File: maxima_57.html

package info (click to toggle)
maxima 5.10.0-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 44,268 kB
  • ctags: 17,987
  • sloc: lisp: 152,894; fortran: 14,667; perl: 14,204; tcl: 10,103; sh: 3,376; makefile: 2,202; ansic: 471; awk: 7
file content (368 lines) | stat: -rw-r--r-- 16,530 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on September, 20 2006 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
            Karl Berry  <karl@freefriends.org>
            Olaf Bachmann <obachman@mathematik.uni-kl.de>
            and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>

-->
<head>
<title>Maxima Manual: 57. lsquares</title>

<meta name="description" content="Maxima Manual: 57. lsquares">
<meta name="keywords" content="Maxima Manual: 57. lsquares">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
    color: black;
    background: white; 
    margin-left: 8%;
    margin-right: 13%;
}

h1
{
    margin-left: +8%;
    font-size: 150%;
    font-family: sans-serif
}

h2
{
    font-size: 125%;
    font-family: sans-serif
}

h3
{
    font-size: 100%;
    font-family: sans-serif
}

h2,h3,h4,h5,h6 { margin-left: +4%; }

div.textbox
{
    border: solid;
    border-width: thin;
    /* width: 100%; */
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em
}

div.titlebox
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em;
    background: rgb(200,255,255);
    font-family: sans-serif
}

div.synopsisbox
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 2em;
    padding-right: 2em;
     background: rgb(255,220,255);
    /*background: rgb(200,255,255); */
    /* font-family: fixed */
}

pre.example
{
    border: none;
    padding-top: 1em;
    padding-bottom: 1em;
    padding-left: 1em;
    padding-right: 1em;
    background: rgb(247,242,180); /* kind of sandy */
    /* background: rgb(200,255,255); */ /* sky blue */
    font-family: "Lucida Console", monospace
}

div.spacerbox
{
    border: none;
    padding-top: 2em;
    padding-bottom: 2em
}

div.image
{
    margin: 0;
    padding: 1em;
    text-align: center;
}
-->
</style>

<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">

<a name="lsquares"></a>
<a name="SEC206"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="maxima_56.html#SEC205" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC207" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima_56.html#SEC203" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_58.html#SEC208" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="chapter"> 57. lsquares </h1>

<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#SEC207">57.1 Definitions for lsquares</a></td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr size="6">
<a name="Definitions-for-lsquares"></a>
<a name="SEC207"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC206" title="Previous section in reading order"> &lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima_58.html#SEC208" title="Next section in reading order"> &gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="#SEC206" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="#SEC206" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_58.html#SEC208" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 57.1 Definitions for lsquares </h2>


<dl>
<dt><u>Global variable:</u> <b>DETCOEF</b>
<a name="IDX1780"></a>
</dt>
<dd><p>This variable is used by functions <code>lsquares</code> and <code>plsquares</code> to store the Coefficient of Determination which measures the goodness of fit. It ranges from 0 (no correlation) to 1 (exact correlation). 
</p>
<p>When <code>plsquares</code> is called with a list of dependent variables, <var>DETCOEF</var> is set to a list of Coefficients of Determination. See <code>plsquares</code> for details.
</p>
<p>See also <code>lsquares</code>.
</p></dd></dl>


<dl>
<dt><u>Function:</u> <b>lsquares</b><i> (<var>Mat</var>,<var>VarList</var>,<var>equation</var>,<var>ParamList</var>)</i>
<a name="IDX1781"></a>
</dt>
<dt><u>Function:</u> <b>lsquares</b><i> (<var>Mat</var>,<var>VarList</var>,<var>equation</var>,<var>ParamList</var>,<var>GuessList</var>)</i>
<a name="IDX1782"></a>
</dt>
<dd><p>Multiple nonlinear equation adjustment of a data table by the
&quot;least squares&quot; method. <var>Mat</var> is a matrix containing the data,
<var>VarList</var> is a list of variable names (one for each <var>Mat</var> column),
<var>equation</var> is the equation to adjust (it must be in the form:
<code>depvar=f(indepvari,..., paramj,...)</code>, <code>g(depvar)=f(indepvari,..., paramj,...)</code> 
or <code>g(depvar, paramk,...)=f(indepvari,..., paramj,...)</code>), <var>ParamList</var> is the 
list of the parameters to obtain, and <var>GuessList</var> is an optional list of initial 
approximations to the parameters; when this last argument is present, <code>mnewton</code> is used
instead of <code>solve</code> in order to get the parameters.
</p>
<p>The equation may be fully nonlinear with respect to the independent
variables and to the dependent variable.
In order to use <code>solve()</code>, the equations must be linear or polynomial with
respect to the parameters. Equations like <code>y=a*b^x+c</code> may be adjusted for
<code>[a,b,c]</code> with <code>solve</code> if the <code>x</code> values are little positive integers and
there are few data (see the example in lsquares.dem).
<code>mnewton</code> allows to adjust a nonlinear equation with respect to the
parameters, but a good set of initial approximations must be provided.
</p>
<p>If possible, the adjusted equation is returned. If there exists more
than one solution, a list of equations is returned.
The Coefficient of Determination is displayed in order to inform about
the goodness of fit, from 0 (no correlation) to 1 (exact correlation).
This value is also stored in the global variable <var>DETCOEF</var>.
</p>
<p>Examples using <code>solve</code>:
</p><table><tr><td>&nbsp;</td><td><pre class="example">(%i1) load(&quot;lsquares&quot;)$

