File: Introduction.texi

package info (click to toggle)
maxima 5.10.0-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 44,268 kB
  • ctags: 17,987
  • sloc: lisp: 152,894; fortran: 14,667; perl: 14,204; tcl: 10,103; sh: 3,376; makefile: 2,202; ansic: 471; awk: 7
file content (168 lines) | stat: -rw-r--r-- 6,357 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
@c Language: Portuguese, Encoding: iso-8859-1
@c /Introduction.texi/1.5/Sun Apr  3 08:17:33 2005/-ko/
Inicie o Maxima com o comando "maxima".  Maxima mostrar@'a a informa@,{c}@~ao
de vers@~ao e uma linha de comando.  Termine cada comando Maxima com um ponto e v@'irgula.
Termine uma sess@~ao com o comando "quit();".  Aqui est@'a um exemplo de sess@~ao:

@example
[wfs@@chromium]$ maxima
Maxima 5.9.1 http://maxima.sourceforge.net
Using Lisp CMU Common Lisp 19a
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
This is a development version of Maxima. The function bug_report()
provides bug reporting information.
(%i1) factor(10!);
                            8  4  2
(%o1)                      2  3  5  7
(%i2) expand ((x + y)^6);
       6        5       2  4       3  3       4  2      5      6
(%o2) y  + 6 x y  + 15 x  y  + 20 x  y  + 15 x  y  + 6 x  y + x
(%i3) factor (x^6 - 1);
                              2            2
(%o3)       (x - 1) (x + 1) (x  - x + 1) (x  + x + 1)
(%i4) quit();
[wfs@@chromium]$
@end example

Maxima pode procurar as p@'aginas info.  Use o comando @kbd{describe} para mostrar
todos os comandos e vari@'aveis contendo uma dada seq@"u@^encia de caracteres, e opcionalmente sua
documenta@,{c}@~ao.  O ponto de interroga@,{c}@~ao @code{?} @'e uma abreviatura para @code{describe}:

@example
(%i1) ? integ

 0: (maxima.info)Introduction to Elliptic Functions and Integrals.
 1: Definitions for Elliptic Integrals.
 2: Integration.
 3: Introduction to Integration.
 4: Definitions for Integration.
 5: askinteger :Definitions for Simplification.
 6: integerp :Definitions for Miscellaneous Options.
 7: integrate :Definitions for Integration.
 8: integrate_use_rootsof :Definitions for Integration.
 9: integration_constant_counter :Definitions for Integration.
Enter space-separated numbers, `all' or `none': 6 5

Info from file /usr/local/info/maxima.info:
 - Function: integerp (<expr>)
     Returns `true' if <expr> is an integer, otherwise `false'.


 - Function: askinteger (expr, integer)
 - Function: askinteger (expr)
 - Function: askinteger (expr, even)
 - Function: askinteger (expr, odd)
     `askinteger (expr, integer)' attempts to determine from the
     `assume' database whether `expr' is an integer.  `askinteger' will
     ask the user if it cannot tell otherwise, and attempt to install
     the information in the database if possible.  `askinteger (expr)'
     is equivalent to `askinteger (expr, integer)'.

     `askinteger (expr, even)' and `askinteger (expr, odd)' likewise
     attempt to determine if `expr' is an even integer or odd integer,
     respectively.

(%o1)                         false
@end example

Para usar um resultado em c@'alculos posteriores, voc@^e pode atribuir esse valor a uma vari@'avel ou
referir-se a esse mesmo valor atrav@'es de seu r@'otulo gerado automaticamente.  Adicionalmente, @kbd{%}
refere-se ao mais recente resultado calculado:

@example
(%i1) u: expand ((x + y)^6);
       6        5       2  4       3  3       4  2      5      6
(%o1) y  + 6 x y  + 15 x  y  + 20 x  y  + 15 x  y  + 6 x  y + x
(%i2) diff (u, x);
         5         4       2  3       3  2       4        5
(%o2) 6 y  + 30 x y  + 60 x  y  + 60 x  y  + 30 x  y + 6 x
(%i3) factor (%o2);
                                    5
(%o3)                      6 (y + x)
@end example

Maxima tem conhecimento sobre n@'umeros complexos e constantes num@'ericas:

@example
(%i1) cos(%pi);
(%o1)                          - 1
(%i2) exp(%i*%pi);
(%o2)                          - 1
@end example

Maxima pode fazer c@'alculos diferenciais e integrais:

@example
(%i1) u: expand ((x + y)^6);
       6        5       2  4       3  3       4  2      5      6
(%o1) y  + 6 x y  + 15 x  y  + 20 x  y  + 15 x  y  + 6 x  y + x
(%i2) diff (%, x);
         5         4       2  3       3  2       4        5
(%o2) 6 y  + 30 x y  + 60 x  y  + 60 x  y  + 30 x  y + 6 x
(%i3) integrate (1/(1 + x^3), x);
                                  2 x - 1
                2            atan(-------)
           log(x  - x + 1)        sqrt(3)    log(x + 1)
(%o3)    - --------------- + ------------- + ----------
                  6             sqrt(3)          3
@end example

Maxima pode resolver sistemas lineares e equa@,{c}@~oes c@'ubicas:

@example
(%i1) linsolve ([3*x + 4*y = 7, 2*x + a*y = 13], [x, y]);
                        7 a - 52        25
(%o1)              [x = --------, y = -------]
                        3 a - 8       3 a - 8
(%i2) solve (x^3 - 3*x^2 + 5*x = 15, x);
(%o2)       [x = - sqrt(5) %i, x = sqrt(5) %i, x = 3]
@end example

Maxima pode resolver sistemas de equa@,{c}@~oes n@~ao lineares.  Note que se voc@^e n@~ao
quer um resultado impresso, voc@^e pode encerrar seu comando com @kbd{$} em lugar de
encerrar com @kbd{;}.

@example
(%i1) eq_1: x^2 + 3*x*y + y^2 = 0$
(%i2) eq_2: 3*x + y = 1$
(%i3) solve ([eq_1, eq_2]);
              3 sqrt(5) + 7      sqrt(5) + 3
(%o3) [[y = - -------------, x = -----------], 
                    2                 2

                               3 sqrt(5) - 7        sqrt(5) - 3
                          [y = -------------, x = - -----------]]
                                     2                   2
@end example

Maxima pode gerar gr@'aficos de uma ou mais
fun@,{c}@~oes:

@example
(%i1) eq_1: x^2 + 3*x*y + y^2 = 0$
(%i2) eq_2: 3*x + y = 1$
(%i3) solve ([eq_1, eq_2]);
              3 sqrt(5) + 7      sqrt(5) + 3
(%o3) [[y = - -------------, x = -----------], 
                    2                 2

                               3 sqrt(5) - 7        sqrt(5) - 3
                          [y = -------------, x = - -----------]]
                                     2                   2
(%i4) kill(labels);
(%o0)                         done
(%i1) plot2d (sin(x)/x, [x, -20, 20]);
(%o1) 
(%i2) plot2d ([atan(x), erf(x), tanh(x)], [x, -5, 5]);
(%o2) 
(%i3) plot3d (sin(sqrt(x^2 + y^2))/sqrt(x^2 + y^2), [x, -12, 12], [y, -12, 12]);
(%o3) 
@end example

@c FOLLOWING TEXT DESCRIBES THE TCL/TK PLOT WINDOW WHICH IS NO LONGER THE DEFAULT
@c Moving the cursor to the top left corner of the plot window will pop up
@c a menu that will, among other things, let you generate a PostScript file
@c of the plot.  (By default, the file is placed in your home directory.)
@c You can rotate a 3D plot.