>expr</var>.
See <code>ev</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>evenp</b><i> (<var>expr</var>)</i>
<a name="IDX80"></a>
</dt>
<dd><p>Returns <code>true</code> if <var>expr</var> is an even integer.
<code>false</code> is returned in all other cases.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>fix</b><i> (<var>x</var>)</i>
<a name="IDX81"></a>
</dt>
<dd><p>A synonym for <code>entier (<var>x</var>)</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>fullmap</b><i> (<var>f</var>, <var>expr_1</var>, ...)</i>
<a name="IDX82"></a>
</dt>
<dd><p>Similar to <code>map</code>, but <code>fullmap</code> keeps mapping
down all subexpressions until the main operators are no longer the
same.
</p>
<p><code>fullmap</code> is used by the Maxima
simplifier for certain matrix manipulations; thus, Maxima sometimes generates
an error message concerning <code>fullmap</code> even though <code>fullmap</code> was not
explicitly called by the user.
</p>
<p>Examples:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) a + b * c;
(%o1) b c + a
(%i2) fullmap (g, %);
(%o2) g(b) g(c) + g(a)
(%i3) map (g, %th(2));
(%o3) g(b c) + g(a)
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>fullmapl</b><i> (<var>f</var>, <var>list_1</var>, ...)</i>
<a name="IDX83"></a>
</dt>
<dd><p>Similar to <code>fullmap</code>, but <code>fullmapl</code> only maps onto
lists and matrices.
</p>
<p>Example:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) fullmapl ("+", [3, [4, 5]], [[a, 1], [0, -1.5]]);
(%o1) [[a + 3, 4], [4, 3.5]]
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>is</b><i> (<var>expr</var>)</i>
<a name="IDX84"></a>
</dt>
<dd><p>Attempts to determine whether the predicate <var>expr</var>
is provable from the facts in the <code>assume</code> database.
</p>
<p>If the predicate is provably <code>true</code> or <code>false</code>,
<code>is</code> returns <code>true</code> or <code>false</code>, respectively.
Otherwise, the return value is governed by the global flag <code>prederror</code>.
When <code>prederror</code> is <code>true</code>,
<code>is</code> complains with an error message.
Otherwise, <code>is</code> returns <code>unknown</code>.
</p>
<p><code>ev(<var>expr</var>, pred)</code>
(which can be written <code><var>expr</var>, pred</code> at the interactive prompt)
is equivalent to <code>is(<var>expr</var>)</code>.
</p>
<p>See also <code>assume</code>, <code>facts</code>, and <code>maybe</code>.
</p>
<p>Examples:
</p>
<p><code>is</code> causes evaluation of predicates.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) %pi > %e;
(%o1) %pi > %e
(%i2) is (%pi > %e);
(%o2) true
</pre></td></tr></table>
<p><code>is</code> attempts to derive predicates from the <code>assume</code> database.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) assume (a > b);
(%o1) [a > b]
(%i2) assume (b > c);
(%o2) [b > c]
(%i3) is (a < b);
(%o3) false
(%i4) is (a > c);
(%o4) true
(%i5) is (equal (a, c));
(%o5) false
</pre></td></tr></table>
<p>If <code>is</code> can neither prove nor disprove a predicate from the <code>assume</code> database,
the global flag <code>prederror</code> governs the behavior of <code>is</code>.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) assume (a > b);
(%o1) [a > b]
(%i2) prederror: true$
(%i3) is (a > 0);
Maxima was unable to evaluate the predicate:
a > 0
-- an error. Quitting. To debug this try debugmode(true);
(%i4) prederror: false$
(%i5) is (a > 0);
(%o5) unknown
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>maybe</b><i> (<var>expr</var>)</i>
<a name="IDX85"></a>
</dt>
<dd><p>Attempts to determine whether the predicate <var>expr</var>
is provable from the facts in the <code>assume</code> database.
</p>
<p>If the predicate is provably <code>true</code> or <code>false</code>,
<code>maybe</code> returns <code>true</code> or <code>false</code>, respectively.
Otherwise, <code>maybe</code> returns <code>unknown</code>.
</p>
<p><code>maybe</code> is functionally equivalent to <code>is</code> with <code>prederror: false</code>,
but the result is computed without actually assigning a value to <code>prederror</code>.
</p>
<p>See also <code>assume</code>, <code>facts</code>, and <code>is</code>.
