1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
|
@menu
* Introduction to Program Flow::
* Functions and Variables for Program Flow::
@end menu
@node Introduction to Program Flow, Functions and Variables for Program Flow, Program Flow, Program Flow
@section Introduction to Program Flow
Maxima provides a @code{do} loop for iteration, as well as more primitive
constructs such as @code{go}.
@c end concepts Program Flow
@node Functions and Variables for Program Flow, , Introduction to Program Flow, Program Flow
@section Functions and Variables for Program Flow
@deffn {Function} backtrace ()
@deffnx {Function} backtrace (@var{n})
Prints the call stack, that is, the list of functions which
called the currently active function.
@code{backtrace()} prints the entire call stack.
@code{backtrace (@var{n})} prints the @var{n} most recent
functions, including the currently active function.
@c IS THIS STATMENT REALLY NEEDED ??
@c (WHY WOULD ANYONE BELIEVE backtrace CANNOT BE CALLED OUTSIDE A DEBUGGING CONTEXT??)
@code{backtrace} can be called from a script, a function, or the interactive prompt
(not only in a debugging context).
Examples:
@itemize @bullet
@item
@code{backtrace()} prints the entire call stack.
@example
(%i1) h(x) := g(x/7)$
(%i2) g(x) := f(x-11)$
(%i3) f(x) := e(x^2)$
(%i4) e(x) := (backtrace(), 2*x + 13)$
(%i5) h(10);
#0: e(x=4489/49)
#1: f(x=-67/7)
#2: g(x=10/7)
#3: h(x=10)
9615
(%o5) ----
49
@end example
@end itemize
@itemize @bullet
@item
@code{backtrace (@var{n})} prints the @var{n} most recent
functions, including the currently active function.
@example
(%i1) h(x) := (backtrace(1), g(x/7))$
(%i2) g(x) := (backtrace(1), f(x-11))$
(%i3) f(x) := (backtrace(1), e(x^2))$
(%i4) e(x) := (backtrace(1), 2*x + 13)$
(%i5) h(10);
#0: h(x=10)
#0: g(x=10/7)
#0: f(x=-67/7)
#0: e(x=4489/49)
9615
(%o5) ----
49
@end example
@end itemize
@opencatbox
@category{Debugging}
@closecatbox
@end deffn
@deffn {Special operator} do
The @code{do} statement is used for performing iteration. Due to its
great generality the @code{do} statement will be described in two parts.
First the usual form will be given which is analogous to that used in
several other programming languages (Fortran, Algol, PL/I, etc.); then
the other features will be mentioned.
There are three variants of this form that differ only in their
terminating conditions. They are:
@itemize @bullet
@item
@code{for @var{variable}: @var{initial_value} step @var{increment}
thru @var{limit} do @var{body}}
@item
@code{for @var{variable}: @var{initial_value} step @var{increment}
while @var{condition} do @var{body}}
@item
@code{for @var{variable}: @var{initial_value} step @var{increment}
unless @var{condition} do @var{body}}
@end itemize
@c UGH. DO WE REALLY NEED TO MENTION THIS??
(Alternatively, the @code{step} may be given after the termination condition
or limit.)
@var{initial_value}, @var{increment}, @var{limit}, and @var{body} can be any
expressions. If the increment is 1 then "@code{step 1}" may be omitted.
The execution of the @code{do} statement proceeds by first assigning
the @var{initial_value} to the @var{variable} (henceforth called the
control-variable). Then: (1) If the control-variable has exceeded the
limit of a @code{thru} specification, or if the condition of the
@code{unless} is @code{true}, or if the condition of the @code{while}
is @code{false} then the @code{do} terminates. (2) The @var{body} is
evaluated. (3) The increment is added to the control-variable. The
process from (1) to (3) is performed repeatedly until the termination
condition is satisfied. One may also give several termination
conditions in which case the @code{do} terminates when any of them is
satisfied.
In general the @code{thru} test is satisfied when the control-variable
is greater than the @var{limit} if the @var{increment} was
non-negative, or when the control-variable is less than the
@var{limit} if the @var{increment} was negative. The
@var{increment} and @var{limit} may be non-numeric expressions as
long as this inequality can be determined. However, unless the
@var{increment} is syntactically negative (e.g. is a negative number)
at the time the @code{do} statement is input, Maxima assumes it will
be positive when the @code{do} is executed. If it is not positive,
then the @code{do} may not terminate properly.
Note that the @var{limit}, @var{increment}, and termination condition are
evaluated each time through the loop. Thus if any of these involve
much computation, and yield a result that does not change during all
the executions of the @var{body}, then it is more efficient to set a
variable to their value prior to the @code{do} and use this variable in the
@code{do} form.
