1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on September, 20 2006 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
Karl Berry <karl@freefriends.org>
Olaf Bachmann <obachman@mathematik.uni-kl.de>
and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>
-->
<head>
<title>Maxima Manual: 70. zeilberger</title>
<meta name="description" content="Maxima Manual: 70. zeilberger">
<meta name="keywords" content="Maxima Manual: 70. zeilberger">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
color: black;
background: white;
margin-left: 8%;
margin-right: 13%;
}
h1
{
margin-left: +8%;
font-size: 150%;
font-family: sans-serif
}
h2
{
font-size: 125%;
font-family: sans-serif
}
h3
{
font-size: 100%;
font-family: sans-serif
}
h2,h3,h4,h5,h6 { margin-left: +4%; }
div.textbox
{
border: solid;
border-width: thin;
/* width: 100%; */
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em
}
div.titlebox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(200,255,255);
font-family: sans-serif
}
div.synopsisbox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(255,220,255);
/*background: rgb(200,255,255); */
/* font-family: fixed */
}
pre.example
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 1em;
padding-right: 1em;
background: rgb(247,242,180); /* kind of sandy */
/* background: rgb(200,255,255); */ /* sky blue */
font-family: "Lucida Console", monospace
}
div.spacerbox
{
border: none;
padding-top: 2em;
padding-bottom: 2em
}
div.image
{
margin: 0;
padding: 1em;
text-align: center;
}
-->
</style>
<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="zeilberger"></a>
<a name="SEC255"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="maxima_69.html#SEC254" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC256" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima_69.html#SEC252" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_71.html#SEC263" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="chapter"> 70. zeilberger </h1>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#SEC256">70.1 Introduction to zeilberger</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC260">70.2 Definitions for zeilberger</a></td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr size="6">
<a name="Introduction-to-zeilberger"></a>
<a name="SEC256"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC255" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC257" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC255" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC255" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_71.html#SEC263" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 70.1 Introduction to zeilberger </h2>
<p><code>zeilberger</code> is a implementation of Zeilberger's algorithm
for definite hypergeometric summation, and also
Gosper's algorithm for indefinite hypergeometric
summation.
</p>
<p><code>zeilberger</code> makes use of the "filtering" optimization method developed by Axel Riese.
</p>
<p><code>zeilberger</code> was developed by Fabrizio Caruso.
</p>
<p><code>load (zeilberger)</code> loads this package.
</p>
<hr size="6">
<a name="SEC257"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC256" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC258" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC255" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC256" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_71.html#SEC263" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h4 class="subsubsection"> 70.1.0.1 The indefinite summation problem </h4>
<p><code>zeilberger</code> implements Gosper's algorithm
for indefinite hypergeometric summation.
Given a hypergeometric term <em>F_k</em> in <em>k</em> we want to find its hypergeometric
anti-difference, that is, a hypergeometric term <em>f_k</em> such that <em>F_k = f_(k+1) - f_k</em>.
</p>
<hr size="6">
<a name="SEC258"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC257" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC259" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC255" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC256" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_71.html#SEC263" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h4 class="subsubsection"> 70.1.0.2 The definite summation problem </h4>
<p><code>zeilberger</code> implements Zeilberger's algorithm
for definite hypergeometric summation.
Given a proper hypergeometric term (in <em>n</em> and <em>k</em>) <em>F_(n,k)</em> and a
positive integer <em>d</em> we want to find a <em>d</em>-th order linear
recurrence with polynomial coefficients (in <em>n</em>) for <em>F_(n,k)</em>
and a rational function <em>R</em> in <em>n</em> and <em>k</em> such that
</p>
<p><em>a_0 F_(n,k) + ... + a_d F_(n+d),k = Delta_K(R(n,k) F_(n,k))</em>
</p>
<p>where <em>Delta_k</em> is the <em>k</em>-forward difference operator, i.e.,
<em>Delta_k(t_k) := t_(k+1) - t_k</em>.
</p>
<hr size="6">
<a name="SEC259"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC258" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC260" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC255" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC256" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_71.html#SEC263" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h3 class="subsection"> 70.1.1 Verbosity levels </h3>
<p>There are also verbose versions of the commands
which are called by adding one of the following prefixes:
</p>
<dl compact="compact">
<dt> <code>Summary</code></dt>
<dd><p>Just a summary at the end is shown
</p></dd>
<dt> <code>Verbose</code></dt>
<dd><p>Some information in the intermidiate steps
</p></dd>
<dt> <code>VeryVerbose</code></dt>
<dd><p>More information
</p></dd>
<dt> <code>Extra</code></dt>
<dd><p>Even more information including information on
the linear system in Zeilberger's algorithm
</p></dd>
</dl>
<p>For example:
<code>GosperVerbose</code>, <code>parGosperVeryVerbose</code>,
<code>ZeilbergerExtra</code>, <code>AntiDifferenceSummary</code>.
