1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
|
\setlength{\voffset}{-2.54cm}
\setlength{\hoffset}{-2.54cm}
\documentclass[a4paper,12pt]{article}
\setlength{\evensidemargin}{1.5cm}
\setlength{\oddsidemargin}{1.5cm}
% ------------------------------------------------------------
% distncias verticais ------------> 29.7
% -----------------------------------------------------------
\setlength{\topmargin}{2.0cm} % -> 28.7
\setlength{\headheight}{0.50cm} % -> 28.2
\setlength{\headsep}{0.5cm} % -> 27.7
\setlength{\textheight}{24.7cm} % -> 03.0
\setlength{\footskip}{1.0cm} % -> 01.5
\setlength{\textwidth}{18cm}
\usepackage[latin1]{inputenc}
\title{Introduction to Maxima}
\author{Richard H. Rand\\ Dept. of Theoretical and Applied Mechanics, Cornell University
\thanks{Adapted from ``Perturbation Methods, Bifurcation Theory and Computer Algebra''
by Rand and Armbruster, Springer, 1987.
Adapted to \LaTeX\ and HTML by Nelson L. Dias (nldias@simepar.br),
SIMEPAR Technological Institute and Federal University of Paran, Brazil.
Updated by Robert Dodier, August 2005.}}
\date{\empty}
\begin{document}
\maketitle
\tableofcontents
\section{Introduction \label{sec:introduction}}
To invoke Maxima in Linux, type
\begin{verbatim}
maxima <enter>
\end{verbatim}
The computer will display a greeting of the sort:
\begin{verbatim}
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
This is a development version of Maxima. The function bug_report()
provides bug reporting information.
(%i1)
\end{verbatim}
The {\tt (\%i1)} is a ``label''. Each input or output line is labelled and can be referred to by its
own label for the rest of the session. {\tt i} labels denote your commands and {\tt o} labels
denote displays of the machine's response. \emph{Never use variable names like {\tt \%i1} or {\tt
\%o5}, as these will be confused with the lines so labeled}.
Maxima distinguishes lower and upper case.
All built-in functions have names which are lowercase only
({\tt sin}, {\tt cos}, {\tt save}, {\tt load}, etc).
Built-in constants have lowercase names ({\tt \%e}, {\tt \%pi}, {\tt inf}, etc).
If you type {\tt SIN(x)} or {\tt Sin(x)},
Maxima assumes you mean something other than the built-in {\tt sin} function.
User-defined functions and variables can have names which are lower or upper case or both.
{\tt foo(XY)}, {\tt Foo(Xy)}, {\tt FOO(xy)} are all different.
\section{Special keys and symbols \label{sec:keys}}
\begin{enumerate}
\item To end a Maxima session, type {\tt quit();}.
\item To abort a computation without leaving Maxima, type \verb+^C+.
(Here \verb+^+ stands for the control key, so
that \verb+^C+ means first press the key marked control and hold it down while pressing the C key.)
It is important for you to
know how to do this in case, for example, you begin a computation which is taking too long.
For example:
% sum (1/x^2, x, 1, 10000);
% ^C
\begin{verbatim}
(%i1) sum (1/x^2, x, 1, 10000);
Maxima encountered a Lisp error:
Console interrupt.
Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.
(%i2)
\end{verbatim}
\item In order to tell Maxima that you have finished your command, use the semicolon ({\tt ;}),
followed by a return. Note that the return key alone does not signal that you are done with your
input.
\item An alternative input terminator to the semicolon ({\tt ;}) is the dollar sign ({\tt \$}),
which, however, supresses the display of Maxima's computation. This is useful if you are computing
some long intermediate result, and you don't want to waste time having it displayed on the screen.
%\item If you want to completely delete the current input line (and start this line fresh from the
%beginning), type a double question mark ({\tt ??}).
\item If you wish to repeat a command which you have already given, say on line {\tt (\%i5)}, you may
do so without typing it over again by preceding its label with two single quotes ({\tt ''}), i.e., {\tt
''\%i5}. (Note that simply inputing {\tt \%i5} will not do the job --- try it.)