</p>
<p>Examples:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) maybe (x > 0);
(%o1) unknown
(%i2) assume (x > 1);
(%o2) [x > 1]
(%i3) maybe (x > 0);
(%o3) true
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>isqrt</b><i> (<var>x</var>)</i>
<a name="IDX86"></a>
</dt>
<dd><p>Returns the "integer square root"
of the absolute value of <var>x</var>,
which is an integer.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>lmax</b><i> (<var>L</var>)</i>
<a name="IDX87"></a>
</dt>
<dd><p>When <var>L</var> is a list or a set, return <code>apply ('max, args (<var>L</var>))</code>. When <var>L</var> isn't a
list or a set, signal an error.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>lmin</b><i> (<var>L</var>)</i>
<a name="IDX88"></a>
</dt>
<dd><p>When <var>L</var> is a list or a set, return <code>apply ('min, args (<var>L</var>))</code>. When <var>L</var> isn't a
list or a set, signal an error.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>max</b><i> (<var>x_1</var>, ..., <var>x_n</var>)</i>
<a name="IDX89"></a>
</dt>
<dd><p>Return a simplified value for the maximum of the expressions <var>x_1</var> through <var>x_n</var>.
When <code>get (trylevel, maxmin)</code>, is 2 or greater, <code>max</code> uses the simplification
<code>max (e, -e) --> |e|</code>. When <code>get (trylevel, maxmin)</code> is 3 or greater, <var>max</var> tries
to eliminate expressions that are between two other arguments; for example,
<code>max (x, 2*x, 3*x) --> max (x, 3*x)</code>. To set the value of <code>trylevel</code> to 2, use
<code>put (trylevel, 2, maxmin)</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>min</b><i> (<var>x_1</var>, ..., <var>x_n</var>)</i>
<a name="IDX90"></a>
</dt>
<dd><p>Return a simplified value for the minimum of the expressions <code>x_1</code> through <code>x_n</code>.
When <code>get (trylevel, maxmin)</code>, is 2 or greater, <code>min</code> uses the simplification
<code>min (e, -e) --> -|e|</code>. When <code>get (trylevel, maxmin)</code> is 3 or greater, <code>min</code> tries
to eliminate expressions that are between two other arguments; for example,
<code>min (x, 2*x, 3*x) --> min (x, 3*x)</code>. To set the value of <code>trylevel</code> to 2, use
<code>put (trylevel, 2, maxmin)</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>polymod</b><i> (<var>p</var>)</i>
<a name="IDX91"></a>
</dt>
<dt><u>Function:</u> <b>polymod</b><i> (<var>p</var>, <var>m</var>)</i>
<a name="IDX92"></a>
</dt>
<dd><p>Converts the polynomial <var>p</var> to a modular representation
with respect to the current modulus which is the value of the variable
<code>modulus</code>.
</p>
<p><code>polymod (<var>p</var>, <var>m</var>)</code> specifies a modulus <var>m</var> to be used
instead of the current value of <code>modulus</code>.
</p>
<p>See <code>modulus</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>mod</b><i> (<var>x</var>, <var>y</var>)</i>
<a name="IDX93"></a>
</dt>
<dd><p>If <var>x</var> and <var>y</var> are real numbers and <var>y</var> is nonzero,
return <code><var>x</var> - <var>y</var> * floor(<var>x</var> / <var>y</var>)</code>.
Further for all real <var>x</var>, we have <code>mod (<var>x</var>, 0) = <var>x</var></code>. For a discussion of
the definition <code>mod (<var>x</var>, 0) = <var>x</var></code>, see Section 3.4, of "Concrete Mathematics,"
by Graham, Knuth, and Patashnik. The function <code>mod (<var>x</var>, 1)</code>
is a sawtooth function with period 1 with <code>mod (1, 1) = 0</code> and
<code>mod (0, 1) = 0</code>.
</p>
<p>To find the principal argument (a number in the interval <code>(-%pi, %pi]</code>) of a
complex number, use the function <code><var>x</var> |-> %pi - mod (%pi - <var>x</var>, 2*%pi)</code>, where
<var>x</var> is an argument.
</p>
<p>When <var>x</var> and <var>y</var> are constant expressions (<code>10 * %pi</code>, for example), <code>mod</code>
uses the same big float evaluation scheme that <code>floor</code> and <code>ceiling</code> uses.
Again, it's possible, although unlikely, that <code>mod</code> could return an
erroneous value in such cases.