</p>
<hr size="6">
<a name="Definitions-for-zeilberger"></a>
<a name="SEC260"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC259" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC261" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC255" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC255" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_71.html#SEC263" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 70.2 Definitions for zeilberger </h2>
<dl>
<dt><u>Function:</u> <b>AntiDifference</b><i> (<var>F_k</var>, <var>k</var>)</i>
<a name="IDX1980"></a>
</dt>
<dd><p>Returns the hypergeometric anti-difference
of <var>F_k</var>, if it exists.
Otherwise <code>AntiDifference</code> returns <code>no_hyp_antidifference</code>.
</p></dd></dl>
<dl>
<dt><u>Function:</u> <b>Gosper</b><i> (<var>F_k</var>, <var>k</var>)</i>
<a name="IDX1981"></a>
</dt>
<dd><p>Returns the rational certificate <var>R(k)</var> for <var>F_k</var>, that is,
a rational function such that
</p>
<p><em>F_k = R(k+1) F_(k+1) - R(k) F_k</em>
</p>
<p>if it exists.
Otherwise, <code>Gosper</code> returns <code>no_hyp_sol</code>.
</p></dd></dl>
<dl>
<dt><u>Function:</u> <b>GosperSum</b><i> (<var>F_k</var>, <var>k</var>, <var>a</var>, <var>b</var>) </i>
<a name="IDX1982"></a>
</dt>
<dd><p>Returns the summmation of <var>F_k</var> from <em><var>k</var> = <var>a</var></em> to <em><var>k</var> = <var>b</var></em>
if <var>F_k</var> has a hypergeometric anti-difference.
Otherwise, <code>GosperSum</code> returns <code>nongosper_summable</code>.
</p>
<p>Examples:
</p>
<table><tr><td> </td><td><pre class="example">(%i1) load (zeilberger);
(%o1) /usr/share/maxima/share/contrib/Zeilberger/zeilberger.mac
(%i2) GosperSum ((-1)^k*k / (4*k^2 - 1), k, 1, n);
Dependent equations eliminated: (1)
3 n + 1
(n + -) (- 1)
2 1
(%o2) - ------------------ - -
2 4
2 (4 (n + 1) - 1)
(%i3) GosperSum (1 / (4*k^2 - 1), k, 1, n);
3
- n - -
2 1
(%o3) -------------- + -
2 2
4 (n + 1) - 1
(%i4) GosperSum (x^k, k, 1, n);
n + 1
x x
(%o4) ------ - -----
x - 1 x - 1
(%i5) GosperSum ((-1)^k*a! / (k!*(a - k)!), k, 1, n);
n + 1
a! (n + 1) (- 1) a!
(%o5) - ------------------------- - ----------
a (- n + a - 1)! (n + 1)! a (a - 1)!
(%i6) GosperSum (k*k!, k, 1, n);
Dependent equations eliminated: (1)
(%o6) (n + 1)! - 1
(%i7) GosperSum ((k + 1)*k! / (k + 1)!, k, 1, n);
(n + 1) (n + 2) (n + 1)!
(%o7) ------------------------ - 1
(n + 2)!
(%i8) GosperSum (1 / ((a - k)!*k!), k, 1, n);
(%o8) nonGosper_summable
</pre></td></tr></table></dd></dl>
<dl>
<dt><u>Function:</u> <b>parGosper</b><i> (<var>F_{n,k}</var>, <var>k</var>, <var>n</var>, <var>d</var>)</i>
<a name="IDX1983"></a>
</dt>
<dd><p>Attempts to find a a <var>d</var>-th order recurrence for <var>F_{n,k}</var>.
</p>
<p>The algorithm yields a sequence
<em>[s_1, s_2, ..., s_m]</em> of solutions.
Each solution has the form
</p>
<p><em>[R(n, k), [a_0, a_1, ..., a_d]]</em>
</p>
<p><code>parGosper</code> returns <code>[]</code> if it fails to find a recurrence.
</p></dd></dl>
<dl>
<dt><u>Function:</u> <b>Zeilberger</b><i> (<var>F_{n,k}</var>, <var>k</var>, <var>n</var>)</i>
<a name="IDX1984"></a>
</dt>
<dd><p>Attempts to compute the indefinite hypergeometric summation of <var>F_{n,k}</var>.
</p>
<p><code>Zeilberger</code> first invokes <code>Gosper</code>, and if that fails to find a solution, then invokes
<code>parGosper</code> with order 1, 2, 3, ..., up to <code>MAX_ORD</code>.