The value normally returned by a @code{do} statement is the atom
@code{done}. However, the function @code{return} may be used inside
the @var{body} to exit the @code{do} prematurely and give it any
desired value. Note however that a @code{return} within a @code{do}
that occurs in a @code{block} will exit only the @code{do} and not the
@code{block}. Note also that the @code{go} function may not be used
to exit from a @code{do} into a surrounding @code{block}.
The control-variable is always local to the @code{do} and thus any
variable may be used without affecting the value of a variable with
the same name outside of the @code{do}. The control-variable is unbound
after the @code{do} terminates.
@example
(%i1) for a:-3 thru 26 step 7 do display(a)$
a = - 3
a = 4
a = 11
a = 18
a = 25
@end example
@example
(%i1) s: 0$
(%i2) for i: 1 while i <= 10 do s: s+i;
(%o2) done
(%i3) s;
(%o3) 55
@end example
Note that the condition @code{while i <= 10}
is equivalent to @code{unless i > 10} and also @code{thru 10}.
@example
(%i1) series: 1$
(%i2) term: exp (sin (x))$
(%i3) for p: 1 unless p > 7 do
(term: diff (term, x)/p,
series: series + subst (x=0, term)*x^p)$
(%i4) series;
7 6 5 4 2
x x x x x
(%o4) -- - --- - -- - -- + -- + x + 1
90 240 15 8 2
@end example
which gives 8 terms of the Taylor series for @code{e^sin(x)}.
@example
(%i1) poly: 0$
(%i2) for i: 1 thru 5 do
for j: i step -1 thru 1 do
poly: poly + i*x^j$
(%i3) poly;
5 4 3 2
(%o3) 5 x + 9 x + 12 x + 14 x + 15 x
(%i4) guess: -3.0$
(%i5) for i: 1 thru 10 do
(guess: subst (guess, x, 0.5*(x + 10/x)),
if abs (guess^2 - 10) < 0.00005 then return (guess));
(%o5) - 3.162280701754386
@end example
This example computes the negative square root of 10 using the
Newton- Raphson iteration a maximum of 10 times. Had the convergence
criterion not been met the value returned would have been @code{done}.
Instead of always adding a quantity to the control-variable one
may sometimes wish to change it in some other way for each iteration.
In this case one may use @code{next @var{expression}} instead of @code{step @var{increment}}.
This will cause the control-variable to be set to the
result of evaluating @var{expression} each time through the loop.
@example
(%i6) for count: 2 next 3*count thru 20 do display (count)$
count = 2
count = 6
count = 18
@end example
@c UGH. DO WE REALLY NEED TO MENTION THIS??
As an alternative to @code{for @var{variable}: @var{value} ...do...}
the syntax @code{for @var{variable} from @var{value} ...do...} may be
used. This permits the @code{from @var{value}} to be placed after the
@code{step} or @code{next} value or after the termination condition.
If @code{from @var{value}} is omitted then 1 is used as the initial
value.
Sometimes one may be interested in performing an iteration where
the control-variable is never actually used. It is thus permissible
to give only the termination conditions omitting the initialization
and updating information as in the following example to compute the
square-root of 5 using a poor initial guess.
@example
(%i1) x: 1000$
(%i2) thru 20 do x: 0.5*(x + 5.0/x)$
(%i3) x;
(%o3) 2.23606797749979
(%i4) sqrt(5), numer;
(%o4) 2.23606797749979
@end example
If it is desired one may even omit the termination conditions entirely
and just give @code{do @var{body}} which will continue to evaluate the
@var{body} indefinitely. In this case the function @code{return}
should be used to terminate execution of the @code{do}.
@example
(%i1) newton (f, x):= ([y, df, dfx], df: diff (f ('x), 'x),
do (y: ev(df), x: x - f(x)/y,
if abs (f (x)) < 5e-6 then return (x)))$
(%i2) sqr (x) := x^2 - 5.0$
(%i3) newton (sqr, 1000);
(%o3) 2.236068027062195
@end example
@c DUNNO IF WE NEED THIS LEVEL OF DETAIL; THIS ARTICLE IS GETTING PRETTY LONG
(Note that @code{return}, when executed, causes the current value of
@code{x} to be returned as the value of the @code{do}. The @code{block} is exited and
this value of the @code{do} is returned as the value of the @code{block} because the
@code{do} is the last statement in the block.)