\item If you want to refer to the immediately preceding result computed my Maxima, you can either
use its {\tt o} label, or you can use the special symbol percent ({\tt \%}).
\item The standard quantities $e$ (natural log base), $i$ (square root of $-1$) and $\pi$
($3.14159\ldots$) are respectively referred to as \verb+%e+, \verb+%i+,
and \verb+%pi+. Note that the use of {\tt \%} here as a prefix
is completely unrelated to the use of {\tt \%} to refer to the preceding result computed.
\item In order to assign a value to a variable, Maxima uses the colon ({\tt :}), not the equal
sign. The equal sign is used for representing equations.
\end{enumerate}
\section{Arithmetic \label{sec:arithmetic}}
The common arithmetic operations are
\begin{description}
\item [{\tt +}] addition
\item [{\tt -}] subtraction
\item [{\tt *}] scalar multiplication
\item [{\tt /}] division
\item [{\tt \^}] or {\tt **} exponentiation
\item [{\tt .}] matrix multiplication
\item [{\tt sqrt(x)}] square root of {\tt x}.
\end{description}
Maxima's output is characterized by exact (rational) arithmetic. E.g.,
% 1/100 + 1/101;
\begin{verbatim}
(%i1) 1/100 + 1/101;
201
(%o1) -----
10100
\end{verbatim}
If irrational numbers are involved in a computation, they are kept in symbolic form:
% (1 + sqrt(2))^5;
% expand (%);
\begin{verbatim}
(%i2) (1 + sqrt(2))^5;
5
(%o2) (sqrt(2) + 1)
(%i3) expand (%);
(%o3) 29 sqrt(2) + 41
\end{verbatim}
However, it is often useful to express a result in decimal notation. This may be accomplished by
following the expression you want expanded by ``{\tt ,numer}'':
% %, numer;
\begin{verbatim}
(%i4) %, numer;
(%o4) 82.01219330881976
\end{verbatim}
Note the use here of \verb+%+
to refer to the previous result. In this version of Maxima, {\tt numer} gives 16 significant
figures, of which the last is often unreliable. However, Maxima can offer \emph{arbitrarily high
precision} by using the {\tt bfloat} function:
% bfloat (%o3);
\begin{verbatim}
(%i5) bfloat (%o3);
(%o5) 8.201219330881976B1
\end{verbatim}
The number of significant figures displayed is controlled by the Maxima variable {\tt fpprec}, which
has the default value of 16:
% fpprec;
\begin{verbatim}
(%i6) fpprec;
(%o6) 16
\end{verbatim}
Here we reset {\tt fpprec} to yield 100 digits:
% fpprec: 100;
% ''%i5;
\begin{verbatim}
(%i7) fpprec: 100;
(%o7) 100
(%i8) ''%i5;
(%o8) 8.20121933088197564152489730020812442785204843859314941221#
2371240173124187540110412666123849550160561B1
\end{verbatim}
Note the use of two single quotes ({\tt ''}) in {\tt (\%i8)} to repeat command {\tt (\%i5)}. Maxima can
handle very large numbers without approximation:
% 100!;
\begin{verbatim}
(%i9) 100!;
(%o9) 9332621544394415268169923885626670049071596826438162146859#
2963895217599993229915608941463976156518286253697920827223758251#
185210916864000000000000000000000000
\end{verbatim}
\section{Algebra \label{sec:algebra}}
Maxima's importance as a computer tool to facilitate analytical calculations becomes more evident
when we see how easily it does algebra for us. Here's an example in which a polynomial is expanded:
% (x + 3*y + x^2*y)^3;
% expand (%);
\begin{verbatim}
(%i1) (x + 3*y + x^2*y)^3;
2 3
(%o1) (x y + 3 y + x)
(%i2) expand (%);
6 3 4 3 2 3 3 5 2 3 2
(%o2) x y + 9 x y + 27 x y + 27 y + 3 x y + 18 x y
2 4 2 3