</p>
<p>For nonnumerical arguments <var>x</var> or <var>y</var>, <code>mod</code> knows several simplification
rules:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) mod (x, 0);
(%o1) x
(%i2) mod (a*x, a*y);
(%o2) a mod(x, y)
(%i3) mod (0, x);
(%o3) 0
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>oddp</b><i> (<var>expr</var>)</i>
<a name="IDX94"></a>
</dt>
<dd><p>is <code>true</code> if <var>expr</var> is an odd integer.
<code>false</code> is returned in all other cases.
</p>
</dd></dl>
<dl>
<dt><u>Operator:</u> <b>pred</b>
<a name="IDX95"></a>
</dt>
<dd><p>As an argument in a call to <code>ev (<var>expr</var>)</code>,
<code>pred</code> causes predicates (expressions which evaluate to <code>true</code>
or <code>false</code>) to be evaluated.
See <code>ev</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>make_random_state</b><i> (<var>n</var>)</i>
<a name="IDX96"></a>
</dt>
<dt><u>Function:</u> <b>make_random_state</b><i> (<var>s</var>)</i>
<a name="IDX97"></a>
</dt>
<dt><u>Function:</u> <b>make_random_state</b><i> (true)</i>
<a name="IDX98"></a>
</dt>
<dt><u>Function:</u> <b>make_random_state</b><i> (false)</i>
<a name="IDX99"></a>
</dt>
<dd>
<p>A random state object represents the state of the random number generator.
The state comprises 627 32-bit words.
</p>
<p><code>make_random_state (<var>n</var>)</code> returns a new random state object
created from an integer seed value equal to <var>n</var> modulo 2^32.
<var>n</var> may be negative.
</p>
<p><code>make_random_state (<var>s</var>)</code> returns a copy of the random state <var>s</var>.
</p>
<p><code>make_random_state (true)</code> returns a new random state object,
using the current computer clock time as the seed.
</p>
<p><code>make_random_state (false)</code> returns a copy of the current state
of the random number generator.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>set_random_state</b><i> (<var>s</var>)</i>
<a name="IDX100"></a>
</dt>
<dd><p>Copies <var>s</var> to the random number generator state.
</p>
<p><code>set_random_state</code> always returns <code>done</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>random</b><i> (<var>x</var>)</i>
<a name="IDX101"></a>
</dt>
<dd><p>Returns a pseudorandom number. If <var>x</var> is an integer, <code>random (<var>x</var>)</code> returns an
integer from 0 through <code><var>x</var> - 1</code> inclusive. If <var>x</var> is a floating point number,
<code>random (<var>x</var>)</code> returns a nonnegative floating point number less than <var>x</var>.
<code>random</code> complains with an error if <var>x</var> is neither an integer nor a float,
or if <var>x</var> is not positive.
</p>
<p>The functions <code>make_random_state</code> and <code>set_random_state</code>
maintain the state of the random number generator.
</p>
<p>The Maxima random number generator is an implementation of the Mersenne twister MT 19937.
</p>
<p>Examples:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) s1: make_random_state (654321)$
(%i2) set_random_state (s1);
(%o2) done
(%i3) random (1000);
(%o3) 768
(%i4) random (9573684);
(%o4) 7657880
(%i5) random (2^75);
(%o5) 11804491615036831636390
(%i6) s2: make_random_state (false)$
(%i7) random (1.0);
(%o7) .2310127244107132
(%i8) random (10.0);
(%o8) 4.394553645870825
(%i9) random (100.0);
(%o9) 32.28666704056853
(%i10) set_random_state (s2);
(%o10) done
(%i11) random (1.0);
(%o11) .2310127244107132
(%i12) random (10.0);
(%o12) 4.394553645870825
(%i13) random (100.0);
(%o13) 32.28666704056853
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>rationalize</b><i> (<var>expr</var>)</i>
<a name="IDX102"></a>
</dt>
<dd><p>Convert all double floats and big floats in the Maxima expression
<var>expr</var> to their exact rational equivalents. If you are not familiar with
the binary representation of floating point numbers, you might