One other form of the @code{do} is available in Maxima. The syntax is:
@example
for @var{variable} in @var{list} @var{end_tests} do @var{body}
@end example
The elements of @var{list} are any expressions which will successively
be assigned to the @code{variable} on each iteration of the
@var{body}. The optional termination tests @var{end_tests} can be
used to terminate execution of the @code{do}; otherwise it will
terminate when the @var{list} is exhausted or when a @code{return} is
executed in the @var{body}. (In fact, @code{list} may be any
non-atomic expression, and successive parts are taken.)
@example
(%i1) for f in [log, rho, atan] do ldisp(f(1))$
(%t1) 0
(%t2) rho(1)
%pi
(%t3) ---
4
(%i4) ev(%t3,numer);
(%o4) 0.78539816
@end example
@opencatbox
@category{Programming}
@closecatbox
@end deffn
@deffn {Function} errcatch (@var{expr_1}, ..., @var{expr_n})
Evaluates @var{expr_1}, ..., @var{expr_n} one by one and
returns @code{[@var{expr_n}]} (a list) if no error occurs. If an
error occurs in the evaluation of any argument, @code{errcatch}
prevents the error from propagating and
returns the empty list @code{[]} without evaluating any more arguments.
@code{errcatch}
is useful in @code{batch} files where one suspects an error might occur which
would terminate the @code{batch} if the error weren't caught.
@opencatbox
@category{Programming}
@closecatbox
@end deffn
@deffn {Function} error (@var{expr_1}, ..., @var{expr_n})
@deffnx {System variable} error
Evaluates and prints @var{expr_1}, ..., @var{expr_n},
and then causes an error return to top level Maxima
or to the nearest enclosing @code{errcatch}.
The variable @code{error} is set to a list describing the error.
The first element of @code{error} is a format string,
which merges all the strings among the arguments @var{expr_1}, ..., @var{expr_n},
and the remaining elements are the values of any non-string arguments.
@code{errormsg()} formats and prints @code{error}.
This is effectively reprinting the most recent error message.
@opencatbox
@category{Programming}
@closecatbox
@end deffn
@deffn {Function} errormsg ()
Reprints the most recent error message.
The variable @code{error} holds the message,
and @code{errormsg} formats and prints it.
@opencatbox
@category{Programming}
@closecatbox
@end deffn
@c REPHRASE
@c AT LEAST SHOULD LIST VARIANTS HERE
@deffn {Special operator} for
Used in iterations. See @code{do} for a description of
Maxima's iteration facilities.
@opencatbox
@category{Programming}
@closecatbox
@end deffn
@deffn {Function} go (@var{tag})
is used within a @code{block} to transfer control to the statement
of the block which is tagged with the argument to @code{go}. To tag a
statement, precede it by an atomic argument as another statement in
the @code{block}. For example:
@example
block ([x], x:1, loop, x+1, ..., go(loop), ...)
@end example
The argument to @code{go} must be the name of a tag appearing in the same
@code{block}. One cannot use @code{go} to transfer to tag in a @code{block} other than the
one containing the @code{go}.
@opencatbox
@category{Programming}
@closecatbox
@end deffn
@c NEEDS CLARIFICATION, EXPANSION, EXAMPLES
@c THIS ITEM IS IMPORTANT
@deffn {Special operator} if
Represents conditional evaluation. Various forms of @code{if} expressions are recognized.
@code{if @var{cond_1} then @var{expr_1} else @var{expr_0}}
evaluates to @var{expr_1} if @var{cond_1} evaluates to @code{true},
otherwise the expression evaluates to @var{expr_0}.
@code{if @var{cond_1} then @var{expr_1} elseif @var{cond_2} then @var{expr_2} elseif ... else @var{expr_0}}
evaluates to @var{expr_k} if @var{cond_k} is @code{true} and all preceding conditions are @code{false}.
If none of the conditions are @code{true}, the expression evaluates to @code{expr_0}.
A trailing @code{else false} is assumed if @code{else} is missing.
That is, @code{if @var{cond_1} then @var{expr_1}} is equivalent to
@code{if @var{cond_1} then @var{expr_1} else false},
and @code{if @var{cond_1} then @var{expr_1} elseif ... elseif @var{cond_n} then @var{expr_n}}
is equivalent to
@code{if @var{cond_1} then @var{expr_1} elseif ... elseif @var{cond_n} then @var{expr_n} else false}.
The alternatives @var{expr_0}, ..., @var{expr_n} may be any Maxima expressions,
including nested @code{if} expressions.
The alternatives are neither simplified nor evaluated unless the corresponding condition is @code{true}.