(%i2) lsquares(matrix([1,2,0],[3,5,4],[4,7,9],[5,8,10]),
               [x,y,z], z=a*x*y+b*x+c*y+d, [a,b,c,d]);
      Determination Coefficient = 1.0
                    x y + 23 y - 29 x - 19
(%o2)           z = ----------------------
                              6
(%i3) lsquares(matrix([0,0],[1,0],[2,0],[3,8],[4,44]),
               [n,p], p=a4*n^4+a3*n^3+a2*n^2+a1*n+a0,
         [a0,a1,a2,a3,a4]);
      Determination Coefficient = 1.0
                     4       3      2
                  3 n  - 10 n  + 9 n  - 2 n
(%o3)         p = -------------------------
                              6
(%i4) lsquares(matrix([1,7],[2,13],[3,25]), 
               [x,y], (y+c)^2=a*x+b, [a,b,c]);
      Determination Coefficient = 1.0
(%o4) [y = 28 - sqrt(657 - 216 x),
                                y = sqrt(657 - 216 x) + 28]
(%i5) lsquares(matrix([1,7],[2,13],[3,25],[4,49]),
               [x,y], y=a*b^x+c, [a,b,c]);
      Determination Coefficient = 1.0
                              x
(%o5)                  y = 3 2  + 1
</pre></td></tr></table>

<p>Examples using <code>mnewton</code>:
</p><table><tr><td>&nbsp;</td><td><pre class="example">(%i6) load(&quot;lsquares&quot;)$

(%i7) lsquares(matrix([1.1,7.1],[2.1,13.1],[3.1,25.1],[4.1,49.1]),
               [x,y], y=a*b^x+c, [a,b,c], [5,5,5]);
                                             x
(%o7) y = 2.799098974610482 1.999999999999991
                                        + 1.099999999999874
(%i8) lsquares(matrix([1.1,4.1],[4.1,7.1],[9.1,10.1],[16.1,13.1]),
               [x,y], y=a*x^b+c, [a,b,c], [4,1,2]);
                             .4878659755898127
(%o8) y = 3.177315891123101 x
                                        + .7723843491402264
(%i9) lsquares(matrix([0,2,4],[3,3,5],[8,6,6]),
              [m,n,y], y=(A*m+B*n)^(1/3)+C, [A,B,C], [3,3,3]);
                                                     1/3
(%o9) y = (3.999999999999862 n + 4.999999999999359 m)
                                         + 2.00000000000012
</pre></td></tr></table>
<p>To use this function write first <code>load(&quot;lsquares&quot;)</code>. See also <code>DETCOEF</code> and <code>mnewton</code>.
</p></dd></dl>


