1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
/* -*- Mode: MACSYMA; Package: MAXIMA -*- */
/* (c) Copyright 1981 Massachusetts Institute of Technology */
/* The Ordinary Differential Equation Solver.
This package consists primarily of a set of routines taken from Moses'
thesis and Boyce & DiPrima for solving O.D.E.s of 1st and 2nd order.
The top-level routines are ODE2, IC1, IC2, and BC2. */
/* The following declares help the translated code. We also used the
convention of %f% being the special rather than declaring f special
since other programs might use f */
eval_when(translate,
declare_translated(boundtest,noteqn,nlxy,nly,nlx,xcc2,bessel2,euler2,
pttest,exact2,cc2,genhom,solvebernoulli,solvehom,integfactor,exact,
separable,solvelnr,solve1,linear2,reduce,hom2,pr2,varp,desimp,failure,
ode1a,ftest,ode2a));
/* Remove some of the specials like x and y at the end */
declare(pt,special,yp,special,yold,special,%q%,special,x,special,y,special,
method,special,%f%,special,
%g%,special,msg1,special,
msg2,special,intfactor,special,odeindex,special,singsolve,special);
ode2(eq,yold,x):=block([derivsubst:false,ynew],
subst(yold,ynew,ode2a(subst(ynew,yold,eq),ynew,x)))$
ode2a(eq,y,x):=block([de,a1,a2,a3,a4,%q%,msg1],
intfactor: false, method: 'none,
if freeof('diff(y,x,2),eq)
then if ftest(ode1a(eq,y,x)) then return(%q%) else return(false),
if derivdegree(de: desimp(lhs(eq)-rhs(eq)),y,x) # 2
then return(failure(msg1,eq)),
a1: coeff(de,'diff(y,x,2)),
a2: coeff(de,'diff(y,x)),
a3: coeff(de,y),
a4: expand(de - a1*'diff(y,x,2) - a2*'diff(y,x) - a3*y),
if pr2(a1) and pr2(a2) and pr2(a3) and pr2(a4) and
ftest(hom2(a1,a2,a3))
then if a4=0 then return(%q%) else return(varp(%q%,-a4/a1)),
if ftest(reduce(de)) then return(%q%) else return(false))$
ode1a(eq,y,x):=block([de,des], /* f, g, %q% */
if derivdegree(de: expand(lhs(eq)-rhs(eq)),y,x) # 1
then return(failure(msg1,eq)),
if linear2(de,'diff(y,x)) = false then return(failure(msg2,eq)),
des: desimp(de),
de: solve1(des,'diff(y,x)),
if ftest(solvelnr(de)) then return(%q%),
if ftest(separable(de)) then return(%q%),
if ftest(integfactor(%g%,%f%)) then return(exact(%q%*%g%,%q%*%f%)),
/* linear2 binds %f% and %g% */
if linear2(des,'diff(y,x)) = false then return(failure(msg2,eq)),
if ftest(integfactor(%g%,%f%)) then return(exact(%q%*%g%,%q%*%f%)),
if ftest(solvehom(de)) then return(%q%),
if ftest(solvebernoulli(de)) then return(%q%),
if ftest(genhom(de)) then return(%q%) else return(false))$
desimp(eq):=block([inflag:true],
eq: factor(eq),
if atom(eq) or not(inpart(eq,0)="*") then return(expand(eq)),
eq: map(lambda([u], if freeof(nounify('diff),u) then 1 else u), eq),
return(expand(eq)))$
pr2(%f%):=freeof(y,'diff(y,x),'diff(y,x,2),%f%)$
ftest(call):=is((%q%: call) # false)$
solve1(eq,y):=block([programmode:true],first(solve(eq,y)))$
/* linear2 tests for the form fx+%g% */
linear2(expr,x):=block([],
%f%: ratcoef(expr,x),
if not(freeof(x,%f%)) then return(false),
%g%: ratsimp(expr - %f%*x),
return(freeof(x,%g%)))$
/* variables used to denote constants: %C, %K1, %K2.
METHOD denotes the method of solution.
INTFACTOR denotes the integrating factor.
ODEINDEX denotes the index for Bernoulli's method or for the genhom method.