+ 27 x y + 3 x y + 9 x y + x
\end{verbatim}
Now suppose we wanted to substitute {\tt 5/z} for {\tt x} in the above expression:
\noindent\begin{minipage}{\textwidth}
% %o2, x=5/z;
\begin{verbatim}
(%i3) %o2, x=5/z;
2 3 2 3
135 y 675 y 225 y 2250 y 125 5625 y 1875 y
(%o3) ------ + ------ + ----- + ------- + --- + ------- + ------
z 2 2 3 3 4 4
z z z z z z
2 3
9375 y 15625 y 3
+ ------- + -------- + 27 y
5 6
z z
\end{verbatim}
\end{minipage}
The Maxima function {\tt ratsimp} will place this over a common denominator:
% ratsimp (%);
\begin{verbatim}
(%i4) ratsimp (%);
3 6 2 5 3 4
(%o4) (27 y z + 135 y z + (675 y + 225 y) z
2 3 3 2 2
+ (2250 y + 125) z + (5625 y + 1875 y) z + 9375 y z
3 6
+ 15625 y )/z
\end{verbatim}
Expressions may also be {\tt factor}ed:
% factor (%);
\begin{verbatim}
(%i5) factor (%);
2 3
(3 y z + 5 z + 25 y)
(%o5) ----------------------
6
z
\end{verbatim}
Maxima can obtain exact solutions to systems of nonlinear algebraic equations. In this example we
{\tt solve} three equations in the three unknowns {\tt a}, {\tt b}, {\tt c}:
% a + b*c = 1;
% b - a*c = 0;
% a + b = 5;
% solve ([%o6, %o7, %o8], [a, b, c]);
\begin{verbatim}
(%i6) a + b*c = 1;
(%o6) b c + a = 1
(%i7) b - a*c = 0;
(%o7) b - a c = 0
(%i8) a + b = 5;
(%o8) b + a = 5
(%i9) solve ([%o6, %o7, %o8], [a, b, c]);
25 sqrt(79) %i + 25 5 sqrt(79) %i + 5
(%o9) [[a = -------------------, b = -----------------,
6 sqrt(79) %i - 34 sqrt(79) %i + 11
sqrt(79) %i + 1 25 sqrt(79) %i - 25
c = ---------------], [a = -------------------,
10 6 sqrt(79) %i + 34
5 sqrt(79) %i - 5 sqrt(79) %i - 1
b = -----------------, c = - ---------------]]
sqrt(79) %i - 11 10
\end{verbatim}
Note that the display consists of a ``list'', i.e., some expression contained between two brackets
{\tt [ \ldots ]}, which itself contains two lists. Each of the latter contain a distinct solution
to the simultaneous equations.
Trigonometric identities are easy to manipulate in Maxima. The function {\tt trigexpand} uses the
sum-of-angles formulas to make the argument inside each trig function as simple as possible:
% sin(u + v) * cos(u)^3;
% trigexpand (%);
\begin{verbatim}
(%i10) sin(u + v) * cos(u)^3;
3
(%o10) cos (u) sin(v + u)
(%i11) trigexpand (%);
3
(%o11) cos (u) (cos(u) sin(v) + sin(u) cos(v))
\end{verbatim}
The function {\tt trigreduce}, on the other hand, converts an expression into a form which is a sum
of terms, each of which contains only a single {\tt sin} or {\tt cos}:
% trigreduce (%o10);
\begin{verbatim}
(%i12) trigreduce (%o10);
sin(v + 4 u) + sin(v - 2 u) 3 sin(v + 2 u) + 3 sin(v)
(%o12) --------------------------- + -------------------------
8 8
\end{verbatim}
The functions {\tt realpart} and {\tt imagpart} will return the real and imaginary parts of a
complex expression:
% w: 3 + k*%i;
% w^2 * %e^w;
% realpart (%);
\begin{verbatim}
(%i13) w: 3 + k*%i;
(%o13) %i k + 3
(%i14) w^2 * %e^w;
2 %i k + 3
(%o14) (%i k + 3) %e
(%i15) realpart (%);
3 2 3
(%o15) %e (9 - k ) cos(k) - 6 %e k sin(k)
\end{verbatim}
\section{Calculus \label{sec:calculus}}
Maxima can compute derivatives and integrals, expand in Taylor series, take limits, and obtain exact
solutions to ordinary differential equations. We begin by defining the symbol {\tt f} to be the
following function of {\tt x}:
% f: x^3 * %e^(k*x) * sin(w*x);
\begin{verbatim}