be surprised that <code>rationalize (0.1)</code> does not equal 1/10. This behavior
isn't special to Maxima - the number 1/10 has a repeating, not a terminating,
binary representation.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) rationalize (0.5);
1
(%o1) -
2
(%i2) rationalize (0.1);
1
(%o2) --
10
(%i3) fpprec : 5$
(%i4) rationalize (0.1b0);
209715
(%o4) -------
2097152
(%i5) fpprec : 20$
(%i6) rationalize (0.1b0);
236118324143482260685
(%o6) ----------------------
2361183241434822606848
(%i7) rationalize (sin (0.1*x + 5.6));
x 28
(%o7) sin(-- + --)
10 5
</pre></td></tr></table>
<p>Example use:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) unitfrac(r) := block([uf : [], q],
if not(ratnump(r)) then error("The input to 'unitfrac' must be a rational number"),
while r # 0 do (
uf : cons(q : 1/ceiling(1/r), uf),
r : r - q),
reverse(uf));
(%o1) unitfrac(r) := block([uf : [], q],
if not ratnump(r) then error("The input to 'unitfrac' must be a rational number"
1
), while r # 0 do (uf : cons(q : ----------, uf), r : r - q),
1
ceiling(-)
r
reverse(uf))
(%i2) unitfrac (9/10);
1 1 1
(%o2) [-, -, --]
2 3 15
(%i3) apply ("+", %);
9
(%o3) --
10
(%i4) unitfrac (-9/10);
1
(%o4) [- 1, --]
10
(%i5) apply ("+", %);
9
(%o5) - --
10
(%i6) unitfrac (36/37);
1 1 1 1 1
(%o6) [-, -, -, --, ----]
2 3 8 69 6808
(%i7) apply ("+", %);
36
(%o7) --
37
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>sign</b><i> (<var>expr</var>)</i>
<a name="IDX103"></a>
</dt>
<dd><p>Attempts to determine the sign of <var>expr</var>
on the basis of the facts in the current data base. It returns one of
the following answers: <code>pos</code> (positive), <code>neg</code> (negative), <code>zero</code>, <code>pz</code>
(positive or zero), <code>nz</code> (negative or zero), <code>pn</code> (positive or negative),
or <code>pnz</code> (positive, negative, or zero, i.e. nothing known).
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>signum</b><i> (<var>x</var>)</i>
<a name="IDX104"></a>
</dt>
<dd><p>For numeric <var>x</var>, returns 0 if <var>x</var> is 0, otherwise returns -1 or +1
as <var>x</var> is less than or greater than 0, respectively.
</p>
<p>If <var>x</var> is not numeric then a simplified but equivalent form is returned.
For example, <code>signum(-x)</code> gives <code>-signum(x)</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>sort</b><i> (<var>L</var>, <var>P</var>)</i>
<a name="IDX105"></a>
</dt>
<dt><u>Function:</u> <b>sort</b><i> (<var>L</var>)</i>
<a name="IDX106"></a>
</dt>
<dd><p>Sorts a list <var>L</var> according to a predicate <code>P</code> of two arguments,
such that <code><var>P</var> (<var>L</var>[k], <var>L</var>[k + 1])</code> is <code>true</code>
for any two successive elements.
The predicate may be specified as the name of a function or binary infix operator,
or as a <code>lambda</code> expression.
If specified as the name of an operator,
the name is enclosed in "double quotes".
</p>
<p>The sorted list is returned as a new object;
the argument <var>L</var> is not modified.
To construct the return value,
<code>sort</code> makes a shallow copy of the elements of <var>L</var>.
</p>
<p>If the predicate <var>P</var> is not a total order on the elements of <var>L</var>,
then <code>sort</code> might run to completion without error,
but the result is undefined.
<code>sort</code> complains if the predicate evaluates to something other
than <code>true</code> or <code>false</code>.
</p>
<p><code>sort (<var>L</var>)</code> is equivalent to <code>sort (<var>L</var>, orderlessp)</code>.
That is, the default sorting order is ascending,
as determined by <code>orderlessp</code>.
All Maxima atoms and expressions are comparable under <code>orderlessp</code>,
although there are isolated examples of expressions for which <code>orderlessp</code> is not transitive;
this is a bug.