YP denotes the particular solution for the variation of parameters technique. */
/* B&DiP, pp. 13-14 */
solvelnr(eq):=block([%f%,%g%,w,%c],
if linear2(rhs(eq),y) = false then return(false),
w: %e^(integrate(%f%,x)),
method: 'linear,
return(y=w*(integrate(%g%/w,x)+%c)))$
/* B&DiP, pp. 29-34 */
separable(eq):=block([xpart:[],ypart:[],flag:false,inflag:true,%c],
eq: factor(rhs(eq)),
if atom(eq) or not(inpart(eq,0)="*") then eq: [eq],
for u in eq do
if freeof(x,u) then ypart: cons(u,ypart) else
if freeof(y,u) then xpart: cons(u,xpart) else return(flag: true),
if flag = true then return(false),
if xpart = [] then xpart: 1 else xpart: apply("*",xpart),
if ypart = [] then ypart: 1 else ypart: apply("*",ypart),
method: 'separable,
return(ratsimp(integrate(1/ypart,y)) = ratsimp(integrate(xpart,x)) + %c))$
/* B&DiP, pp. 34-41 */
integfactor(m,n):=block([b1,b2,dmdx,dmdy,dndx,dndy,dd,%e_to_numlog:true],
dmdy: ratsimp(diff(m,y)), dndx: ratsimp(diff(n,x)),
if (dd: dmdy-dndx) = 0 then return(1),
dmdx: ratsimp(diff(m,x)), dndy: ratsimp(diff(n,y)),
if dmdx-dndy=0 and dmdy+dndx=0 then return(1/(m^2 + n^2)),
if freeof(y, (b1: ratsimp(dd/n))) then return(%e^(integrate(b1,x))),
if freeof(x, (b2: ratsimp(dd/m)))
then return(%e^(integrate(-b2,y))) else return(false))$
exact(m,n):=block([a,ynew,%c],
intfactor: subst(yold,ynew,%q%),
a: integrate(ratsimp(m),x),
method: 'exact,
return(ratsimp(a + integrate(ratsimp(n-diff(a,y)),y)) = %c))$
/* B&DiP, pp. 43-44 */
solvehom(eq):=block([qq,a1,a2,%c],
a1: ratsimp(subst(x*qq,y,rhs(eq))),
if not(freeof(x,a1)) then return(false),
a2: ratsimp(subst(y/x,qq,integrate(1/(a1-qq),qq))),
method: 'homogeneous,
return(%c*x = %e^a2))$
/* B&DiP, p. 21, problem 15 */
solvebernoulli(eq):=block([a1,a2,n,%c],
a1: coeff(eq: expand(rhs(eq)),y,1),
if not(freeof(y,a1)) then return(false),
n: hipow(ratsimp(eq-a1*y),y),
a2: coeff(eq,y,n),
if not(freeof(y,a2)) or not(freeof(x,y,n)) or n=0
or not(eq = expand(a1*y + a2*y^n))
then return(false),
a1: integrate(a1,x),
method: 'bernoulli, odeindex: n,
return(y = %e^a1 * ((1-n)*integrate(a2*%e^((n-1)*a1),x) + %c) ^ (1/(1-n))))$
/* Generalized homogeneous equation: y' = y/x * H(yx^n)
Reference: Moses' thesis. */
genhom(eq):=block([%g%,u,n,a1,a2,a3,%c],
%g%: rhs(eq)*x/y,
n: ratsimp(x*diff(%g%,x)/(y*diff(%g%,y))),
if not(freeof(x,y,n)) then return(false),
a1: ratsimp(subst(u/x^n,y,%g%)),
a2: integrate(1/(u*(n+a1)),u),
if not(freeof(nounify('integrate),a2)) then return(false),
a3: ratsimp(subst(y*x^n,u,a2)),
method: 'genhom, odeindex: n,
return(x = %c*%e^a3))$
/* Chain of solution methods for second order linear homogeneous equations */
hom2(a1,a2,a3):=block([ap,aq,pt],
ap: a2/a1, aq: a3/a1,
if ftest(cc2(ap,aq,y,x)) then return(%q%),
if ftest(exact2(a1,a2,a3)) then return(%q%),
if (pt: pttest(ap)) = false then go(end),
if ftest(euler2(ap,aq)) then return(%q%),
if ftest(bessel2(ap,aq)) then return(%q%),
end,
if ftest(xcc2(ap,aq)) then return(%q%) else return(false))$