(%i1) f: x^3 * %e^(k*x) * sin(w*x);
3 k x
(%o1) x %e sin(w x)
\end{verbatim}
We compute the derivative of {\tt f} with respect to {\tt x}:
% diff (f, x);
\begin{verbatim}
(%i2) diff (f, x);
3 k x 2 k x
(%o2) k x %e sin(w x) + 3 x %e sin(w x)
3 k x
+ w x %e cos(w x)
\end{verbatim}
Now we find the indefinite integral of {\tt f} with respect to {\tt x}:
% integrate (f, x);
\begin{verbatim}
(%i3) integrate (f, x);
6 3 4 5 2 7 3
(%o3) (((k w + 3 k w + 3 k w + k ) x
6 2 4 4 2 6 2
+ (3 w + 3 k w - 3 k w - 3 k ) x
4 3 2 5 4 2 2 4
+ (- 18 k w - 12 k w + 6 k ) x - 6 w + 36 k w - 6 k )
k x 7 2 5 4 3 6 3
%e sin(w x) + ((- w - 3 k w - 3 k w - k w) x
5 3 3 5 2
+ (6 k w + 12 k w + 6 k w) x
5 2 3 4 3 3 k x
+ (6 w - 12 k w - 18 k w) x - 24 k w + 24 k w) %e
8 2 6 4 4 6 2 8
cos(w x))/(w + 4 k w + 6 k w + 4 k w + k )
\end{verbatim}
A slight change in syntax gives definite integrals:
% integrate (1/x^2, x, 1, inf);
% integrate (1/x, x, 0, inf);
\begin{verbatim}
(%i4) integrate (1/x^2, x, 1, inf);
(%o4) 1
(%i5) integrate (1/x, x, 0, inf);
Integral is divergent
-- an error. Quitting. To debug this try debugmode(true);
\end{verbatim}
Next we define the simbol {\tt g} in terms of {\tt f} (previously defined in {\tt \%i1}) and the
hyperbolic sine function, and find its Taylor series expansion (up to, say, order 3 terms) about the
point {\tt x = 0}:
\noindent\begin{minipage}{\textwidth}
% g: f / sinh(k*x)^4;
% taylor (g, x, 0, 3);
\begin{verbatim}
(%i6) g: f / sinh(k*x)^4;
3 k x
x %e sin(w x)
(%o6) -----------------
4
sinh (k x)
(%i7) taylor (g, x, 0, 3);
2 3 2 2 3 3
w w x (w k + w ) x (3 w k + w ) x
(%o7)/T/ -- + --- - -------------- - ---------------- + . . .
4 3 4 3
k k 6 k 6 k
\end{verbatim}
\end{minipage}
The limit of {\tt g} as {\tt x} goes to 0 is computed as follows:
% limit (g, x, 0);
\begin{verbatim}
(%i8) limit (g, x, 0);
w
(%o8) --
4
k
\end{verbatim}
Maxima also permits derivatives to be represented in unevaluated form (note the quote):
% 'diff (y, x);
\begin{verbatim}
(%i9) 'diff (y, x);
dy
(%o9) --
dx
\end{verbatim}
The quote operator in {\tt (\%i9)} means ``do not evaluate''. Without it, Maxima would have obtained
0:
% diff (y, x);
\begin{verbatim}
(%i10) diff (y, x);
(%o10) 0
\end{verbatim}
Using the quote operator we can write differential equations:
% 'diff (y, x, 2) + 'diff (y, x) + y;
\begin{verbatim}
(%i11) 'diff (y, x, 2) + 'diff (y, x) + y;
2
d y dy
(%o11) --- + -- + y
2 dx
dx
\end{verbatim}
Maxima's {\tt ode2} function can solve first and second order ODE's:
% ode2 (%o11, y, x);
\begin{verbatim}
(%i12) ode2 (%o11, y, x);
- x/2 sqrt(3) x sqrt(3) x
(%o12) y = %e (%k1 sin(---------) + %k2 cos(---------))
2 2
\end{verbatim}
\newpage
\section{Matrix calculations \label{sec:matrix}}
Maxima can compute the determinant, inverse and eigenvalues and eigenvectors of matrices which have
symbolic elements (i.e., elements which involve algebraic variables.) We begin by entering a matrix
{\tt m} element by element:
% m: entermatrix (3, 3);
\begin{verbatim}
(%i1) m: entermatrix (3, 3);
Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General
Answer 1, 2, 3 or 4 :
4;
Row 1 Column 1:
0;
Row 1 Column 2:
1;
Row 1 Column 3:
a;
Row 2 Column 1:
1;
Row 2 Column 2:
0;
Row 2 Column 3:
1;
Row 3 Column 1:
1;
Row 3 Column 2:
1;
Row 3 Column 3:
0;
Matrix entered.