<dl>
<dt><u>Function:</u> <b>plsquares</b><i> (<var>Mat</var>,<var>VarList</var>,<var>depvars</var>)</i>
<a name="IDX1783"></a>
</dt>
<dt><u>Function:</u> <b>plsquares</b><i> (<var>Mat</var>,<var>VarList</var>,<var>depvars</var>,<var>maxexpon</var>)</i>
<a name="IDX1784"></a>
</dt>
<dt><u>Function:</u> <b>plsquares</b><i> (<var>Mat</var>,<var>VarList</var>,<var>depvars</var>,<var>maxexpon</var>,<var>maxdegree</var>)</i>
<a name="IDX1785"></a>
</dt>
<dd><p>Multivariable polynomial adjustment of a data table by the &quot;least squares&quot;
method. <var>Mat</var> is a matrix containing the data, <var>VarList</var> is a list of variable names (one for each Mat column, but use &quot;-&quot; instead of varnames to ignore Mat columns), <var>depvars</var> is the name of a dependent variable or a list with one or more names of dependent variables (which names should be in <var>VarList</var>), <var>maxexpon</var> is the optional maximum exponent for each independent variable (1 by default), and <var>maxdegree</var> is the optional maximum polynomial degree (<var>maxexpon</var> by default); note that the sum of exponents of each term must be equal or smaller than <var>maxdegree</var>, and if <code>maxdgree = 0</code> then no limit is applied.
</p>
<p>If <var>depvars</var> is the name of a dependent variable (not in a list), <code>plsquares</code> returns the adjusted polynomial. If <var>depvars</var> is a list of one or more dependent variables, <code>plsquares</code> returns a list with the adjusted polynomial(s). The Coefficients of Determination  are displayed in order to inform about the goodness of fit, which ranges from 0 (no correlation) to 1 (exact correlation). These values are also stored in the global variable <var>DETCOEF</var> (a list if <var>depvars</var> is a list).
</p>

<p>A simple example of multivariable linear adjustment:
</p><table><tr><td>&nbsp;</td><td><pre class="example">(%i1) load(&quot;plsquares&quot;)$

(%i2) plsquares(matrix([1,2,0],[3,5,4],[4,7,9],[5,8,10]),
                [x,y,z],z);
     Determination Coefficient for z = .9897039897039897
                       11 y - 9 x - 14
(%o2)              z = ---------------
                              3
</pre></td></tr></table>
<p>The same example without degree restrictions:
</p><table><tr><td>&nbsp;</td><td><pre class="example">(%i3) plsquares(matrix([1,2,0],[3,5,4],[4,7,9],[5,8,10]),
                [x,y,z],z,1,0);
     Determination Coefficient for z = 1.0
                    x y + 23 y - 29 x - 19
(%o3)           z = ----------------------
                              6
</pre></td></tr></table>
<p>How many diagonals does a N-sides polygon have? What polynomial degree should be used?
</p><table><tr><td>&nbsp;</td><td><pre class="example">(%i4) plsquares(matrix([3,0],[4,2],[5,5],[6,9],[7,14],[8,20]),
                [N,diagonals],diagonals,5);
     Determination Coefficient for diagonals = 1.0
                                2
                               N  - 3 N
(%o4)              diagonals = --------
                                  2
(%i5) ev(%, N=9);   /* Testing for a 9 sides polygon */
(%o5)                 diagonals = 27
</pre></td></tr></table>
<p>How many ways do we have to put two queens without they are threatened into a n x n chessboard?
</p><table><tr><td>&nbsp;</td><td><pre class="example">(%i6) plsquares(matrix([0,0],[1,0],[2,0],[3,8],[4,44]),
                [n,positions],[positions],4);
     Determination Coefficient for [positions] = [1.0]
                         4       3      2
                      3 n  - 10 n  + 9 n  - 2 n
(%o6)    [positions = -------------------------]
                                  6
(%i7) ev(%[1], n=8); /* Testing for a (8 x 8) chessboard */
(%o7)                positions = 1288
</pre></td></tr></table>
<p>An example with six dependent variables:
</p><table><tr><td>&nbsp;</td><td><pre class="example">(%i8) mtrx:matrix([0,0,0,0,0,1,1,1],[0,1,0,1,1,1,0,0],
                  [1,0,0,1,1,1,0,0],[1,1,1,1,0,0,0,1])$
(%i8) plsquares(mtrx,[a,b,_And,_Or,_Xor,_Nand,_Nor,_Nxor],
                     [_And,_Or,_Xor,_Nand,_Nor,_Nxor],1,0);
      Determination Coefficient for
[_And, _Or, _Xor, _Nand, _Nor, _Nxor] =
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
(%o2) [_And = a b, _Or = - a b + b + a,
_Xor = - 2 a b + b + a, _Nand = 1 - a b,
_Nor = a b - b - a + 1, _Nxor = 2 a b - b - a + 1]
</pre></td></tr></table>
<p>To use this function write first <code>load(&quot;lsquares&quot;)</code>.
</p></dd></dl>


<hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC206" title="Beginning of this chapter or previous chapter"> &lt;&lt; </a>]</td>
<td valign="middle" align="left">[<a href="maxima_58.html#SEC208" title="Next chapter"> &gt;&gt; </a>]</td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left"> &nbsp; </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
 <font size="-1">
  This document was generated by <em>Robert Dodier</em> on <em>September, 20 2006</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
 </font>
 <br>

</p>
</body>
</html>