</p>
<p>Examples:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) sort ([11, -17, 29b0, 7.55, 3, -5/2, b + a, 9 * c, 19 - 3 * x]);
5
(%o1) [- 17, - -, 3, 7.55, 11, 2.9b1, b + a, 9 c, 19 - 3 x]
2
(%i2) sort ([11, -17, 29b0, 7.55, 3, -5/2, b + a, 9 * c, 19 - 3 * x], ordergreatp);
5
(%o2) [19 - 3 x, 9 c, b + a, 2.9b1, 11, 7.55, 3, - -, - 17]
2
(%i3) sort ([%pi, 3, 4, %e, %gamma]);
(%o3) [3, 4, %e, %gamma, %pi]
(%i4) sort ([%pi, 3, 4, %e, %gamma], "<");
(%o4) [%gamma, %e, 3, %pi, 4]
(%i5) my_list : [[aa, hh, uu], [ee, cc], [zz, xx, mm, cc], [%pi, %e]];
(%o5) [[aa, hh, uu], [ee, cc], [zz, xx, mm, cc], [%pi, %e]]
(%i6) sort (my_list);
(%o6) [[%pi, %e], [aa, hh, uu], [ee, cc], [zz, xx, mm, cc]]
(%i7) sort (my_list, lambda ([a, b], orderlessp (reverse (a), reverse (b))));
(%o7) [[%pi, %e], [ee, cc], [zz, xx, mm, cc], [aa, hh, uu]]
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>sqrt</b><i> (<var>x</var>)</i>
<a name="IDX107"></a>
</dt>
<dd><p>The square root of <var>x</var>. It is represented internally by
<code><var>x</var>^(1/2)</code>. See also <code>rootscontract</code>.
</p>
<p><code>radexpand</code> if <code>true</code> will cause nth roots of factors of a product
which are powers of n to be pulled outside of the radical, e.g.
<code>sqrt(16*x^2)</code> will become <code>4*x</code> only if <code>radexpand</code> is <code>true</code>.
</p>
</dd></dl>
<dl>
<dt><u>Option variable:</u> <b>sqrtdispflag</b>
<a name="IDX108"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>sqrtdispflag</code> is <code>false</code>,
causes <code>sqrt</code> to display with exponent 1/2.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>sublis</b><i> (<var>list</var>, <var>expr</var>)</i>
<a name="IDX109"></a>
</dt>
<dd><p>Makes multiple parallel substitutions into an expression.
</p>
<p>The variable <code>sublis_apply_lambda</code> controls simplification after
<code>sublis</code>.
</p>
<p>Example:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) sublis ([a=b, b=a], sin(a) + cos(b));
(%o1) sin(b) + cos(a)
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>sublist</b><i> (<var>list</var>, <var>p</var>)</i>
<a name="IDX110"></a>
</dt>
<dd><p>Returns the list of elements of <var>list</var> for which the
predicate <code>p</code> returns <code>true</code>.
</p>
<p>Example:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) L: [1, 2, 3, 4, 5, 6];
(%o1) [1, 2, 3, 4, 5, 6]
(%i2) sublist (L, evenp);
(%o2) [2, 4, 6]
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Option variable:</u> <b>sublis_apply_lambda</b>
<a name="IDX111"></a>
</dt>
<dd><p>Default value: <code>true</code> - controls whether <code>lambda</code>'s
substituted are applied in simplification after <code>sublis</code> is used or
whether you have to do an <code>ev</code> to get things to apply. <code>true</code> means do the
application.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>subst</b><i> (<var>a</var>, <var>b</var>, <var>c</var>)</i>
<a name="IDX112"></a>
</dt>
<dd><p>Substitutes <var>a</var> for <var>b</var> in <var>c</var>. <var>b</var> must be an atom or a
complete subexpression of <var>c</var>. For example, <code>x+y+z</code> is a complete
subexpression of <code>2*(x+y+z)/w</code> while <code>x+y</code> is not. When <var>b</var> does not have
these characteristics, one may sometimes use <code>substpart</code> or <code>ratsubst</code>
(see below). Alternatively, if <var>b</var> is of the form <code>e/f</code> then one could
use <code>subst (a*f, e, c)</code> while if <var>b</var> is of the form <code>e^(1/f)</code> then one could
use <code>subst (a^f, e, c)</code>. The <code>subst</code> command also discerns the <code>x^y</code> in <code>x^-y</code>
so that <code>subst (a, sqrt(x), 1/sqrt(x))</code> yields <code>1/a</code>. <var>a</var> and <var>b</var> may also be
operators of an expression enclosed in double-quotes <code>"</code> or they may be function
names. If one wishes to substitute for the independent variable in
derivative forms then the <code>at</code> function (see below) should be used.
</p>
<p><code>subst</code> is an alias for <code>substitute</code>.
</p>
<p><code>subst (<var>eq_1</var>, <var>expr</var>)</code> or <code>subst ([<var>eq_1</var>, ..., <var>eq_k</var>], <var>expr</var>)</code>
are other permissible
forms. The <var>eq_i</var> are equations indicating substitutions to be made.