[ 0 1 a ]
[ ]
(%o1) [ 1 0 1 ]
[ ]
[ 1 1 0 ]
\end{verbatim}
Next we find its transpose, determinant and inverse:
% transpose (m);
% determinant (m);
% invert (m), detout;
\begin{verbatim}
(%i2) transpose (m);
[ 0 1 1 ]
[ ]
(%o2) [ 1 0 1 ]
[ ]
[ a 1 0 ]
(%i3) determinant (m);
(%o3) a + 1
(%i4) invert (m), detout;
[ - 1 a 1 ]
[ ]
[ 1 - a a ]
[ ]
[ 1 1 - 1 ]
(%o4) -----------------
a + 1
\end{verbatim}
In {\tt (\%i4)}, the modifier {\tt detout} keeps the determinant outside the inverse. As a check, we
multiply {\tt m} by its inverse (note the use of the period to represent matrix multiplication):
% m . %o4;
% expand (%);
% factor (%);
\begin{verbatim}
(%i5) m . %o4;
[ - 1 a 1 ]
[ ]
[ 1 - a a ]
[ 0 1 a ] [ ]
[ ] [ 1 1 - 1 ]
(%o5) [ 1 0 1 ] . -----------------
[ ] a + 1
[ 1 1 0 ]
(%i6) expand (%);
[ a 1 ]
[ ----- + ----- 0 0 ]
[ a + 1 a + 1 ]
[ ]
[ a 1 ]
(%o6) [ 0 ----- + ----- 0 ]
[ a + 1 a + 1 ]
[ ]
[ a 1 ]
[ 0 0 ----- + ----- ]
[ a + 1 a + 1 ]
(%i7) factor (%);
[ 1 0 0 ]
[ ]
(%o7) [ 0 1 0 ]
[ ]
[ 0 0 1 ]
\end{verbatim}
In order to find the eigenvalues and eigenvectors of {\tt m}, we use the function {\tt
eigenvectors}:
\noindent\begin{minipage}{\textwidth}
% eigenvectors (m);
\begin{verbatim}
(%i8) eigenvectors (m);
sqrt(4 a + 5) - 1 sqrt(4 a + 5) + 1
(%o8) [[[- -----------------, -----------------, - 1],
2 2
sqrt(4 a + 5) - 1 sqrt(4 a + 5) - 1
[1, 1, 1]], [1, - -----------------, - -----------------],
2 a + 2 2 a + 2
sqrt(4 a + 5) + 1 sqrt(4 a + 5) + 1
[1, -----------------, -----------------], [1, - 1, 0]]
2 a + 2 2 a + 2
\end{verbatim}
In {\tt \%o8}, the first triple gives the eigenvalues of {\tt m} and the next gives their respective
multiplicities (here each is unrepeated). The next three triples give the corresponding
eigenvectors of {\tt m}. In order to extract from this expression one of these eigenvectors, we may
use the {\tt part} function:
% part (%, 2);
\begin{verbatim}
(%i9) part (%, 2);
sqrt(4 a + 5) - 1 sqrt(4 a + 5) - 1
(%o9) [1, - -----------------, - -----------------]
2 a + 2 2 a + 2
\end{verbatim}
\end{minipage}
\section{Programming in Maxima \label{sec:programming}}
So far, we have used Maxima in the interactive mode, rather like a calculator. However, for
computations which involve a repetitive sequence of commands, it is better to execute a program.