/* B&DiP, pp. 106-112 */
cc2(%f%,%g%,y,x):=block([a,sign,radexpand:'all,alpha,zero,pos,ynew,%k1,%k2],
if not(freeof(x,y,%f%) and freeof(x,y,%g%)) then return(false),
method: 'constcoeff,
a: %f%^2-4*%g%,
if freeof(%i,a) then sign: asksign(a)
else (radexpand: true, sign: 'pnz),
if sign = zero then return(y = %e^(-%f%*x/2) * (%k1 + %k2*x)),
if sign = pos then
return(y = %k1*%e^((-%f%+sqrt(a))*x/2) + %k2*%e^((-%f%-sqrt(a))*x/2)),
a: -a, alpha: x*sqrt(a)/2,
if exponentialize = false then
return(y = %e^(-%f%*x/2) * (%k1*sin(alpha) + %k2*cos(alpha))),
return(y = %e^(-%f%*x/2) * (%k1*exp(%i*alpha) + %k2*exp(-%i*alpha))))$
/* B&DiP, pp. 98-99, problem 17 */
exact2(a1,a2,a3):=block([b1,%k1,%k2],
if ratsimp(diff(a1,x,2) - diff(a2,x) + a3) = 0
then b1: %e^(-integrate(ratsimp((a2 - diff(a1,x))/a1), x))
else return(false),
method: 'exact,
return(y = %k1*b1*integrate(1/(a1*b1),x) + %k2*b1))$
/* B&DiP, pp. 113-114, problem 16 */
xcc2(ap,aq):=block([d,b1,z,radexpand:'all],
if aq=0 then return(false),
d: ratsimp((diff(aq,x) + 2*ap*aq)/(2*aq^(3/2))),
if freeof(x,y,d) then b1: cc2(d,1,y,z) else return(false),
method: 'xformtoconstcoeff,
return(subst(integrate(sqrt(aq),x),z,b1)))$
/* B&DiP, pp. 124-127 */
varp(soln,%g%):=block([y1,y2,y3,y4,wr,heuristic:false,%k1,%k2],
y1: ratsimp(subst([%k1=1,%k2=0],rhs(soln))),
y2: ratsimp(subst([%k1=0,%k2=1],rhs(soln))),
wr: y1*diff(y2,x) - y2*diff(y1,x),
if wr=0 then return(false),
if method='constcoeff and not(freeof('sin,wr)) and not(freeof('cos,wr))
then (heuristic: true, wr: ratsimp(trigreduce(wr))),
y3: ratsimp(y1*%g%/wr),
y4: ratsimp(y2*%g%/wr),
yp: ratsimp(y2*integrate(y3,x) - y1*integrate(y4,x)),
if heuristic=true then yp: ratsimp(trigreduce(yp)),
method: 'variationofparameters,
return(y = rhs(soln) + yp))$
/* Methods to reduce second-order equations free of x or y */
reduce(eq):=block([b1,qq],
b1: subst(['diff(y,x,2)=qq, 'diff(y,x)=qq], eq),
if freeof(y,b1) then return(nlx(eq)),
if freeof(x,b1) then return(nly(eq)) else return(false))$
/* B&DiP, p. 89, problem 1 */
nlx(eq):=block([de,b,a1,v,%k1,%c],
de: subst(['diff(y,x,2)='diff(v,x), 'diff(y,x)=v], eq),
if (b: ode1a(de,v,x)) = false then return(false),
a1: subst([v='diff(y,x),%c=%k1], b),
if ftest(nlxy(a1,'diff(y,x)))
then (method: 'freeofy, return(%q%)) else return(false))$
/* B&DiP, p. 89, problem 2 */
nly(eq):=block([de,b,a1,yz,v,%c,%k1],
de: subst(['diff(y,x,2)=v*'diff(v,yz), 'diff(y,x)=v, y=yz], eq),
if (b: ode1a(de,v,yz)) = false then return(false),
a1: subst([v='diff(y,x),yz=y,%c=%k1], b),
if ftest(nlxy(a1,'diff(y,x)))
then (method: 'freeofx, return(%q%)) else return(false))$
nlxy(eq,de):=block([programmode:true,eq1,%k2,%c],
eq1: solve(eq,de),
eq1: maplist(lambda([zz], if ftest(ode1a(zz,y,x))
then subst(%k2,%c,%q%) else false),
eq1),
if length(eq1)=1 then return(first(eq1)) else return(eq1))$
/* This is a start on a series of programs to recognize and
solve certain special classes of differential equations.