The conditions @var{cond_1}, ..., @var{cond_n} are expressions which potentially or actually
evaluate to @code{true} or @code{false}.
When a condition does not actually evaluate to @code{true} or @code{false},
the behavior of @code{if} is governed by the global flag @code{prederror}.
When @code{prederror} is @code{true},
it is an error if any evaluated condition does not evaluate to @code{true} or @code{false}.
Otherwise, conditions which do not evaluate to @code{true} or @code{false} are accepted,
and the result is a conditional expression.
Among other elements, conditions may comprise relational and logical operators as follows.
@c - SEEMS LIKE THIS TABLE WANTS TO BE IN A DISCUSSION OF PREDICATE FUNCTIONS; PRESENT LOCATION IS OK I GUESS
@c - REFORMAT THIS TABLE USING TEXINFO MARKUP (MAYBE)
@example
Operation Symbol Type
less than < relational infix
less than <=
or equal to relational infix
equality (syntactic) = relational infix
negation of = # relational infix
equality (value) equal relational function
negation of equal notequal relational function
greater than >=
or equal to relational infix
greater than > relational infix
and and logical infix
or or logical infix
not not logical prefix
@end example
@opencatbox
@category{Programming} @category{Predicate functions}
@closecatbox
@end deffn
@c NEEDS CLARIFICATION
@c THIS ITEM IS IMPORTANT
@deffn {Function} map (@var{f}, @var{expr_1}, ..., @var{expr_n})
Returns an expression whose leading operator
is the same as that of the expressions
@var{expr_1}, ..., @var{expr_n} but whose subparts are the results of
applying @var{f} to the corresponding subparts of the expressions. @var{f} is either
the name of a function of @math{n} arguments
or is a @code{lambda} form of @math{n} arguments.
@code{maperror} - if @code{false} will cause all of the mapping
functions to (1) stop when they finish going down the shortest
@var{expr_i} if not all of the @var{expr_i} are of the same length and
(2) apply @var{f} to [@var{expr_1}, @var{expr_2}, ...] if the
@var{expr_i} are not all the same type of object. If @code{maperror}
is @code{true} then an error message will be given in the above two
instances.
One of the uses of this function is to @code{map} a function (e.g. @code{partfrac})
onto each term of a very large expression where it ordinarily wouldn't
be possible to use the function on the entire expression due to an
exhaustion of list storage space in the course of the computation.
@c IN THESE EXAMPLES, SPELL OUT WHAT IS THE MAIN OPERATOR
@c AND SHOW HOW THE RESULT FOLLOWS FROM THE DESCRIPTION STATED IN THE FIRST PARAGRAPH
@example
(%i1) map(f,x+a*y+b*z);
(%o1) f(b z) + f(a y) + f(x)
(%i2) map(lambda([u],partfrac(u,x)),x+1/(x^3+4*x^2+5*x+2));
1 1 1
(%o2) ----- - ----- + -------- + x
x + 2 x + 1 2
(x + 1)
(%i3) map(ratsimp, x/(x^2+x)+(y^2+y)/y);
1
(%o3) y + ----- + 1
x + 1
(%i4) map("=",[a,b],[-0.5,3]);
(%o4) [a = - 0.5, b = 3]
@end example
@opencatbox
@category{Function application}
@closecatbox
@end deffn
@deffn {Function} mapatom (@var{expr})
Returns @code{true} if and only if @var{expr} is treated by the mapping
routines as an atom. "Mapatoms" are atoms, numbers
(including rational numbers), and subscripted variables.
@c WHAT ARE "THE MAPPING ROUTINES", AND WHY DO THEY HAVE A SPECIALIZED NOTION OF ATOMS ??
@opencatbox
@category{Predicate functions}
@closecatbox
@end deffn
@c NEEDS CLARIFICATION
@defvr {Option variable} maperror
Default value: @code{true}
When @code{maperror} is @code{false}, causes all of the mapping functions, for example
@example
map (@var{f}, @var{expr_1}, @var{expr_2}, ...)
@end example
to (1) stop when they finish going down the shortest @var{expr_i} if
not all of the @var{expr_i} are of the same length and (2) apply
@var{f} to [@var{expr_1}, @var{expr_2}, ...] if the @var{expr_i} are
not all the same type of object.
If @code{maperror} is @code{true} then an error message
is displayed in the above two instances.
@opencatbox
@category{Function application}
@closecatbox
@end defvr
@defvr {Option variable} mapprint
Default value: @code{true}
When @code{mapprint} is @code{true}, various information messages from
@code{map}, @code{mapl}, and @code{fullmap} are produced in certain
situations. These include situations where @code{map} would use
@code{apply}, or @code{map} is truncating on the shortest list.