Here we present a short sample program to calculate the critical points of a function {\tt f} of two
variables {\tt x} and {\tt y}. The program cues the user to enter the function {\tt f}, then it
computes the partial derivatives $\mathtt{f_x}$ and $\mathtt{f_y}$, and then it uses the Maxima
command {\tt solve} to obtain solutions to $\mathtt{f_x = f_y = 0}$. The program is written outside
of Maxima with a text editor, and then loaded into Maxima with the {\tt batch} command. Here is the
program listing:
\begin{verbatim}
/* --------------------------------------------------------------------------
this is file critpts.max:
as you can see, comments in maxima are like comments in C
Nelson Luis Dias, nldias@simepar.br
created 20000707
updated 20000707
--------------------------------------------------------------------------- */
critpts():=(
print("program to find critical points"),
/* ---------------------------------------------------------------------------
asks for a function
--------------------------------------------------------------------------- */
f:read("enter f(x,y)"),
/* ---------------------------------------------------------------------------
echoes it, to make sure
--------------------------------------------------------------------------- */
print("f = ",f),
/* ---------------------------------------------------------------------------
produces a list with the two partial derivatives of f
--------------------------------------------------------------------------- */
eqs:[diff(f,x),diff(f,y)],
/* ---------------------------------------------------------------------------
produces a list of unknowns
--------------------------------------------------------------------------- */
unk:[x,y],
/* ---------------------------------------------------------------------------
solves the system
--------------------------------------------------------------------------- */
solve(eqs,unk)
)$
\end{verbatim}
The program (which is actually a function with no argument) is called {\tt critpts}. Each line is a
valid Maxima command which could be executed from the keyboard, and which is separated by the next
command by a comma. The partial derivatives are stored in a variable named {\tt eqs}, and the
unknowns are stored in {\tt unk}. Here is a sample run:
% batch ("critpts.max");
% critpts ();
\begin{verbatim}
(%i1) batch ("critpts.max");
batching #p/home/robert/tmp/maxima-clean/maxima/critpts.max
(%i2) critpts() := (print("program to find critical points"),
f : read("enter f(x,y)"), print("f = ", f),
eqs : [diff(f, x), diff(f, y)], unk : [x, y], solve(eqs, unk))
(%i3) critpts ();
program to find critical points
enter f(x,y)
%e^(x^3 + y^2)*(x + y);
2 3
y + x
f = (y + x) %e
(%o3) [[x = 0.4588955685487 %i + 0.35897908710869,
y = 0.49420173682751 %i - 0.12257873677837],
[x = 0.35897908710869 - 0.4588955685487 %i,
y = - 0.49420173682751 %i - 0.12257873677837],
[x = 0.41875423272348 %i - 0.69231242044203,
y = 0.4559120701117 - 0.86972626928141 %i],
[x = - 0.41875423272348 %i - 0.69231242044203,
y = 0.86972626928141 %i + 0.4559120701117]]
\end{verbatim}
\section{A partial list of Maxima functions}
See the Maxima reference manual {\tt doc/html/maxima\_toc.html} (under the main Maxima installation directory).
From Maxima itself, you can use {\tt describe(\textit{function name})}.
\begin{description}
\item[{\tt allroots(a)}] Finds all the (generally complex) roots of the polynomial equation {\tt
A}, and lists them in {\tt numer}ical format (i.e. to 16 significant figures).
\item[{\tt append(a,b)}] Appends the list {\tt b} to the list {\tt a}, resulting in a single
list.
\item[{\tt batch(a)}] Loads and runs a program with filename {\tt a}.
\item[{\tt coeff(a,b,c)}] Gives the coefficient of {\tt b} raised to the power {\tt c} in
expression {\tt a}.
\item[{\tt concat(a,b)}] Creates the symbol {\tt ab}.
\item[{\tt cons(a,b)}] Adds {\tt a} to the list {\tt b} as its first element.
\item[{\tt demoivre(a)}] Transforms all complex exponentials in {\tt a} to their trigonometric
equivalents.
\item[{\tt denom(a)}] Gives the denominator of {\tt a}.
