1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
|
ttyoff: true;
/* This file contains functions and option settings for
variational optimization using the calculus of variations and
the maximum principle. For a description of its usage see the text
file OPTVAR USAGE. */
/* Set options to automatically print cpu time in milliseconds, force
attempted equation solution even when there are more variables than
unknowns, when an equation involves logs or exponentials, or when a
coefficient matrix is singular: */
time:grindswitch:solveradcan:singsolve:true$
/* establish D as an alias for the differentiation function: */
alias(d,diff)$
/* The name of this function has changed */
ic(soln,xa,ya,dya):=ic2(soln,xa,ya,dya)$
eval_when([translate,batch,demo,load,loadfile],
dv(a)::=buildq([a],define_variable(a,'a,any)))$
dv(aux)$ dv(c)$ dv(dd)$ dv(dydt)$ dv(k)$
ham(odes) := block(
/* This function computes the Hamiltonian & the auxiliary equations */
[t,nsv,statevars,auxvars,answ,elist,auxde], /*declare local vars*/
if not listp(odes) then odes: [odes], /* ensure list argument */
t: part(odes,1,1,2), /* get independent var from derivative */
nsv: length(odes), /* determine number of state variables */
/* Form list of state and auxiliary variables: */
statevars: auxvars: elist: [],
for i thru nsv do (statevars: endcons(part(odes,i,1,1), statevars),
auxvars: endcons(aux[i], auxvars)),
answ: [sum(rhs(odes[i])*aux[i], i, 1, nsv)], /* form Hamiltonian */
/* Form list of auxiliary equations and any trivial solutions: */
for i thru nsv do (
auxde: 'diff(aux[i],t) = -diff(answ[1], statevars[i]),
answ: endcons(auxde, answ),
if rhs(auxde)=0 then answ:endcons(aux[i]=c[i],answ)),
/* Form list of E-labels while displaying computed results: */
for item in answ do elist: endcons(first(apply('ldisp,[item])), elist),
elist) $
el(f, ylist, tlist) := block( /* This function computes the
Euler-Lagrange equations and any trivial first integrals: */
[ly,lt,fsub,energycon,fy,answ,elist], /* declare local variables */
if not listp(tlist) then tlist: [tlist],
if not listp(ylist) then ylist: [ylist],
/* compute number of independent & independent variables: */
ly: length(ylist), lt: length(tlist), fsub: f,
/* no conservation of energy if more than 1 independent var: */
energycon: is(lt=1),
for i thru ly do /* substitute for derivatives: */
for j thru lt do (dd[i,j]: derivdegree(fsub,ylist[i],tlist[j]),
if dd[i,j] > 1 then energycon: false,
for kk thru dd[i,j] do
fsub:subst('diff(ylist[i],tlist[j],kk)=dydt[i,j,kk], fsub)),
/* no conservation of energy if independent var. in integrand: */
if not freeof(tlist[1],fsub) then energycon: false,
answ: if energycon then [fsub] else [], /* form list of results: */
for i thru ly do (fy: diff(fsub,ylist[i]),
answ: endcons(
sum(sum((-1)^(kk-1)*'diff(diff(fsub,dydt[i,j,kk]),tlist[j],kk),
kk,1,dd[i,j]), j, 1, lt) = fy, answ),
if energycon then answ[1]: answ[1] -
diff(fsub,dydt[i,1,1])*'diff(ylist[i],tlist[1]),
if fy=0 and lt=1 and dd[i,1]=1 then /* momentum integral */
answ: endcons(diff(fsub,dydt[i,1,1])=k[i], answ)),
if energycon then answ[1]: answ[1]=k[0],
for i thru ly do /* resubstitute original derivatives: */
for j thru lt do
for kk thru dd[i,j] do
answ:subst(dydt[i,j,kk]='diff(ylist[i],tlist[j],kk), answ),
elist:[], /* form list of E-labels while displaying results: */
for eqn in answ do elist: endcons(first(apply('ldisp,[eqn])), elist),
elist) $
convert(odes, ylist, t) := block([answ],
/* This function converts output of EL or HAM to form required by
DESOLVE from the file DESOLN. */
if not listp(ylist) then ylist: [ylist],
answ: apply('ev,[odes,'eval]), /* if E-labels, replace with values */
for yy in ylist do answ: subst(yy=funmake(yy,[t]), answ),
return(answ)) $
ttyoff: false $
|