For each equation, the right side will be substituted for the left in
the expression <var>expr</var>.
</p>
<p><code>exptsubst</code> if <code>true</code> permits substitutions
like <code>y</code> for <code>%e^x</code> in <code>%e^(a*x)</code> to take place.
</p>
<p>When <code>opsubst</code> is <code>false</code>,
<code>subst</code> will not attempt to substitute into the operator of an expression.
E.g. <code>(opsubst: false, subst (x^2, r, r+r[0]))</code> will work.
</p>
<p>Examples:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) subst (a, x+y, x + (x+y)^2 + y);
2
(%o1) y + x + a
(%i2) subst (-%i, %i, a + b*%i);
(%o2) a - %i b
</pre></td></tr></table>
<p>For further examples, do <code>example (subst)</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>substinpart</b><i> (<var>x</var>, <var>expr</var>, <var>n_1</var>, ..., <var>n_k</var>)</i>
<a name="IDX113"></a>
</dt>
<dd><p>Similar to <code>substpart</code>, but <code>substinpart</code> works on the
internal representation of <var>expr</var>.
</p>
<p>Examples:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) x . 'diff (f(x), x, 2);
2
d
(%o1) x . (--- (f(x)))
2
dx
(%i2) substinpart (d^2, %, 2);
2
(%o2) x . d
(%i3) substinpart (f1, f[1](x + 1), 0);
(%o3) f1(x + 1)
</pre></td></tr></table>
<p>If the last argument to a part function is a list of indices then
several subexpressions are picked out, each one corresponding to an
index of the list. Thus
</p>
<table><tr><td> </td><td><pre class="example">(%i1) part (x + y + z, [1, 3]);
(%o1) z + x
</pre></td></tr></table>
<p><code>piece</code> holds the value of the last expression selected when using the
part functions. It is set during the execution of the function and
thus may be referred to in the function itself as shown below.
If <code>partswitch</code> is set to <code>true</code> then <code>end</code> is returned when a
selected part of an expression doesn't exist, otherwise an error
message is given.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) expr: 27*y^3 + 54*x*y^2 + 36*x^2*y + y + 8*x^3 + x + 1;
3 2 2 3
(%o1) 27 y + 54 x y + 36 x y + y + 8 x + x + 1
(%i2) part (expr, 2, [1, 3]);
2
(%o2) 54 y
(%i3) sqrt (piece/54);
(%o3) abs(y)
(%i4) substpart (factor (piece), expr, [1, 2, 3, 5]);
3
(%o4) (3 y + 2 x) + y + x + 1
(%i5) expr: 1/x + y/x - 1/z;
1 y 1
(%o5) - - + - + -
z x x
(%i6) substpart (xthru (piece), expr, [2, 3]);
y + 1 1
(%o6) ----- - -
x z
</pre></td></tr></table>
<p>Also, setting the option <code>inflag</code> to <code>true</code> and calling <code>part</code> or <code>substpart</code> is
the same as calling <code>inpart</code> or <code>substinpart</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>substpart</b><i> (<var>x</var>, <var>expr</var>, <var>n_1</var>, ..., <var>n_k</var>)</i>
<a name="IDX114"></a>
</dt>
<dd><p>Substitutes <var>x</var> for the subexpression
picked out by the rest of the arguments as in <code>part</code>. It returns the
new value of <var>expr</var>. <var>x</var> may be some operator to be substituted for an
operator of <var>expr</var>. In some cases <var>x</var> needs to be enclosed in double-quotes <code>"</code>
(e.g. <code>substpart ("+", a*b, 0)</code> yields <code>b + a</code>).
</p>
<table><tr><td> </td><td><pre class="example">(%i1) 1/(x^2 + 2);
1
(%o1) ------
2
x + 2
(%i2) substpart (3/2, %, 2, 1, 2);
1
(%o2) --------
3/2
x + 2
(%i3) a*x + f(b, y);
(%o3) a x + f(b, y)
(%i4) substpart ("+", %, 1, 0);
(%o4) x + f(b, y) + a
</pre></td></tr></table>
<p>Also, setting the option <code>inflag</code> to <code>true</code> and calling <code>part</code> or <code>substpart</code> is
the same as calling <code>inpart</code> or <code>substinpart</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>subvarp</b><i> (<var>expr</var>)</i>
<a name="IDX115"></a>
</dt>
<dd><p>Returns <code>true</code> if <var>expr</var> is a subscripted variable, for example
<code>a[i]</code>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>symbolp</b><i> (<var>expr</var>)</i>
<a name="IDX116"></a>
</dt>
<dd><p>Returns <code>true</code> if <var>expr</var> is a symbol, else <code>false</code>.