\item[{\tt depends(a,b)}] Declares {\tt a} to be a function of {\tt b}. This is useful for
writing unevaluated derivatives, as in specifying differential equations.
\item[{\tt desolve(a,b)}] Attempts to solve a linear system {\tt a} of ODE's for unknowns {\tt b}
using Laplace transforms.
\item[{\tt determinant(a)}] Returns the determinant of the square matrix {\tt a}.
\item[{\tt diff(a,b1,c1,b2,c2,\ldots,bn,cn)}] Gives the mixed partial derivative of {\tt a} with
respect to each {\tt bi}, {\tt ci} times. For brevity, {\tt diff(a,b,1)} may be represented by
{\tt diff(a,b)}. {\tt 'diff(\ldots)} represents the unevaluated derivative, useful in specifying
a differential equation.
\item[{\tt eigenvalues(a)}] Returns two lists, the first being the eigenvalues of the square
matrix {\tt a}, and the second being their respective multiplicities.
\item[{\tt eigenvectors(a)}] Does everything that {\tt eigenvalues} does, and adds a list of the
eigenvectors of {\tt a}.
\item[{\tt entermatrix(a,b)}] Cues the user to enter an $\mathtt{a} \times\, \mathtt{b}$ matrix,
element by element.
\item[{\tt ev(a,b1,b2,\ldots,bn)}] Evaluates {\tt a} subject to the conditions {\tt bi}. In
particular the {\tt bi} may be equations, lists of equations (such as that returned by {\tt
solve}), or assignments, in which cases {\tt ev} ``plugs'' the {\tt bi} into {\tt a}. The {\tt
Bi} may also be words such as {\tt numer} (in which case the result is returned in numerical
format), {\tt detout} (in which case any matrix inverses in {\tt a} are performed with the
determinant factored out), or {\tt diff} (in which case all differentiations in {\tt a} are
evaluated, i.e., {\tt 'diff} in {\tt a} is replaced by {\tt diff}). For brevity in a manual
command (i.e., not inside a user-defined function), the {\tt ev} may be dropped, shortening the
syntax to {\tt a,b1,b2,\ldots,bn}.
\item[{\tt expand(a)}] Algebraically expands {\tt a}. In particular multiplication is
distributed over addition.
\item[{\tt exponentialize(a)}] Transforms all trigonometric functions in {\tt a} to their complex
exponential equivalents.
\item[{\tt factor(a)}] Factors {\tt a}.
\item[{\tt freeof(a,b)}] Is true if the variable {\tt a} is not part of the expression {\tt b}.
\item[{\tt grind(a)}] Displays a variable or function {\tt a} in a compact format. When used
with {\tt writefile} and an editor outside of Maxima, it offers a scheme for producing {\tt
batch} files which include Maxima-generated expressions.
\item[{\tt ident(a)}] Returns an $\mathtt{a} \times\, \mathtt{a}$ identity matrix.
\item[{\tt imagpart(a)}] Returns the imaginary part of {\tt a}.
\item[{\tt integrate(a,b)}] Attempts to find the indefinite integral of {\tt a} with respect to
{\tt b}.
\item[{\tt integrate(a,b,c,d)}] Attempts to find the indefinite integral of {\tt a} with respect to
{\tt b}. taken from $\mathtt{b=c}$ to $\mathtt{b=d}$. The limits of integration {\tt c} and {\tt
D} may be taken is {\tt inf} (positive infinity) of {\tt minf} (negative infinity).
\item[{\tt invert(a)}] Computes the inverse of the square matrix {\tt a}.
\item[{\tt kill(a)}] Removes the variable {\tt a} with all its assignments and properties from
the current Maxima environment.
\item[{\tt limit(a,b,c)}] Gives the limit of expression {\tt a} as variable {\tt b} approaches
the value {\tt c}. The latter may be taken as {\tt inf} of {\tt minf} as in {\tt integrate}.
\item[{\tt lhs(a)}] Gives the left-hand side of the equation {\tt a}.
\item[{\tt loadfile(a)}] Loads a disk file with filename {\tt a} from the current default
directory. The disk file must be in the proper format (i.e. created by a {\tt save} command).