In particular, to start with, is the Euler, or equidimensional,
equation: x^2*y'' + axy' + by = 0. Actually, the form we
will investigate is: y'' + ay'/x + by/x^2 = 0.
PTTEST analyzes the y' term for a coefficient of the form
a/(x-pt), since we must assume that the equation may be
translated. */
pttest(a):=block([a1,a2,a3],
if (a1: ratsimp(a)) = 0 then return(false),
a1: expand(1/a1),
if (a2: coeff(a1,x,1)) = 0 then return(false),
if not(freeof(x,a2)) then return(false),
a3: coeff(a1,x,0),
if not(a1 = a2*x + a3) then return(false) else return(-a3/a2))$
euler2(a,b):=block([dc,rp,ip,alpha,beta,sign,radexpand:false,%k1,%k2,pos,zero],
if not(freeof(x,y,beta: ratsimp(b*(x-pt)^2))) then return(false),
method: 'euler, alpha: a*(x-pt),
dc: ratsimp((alpha-1)^2 - 4*beta),
rp: ratsimp(-(alpha-1)/2),
sign: asksign(dc),
if sign = zero then return(y = (x-pt)^rp * (%k1 + %k2*log(x-pt))),
if sign = pos then
(ip: sqrt(dc)/2, return(y = %k1*(x-pt)^(rp+ip) + %k2*(x-pt)^(rp-ip))),
dc: -dc, ip: sqrt(dc)/2,
return(y = (x-pt)^rp * (%k1*sin(ip*log(x-pt)) + %k2*cos(ip*log(x-pt)))))$
bessel2(a,b):=block([nu,b1,intp,radexpand:'all,%k1,%k2],
if not(freeof(x,y,b1: ratsimp((1-b)*(x-pt)^2))) then return(false),
if ratsimp(a*(x-pt)) # 1 then return(false),
nu: sqrt(b1), method: 'bessel,
if nu = 1/2 then return(y = (%k1*sin(x-pt) + %k2*cos(x-pt))/sqrt(x-pt)),
if featurep(nu,'integer) then intp: 'y else if numberp(nu) then intp: 'n,
loop,
if not(intp='y or intp='n)
then (intp: readonly("is", nu, "an integer? type y or n."), go(loop)),
if intp = 'y then return(y = %k1*bessel_j(nu,x-pt) + %k2*bessel_y(nu,x-pt)),
return(y = %k1*bessel_j(nu,x-pt) + %k2*bessel_j(-nu,x-pt)))$
ic1(soln,xc,yc):=
block([%c],
(noteqn(xc), noteqn(yc), boundtest('%c,%c),
ratsimp(subst(['%c=rhs(solve1(subst([xc,yc],soln),%c))],soln))))$
bc2(soln,xa,ya,xb,yb):=
block([programmode:true,backsubst:true,singsolve:true,temp,%k1,%k2],
noteqn(xa), noteqn(ya), noteqn(xb), noteqn(yb),
boundtest('%k1,%k1), boundtest('%k2,%k2),
temp: maplist(lambda([zz], subst(zz,soln)),
solve([subst([xa,ya],soln),
subst([xb,yb],soln)],
[%k1,%k2])),
if length(temp)=1 then return(first(temp)) else return(temp))$
ic2(soln,xa,ya,dya):=
block([programmode:true,backsubst:true,singsolve:true,temp,%k2,%k1],
noteqn(xa), noteqn(ya), noteqn(dya),
boundtest('%k1,%k1), boundtest('%k2,%k2),
temp: lhs(soln) - rhs(soln),
temp: maplist(lambda([zz], subst(zz,soln)),
solve([subst([xa,ya],soln), subst([dya,xa],
lhs(dya)=-subst(0,lhs(dya),diff(temp,lhs(xa)))
/diff(temp,lhs(ya)))],
[%k1,%k2])),
if length(temp)=1 then return(first(temp)) else return(temp))$
noteqn(x):=if atom(x) or not inpart(x,0)="="
then (disp(x), disp("not an equation"), error())$
boundtest(x,y):=
if x#y then (disp(x), disp("must not be bound"), error())$
failure(msg,eq):=
block([ynew], (if not status(feature,"ode")
then (ldisp(subst(yold,ynew,eq)), disp(msg)),
false))$
eval_when([translate,load,compile],
remove(x,special,y,special))$
msg1: "not a proper differential equation"$
msg2: "first order equation not linear in y'"$
|