In effect, <code>symbolp(x)</code> is equivalent to the predicate <code>atom(x) and not numberp(x)</code>.
</p>
<p>See also <a href="maxima_6.html#SEC26">Identifiers</a>.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>unorder</b><i> ()</i>
<a name="IDX117"></a>
</dt>
<dd><p>Disables the aliasing created by the last use of the ordering
commands <code>ordergreat</code> and <code>orderless</code>. <code>ordergreat</code> and <code>orderless</code> may not
be used more than one time each without calling <code>unorder</code>.
See also <code>ordergreat</code> and <code>orderless</code>.
</p>
<p>Examples:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) unorder();
(%o1) []
(%i2) b*x + a^2;
2
(%o2) b x + a
(%i3) ordergreat (a);
(%o3) done
(%i4) b*x + a^2;
%th(1) - %th(3);
2
(%o4) a + b x
(%i5) unorder();
2 2
(%o5) a - a
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>vectorpotential</b><i> (<var>givencurl</var>)</i>
<a name="IDX118"></a>
</dt>
<dd><p>Returns the vector potential of a given
curl vector, in the current coordinate system.
<code>potentialzeroloc</code> has a similar role as for <code>potential</code>, but the order of
the left-hand sides of the equations must be a cyclic permutation of
the coordinate variables.
</p>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>xthru</b><i> (<var>expr</var>)</i>
<a name="IDX119"></a>
</dt>
<dd><p>Combines all terms of <var>expr</var> (which should be a sum) over a
common denominator without expanding products and exponentiated sums
as <code>ratsimp</code> does. <code>xthru</code> cancels common factors in the numerator and
denominator of rational expressions but only if the factors are
explicit.
</p>
<p>Sometimes it is better to use <code>xthru</code> before <code>ratsimp</code>ing an
expression in order to cause explicit factors of the gcd of the
numerator and denominator to be canceled thus simplifying the
expression to be <code>ratsimp</code>ed.
</p>
<table><tr><td> </td><td><pre class="example">(%i1) ((x+2)^20 - 2*y)/(x+y)^20 + (x+y)^(-19) - x/(x+y)^20;
20
1 (x + 2) - 2 y x
(%o1) --------- + --------------- - ---------
19 20 20
(y + x) (y + x) (y + x)
(%i2) xthru (%);
20
(x + 2) - y
(%o2) -------------
20
(y + x)
</pre></td></tr></table>
</dd></dl>
<dl>
<dt><u>Function:</u> <b>zeroequiv</b><i> (<var>expr</var>, <var>v</var>)</i>
<a name="IDX120"></a>
</dt>
<dd><p>Tests whether the expression <var>expr</var> in the variable
<var>v</var> is equivalent to zero, returning <code>true</code>, <code>false</code>, or
<code>dontknow</code>.
</p>
<p><code>zeroequiv</code> has these restrictions:
</p><ol>
<li>
Do not use functions that Maxima does not know how to
differentiate and evaluate.
</li><li>
If the expression has poles on the real line, there may be errors
in the result (but this is unlikely to occur).
</li><li>
If the expression contains functions which are not solutions to
first order differential equations (e.g. Bessel functions) there may
be incorrect results.
</li><li>
The algorithm uses evaluation at randomly chosen points for
carefully selected subexpressions. This is always a somewhat
hazardous business, although the algorithm tries to minimize the
potential for error.
</li></ol>
<p>For example <code>zeroequiv (sin(2*x) - 2*sin(x)*cos(x), x)</code> returns
<code>true</code> and <code>zeroequiv (%e^x + x, x)</code> returns <code>false</code>.
On the other hand <code>zeroequiv (log(a*b) - log(a) - log(b), a)</code> returns <code>dontknow</code> because
of the presence of an extra parameter <code>b</code>.
</p>
</dd></dl>
<hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC14" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="maxima_6.html#SEC21" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
<font size="-1">
This document was generated by <em>Robert Dodier</em> on <em>September, 20 2006</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
</font>
<br>
</p>
</body>
</html>
|