\item[{\tt makelist(a,b,c,d)}] Creates a list of {\tt a}'s (each of which presumably depends on
{\tt b}), concatenated from $\mathtt{b=c}$ to $\mathtt{b=d}$
\item[{\tt map(a,b)}] Maps the function {\tt a} onto the subexpressions of {\tt b}.
\item[{\tt matrix(a1,a2,\ldots,an)}] Creates a matrix consisting of the rows {\tt ai}, where each
row {\tt ai} is a list of {\tt m} elements, {\tt [b1, b2, \ldots, bm]}.
\item[{\tt num(a)}] Gives the numerator of {\tt a}.
\item[{\tt ode2(a,b,c)}] Attempts to solve the first- or second-order ordinary differential
equation {\tt a} for {\tt b} as a function of {\tt c}.
\item[{\tt part(a,b1,b2,\ldots,bn)}] First takes the {\tt b1}th part of {\tt a}, then the {\tt
B2}th part of that, and so on.
\item[{\tt playback(a)}] Displays the last {\tt a} (an integer) labels and their associated
expressions. If {\tt a} is omitted, all lines are played back. See the Manual for other
options.
\item[{\tt ratsimp(a)}] Simplifies {\tt a} and returns a quotient of two polynomials.
\item[{\tt realpart(a)}] Returns the real part of {\tt a}.
\item[{\tt rhs(a)}] Gives the right-hand side of the equation {\tt a}.
\item[{\tt save(a,b1,b2,\ldots, bn)}] Creates a disk file with filename {\tt a} in the current
default directory, of variables, functions, or arrays {\tt bi}. The format of the file permits
it to be reloaded into Maxima using the {\tt loadfile} command. Everything (including labels)
may be {\tt save}d by taking {\tt b1} equal to {\tt all}.
\item[{\tt solve(a,b)}] Attempts to solve the algebraic equation {\tt a} for the unknown {\tt b}. A
list of solution equations is returned. For brevity, if {\tt a} is an equation of the form
$\mathtt{c = 0}$, it may be abbreviated simply by the expression {\tt c}.
\item[{\tt string(a)}] Converts {\tt a} to Maxima's linear notation (similar to Fortran's) just as if
it had been typed in and puts {\tt a} into the
buffer for possible editing. The {\tt string}'ed expression should not be used in a computation.
\item[{\tt stringout(a,b1,b2,\ldots,bn)}] Creates a disk file with filename {\tt a} in the current
default directory, of variables (e.g. labels) {\tt bi}. The file is in a text format and is not
reloadable into Maxima. However the strungout expressions can be incorporated into a Fortran,
Basic or C program with a minimum of editing.
\item[{\tt subst(a,b,c)}] Substitutes {\tt a} for {\tt b} in {\tt c}.
\item[{\tt taylor(a,b,c,d)}] Expands {\tt a} in a Taylor series in {\tt b} about $\mathtt{b=c}$,
up to and including the term $\mathtt{(b-c)^d}$. Maxima also supports Taylor expansions in more
than one independent variable; see the Manual for details.
\item[{\tt transpose(a)}] Gives the transpose of the matrix {\tt a}.
\item[{\tt trigexpand(a)}] Is a trig simplification function which uses the sum-of-angles
formulas to simplify the arguments of individual {\tt sin}'s or {\tt cos}'s. For example,
{\tt trigexpand(sin(x+y))} gives {\tt cos(x) sin(y) + sin(x) cos(y)}.
\item[{\tt trigreduce(a)}] Is a trig simplification function which uses trig identities to
convert products and powers of {\tt sin} and {\tt cos} into a sum of terms, each of which
contains only a single {\tt sin} or {\tt cos}. For example, \verb+trigreduce(sin(x)^2)+ gives
{\tt (1 - cos(2x))/2}.
\item[{\tt trigsimp(a)}] Is a trig simplification function which replaces {\tt tan}, {\tt sec},
etc., by their {\tt sin} and {\tt cos} equivalents. It also uses the identity
$\mathtt{sin()^2 + cos()^2 = 1}$.
\end{description}
\end{document}
|