If Zeilberger finds a solution before reaching <code>MAX_ORD</code>,
it stops and returns the solution.
</p>
<p>The algorithms yields a sequence
<em>[s_1, s_2, ..., s_m]</em> of solutions.
Each solution has the form
</p>
<p><em>[R(n,k), [a_0, a_1, ..., a_d]]</em>
</p>
<p><code>Zeilberger</code> returns <code>[]</code> if it fails to find a solution.
</p>
<p><code>Zeilberger</code> invokes <code>Gosper</code> only if <code>gosper_in_zeilberger</code> is <code>true</code>.
</p></dd></dl>
<hr size="6">
<a name="SEC261"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC260" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC262" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC255" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC255" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_71.html#SEC263" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 70.3 General global variables </h2>
<dl>
<dt><u>Global variable:</u> <b>MAX_ORD</b>
<a name="IDX1985"></a>
</dt>
<dd><p>Default value: 5
</p>
<p><code>MAX_ORD</code> is the maximum recurrence order attempted by <code>Zeilberger</code>.
</p></dd></dl>
<dl>
<dt><u>Global variable:</u> <b>simplified_output</b>
<a name="IDX1986"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>simplified_output</code> is <code>true</code>,
functions in the <code>zeilberger</code> package attempt
further simplification of the solution.
</p></dd></dl>
<dl>
<dt><u>Global variable:</u> <b>linear_solver</b>
<a name="IDX1987"></a>
</dt>
<dd><p>Default value: <code>linsolve</code>
</p>
<p><code>linear_solver</code> names the solver which is used to solve the system
of equations in Zeilberger's algorithm.
</p></dd></dl>
<dl>
<dt><u>Global variable:</u> <b>warnings</b>
<a name="IDX1988"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>warnings</code> is <code>true</code>,
functions in the <code>zeilberger</code> package print
warning messages during execution.
</p></dd></dl>
<dl>
<dt><u>Global variable:</u> <b>gosper_in_zeilberger</b>
<a name="IDX1989"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>gosper_in_zeilberger</code> is <code>true</code>,
the <code>Zeilberger</code> function calls <code>Gosper</code> before calling <code>parGosper</code>.
Otherwise, <code>Zeilberger</code> goes immediately to <code>parGosper</code>.
</p></dd></dl>
<dl>
<dt><u>Global variable:</u> <b>trivial_solutions</b>
<a name="IDX1990"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>trivial_solutions</code> is <code>true</code>,
<code>Zeilberger</code> returns solutions
which have certificate equal to zero, or all coefficients equal to zero.
</p></dd></dl>
<hr size="6">
<a name="SEC262"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC261" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="maxima_71.html#SEC263" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC255" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC255" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_71.html#SEC263" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 70.4 Variables related to the modular test </h2>
<dl>
<dt><u>Global variable:</u> <b>mod_test</b>
<a name="IDX1991"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>mod_test</code> is <code>true</code>,
<code>parGosper</code> executes a
modular test for discarding systems with no solutions.
</p></dd></dl>
<dl>
<dt><u>Global variable:</u> <b>modular_linear_solver</b>
<a name="IDX1992"></a>
</dt>
<dd><p>Default value: <code>linsolve</code>
</p>
<p><code>modular_linear_solver</code> names the linear solver used by the modular test in <code>parGosper</code>.
</p></dd></dl>
<dl>
<dt><u>Global variable:</u> <b>ev_point</b>
<a name="IDX1993"></a>
</dt>
<dd><p>Default value: <code>big_primes[10]</code>
</p>
<p><code>ev_point</code> is the value at which the variable <var>n</var> is evaluated
when executing the modular test in <code>parGosper</code>.
</p></dd></dl>
<dl>
<dt><u>Global variable:</u> <b>mod_big_prime</b>
<a name="IDX1994"></a>
</dt>
<dd><p>Default value: <code>big_primes[1]</code>
</p>
<p><code>mod_big_prime</code> is the modulus used by the modular test in <code>parGosper</code>.
</p></dd></dl>
<dl>
<dt><u>Global variable:</u> <b>mod_threshold</b>
<a name="IDX1995"></a>
</dt>
<dd><p>Default value: 4
</p>
<p><code>mod_threshold</code> is the
greatest order for which the modular test in <code>parGosper</code> is attempted.
</p></dd></dl>
<hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC255" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="maxima_71.html#SEC263" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_72.html#SEC264" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
<font size="-1">
This document was generated by <em>Robert Dodier</em> on <em>September, 20 2006</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
</font>
<br>
</p>
</body>
</html>
|