If @code{mapprint} is @code{false}, these messages are suppressed.
@opencatbox
@category{Function application}
@closecatbox
@end defvr
@c NEEDS CLARIFICATION
@deffn {Function} maplist (@var{f}, @var{expr_1}, ..., @var{expr_n})
Returns a list of the applications of @var{f}
to the parts of the expressions @var{expr_1}, ..., @var{expr_n}.
@var{f} is the name of a function, or a lambda expression.
@code{maplist} differs from @code{map (@var{f}, @var{expr_1}, ..., @var{expr_n})}
which returns an expression with the same main operator as @var{expr_i} has
(except for simplifications and the case where @code{map} does an @code{apply}).
@opencatbox
@category{Function application}
@closecatbox
@end deffn
@c NEEDS CLARIFICATION
@defvr {Option variable} prederror
Default value: @code{false}
When @code{prederror} is @code{true}, an error message is displayed
whenever the predicate of an @code{if} statement or an @code{is} function fails to
evaluate to either @code{true} or @code{false}.
If @code{false}, @code{unknown} is returned
instead in this case. The @code{prederror: false} mode is not supported in
translated code;
however, @code{maybe} is supported in translated code.
See also @code{is} and @code{maybe}.
@opencatbox
@category{Programming} @category{Predicate functions}
@closecatbox
@end defvr
@deffn {Function} return (@var{value})
May be used to exit explicitly from a block, bringing
its argument. See @code{block} for more information.
@opencatbox
@category{Programming}
@closecatbox
@end deffn
@c NEEDS CLARIFICATION
@deffn {Function} scanmap (@var{f}, @var{expr})
@deffnx {Function} scanmap (@var{f}, @var{expr}, bottomup)
Recursively applies @var{f} to @var{expr}, in a top
down manner. This is most useful when complete factorization is
desired, for example:
@example
(%i1) exp:(a^2+2*a+1)*y + x^2$
(%i2) scanmap(factor,exp);
2 2
(%o2) (a + 1) y + x
@end example
Note the way in which @code{scanmap} applies the given function
@code{factor} to the constituent subexpressions of @var{expr}; if
another form of @var{expr} is presented to @code{scanmap} then the
result may be different. Thus, @code{%o2} is not recovered when
@code{scanmap} is applied to the expanded form of @code{exp}:
@example
(%i3) scanmap(factor,expand(exp));
2 2
(%o3) a y + 2 a y + y + x
@end example
Here is another example of the way in which @code{scanmap} recursively
applies a given function to all subexpressions, including exponents:
@example
(%i4) expr : u*v^(a*x+b) + c$
(%i5) scanmap('f, expr);
f(f(f(a) f(x)) + f(b))
(%o5) f(f(f(u) f(f(v) )) + f(c))
@end example
@code{scanmap (@var{f}, @var{expr}, bottomup)} applies @var{f} to @var{expr} in a
bottom-up manner. E.g., for undefined @code{f},
@example
scanmap(f,a*x+b) ->
f(a*x+b) -> f(f(a*x)+f(b)) -> f(f(f(a)*f(x))+f(b))
scanmap(f,a*x+b,bottomup) -> f(a)*f(x)+f(b)
-> f(f(a)*f(x))+f(b) ->
f(f(f(a)*f(x))+f(b))
@end example
In this case, you get the same answer both
ways.
@opencatbox
@category{Function application}
@closecatbox
@end deffn
@deffn {Function} throw (@var{expr})
Evaluates @var{expr} and throws the value back to the most recent
@code{catch}. @code{throw} is used with @code{catch} as a nonlocal return
mechanism.
@opencatbox
@category{Programming}
@closecatbox
@end deffn
@c NEED MORE HERE !!
@c AT LEAST SHOULD LIST ACCEPTABLE VARIANTS
@deffn {Special operator} while
@deffnx {Special operator} unless
See @code{do}.
@opencatbox
@category{Programming}
@closecatbox
@end deffn
@deffn {Function} outermap (@var{f}, @var{a_1}, ..., @var{a_n})
Applies the function @var{f} to each one of the elements of the outer product
@var{a_1} cross @var{a_2} ... cross @var{a_n}.
@var{f} is the name of a function of @math{n} arguments
or a lambda expression of @math{n} arguments.
Each argument @var{a_k} may be a list or nested list, or a matrix, or any other kind of expression.
The @code{outermap} return value is a nested structure.
Let @var{x} be the return value.
Then @var{x} has the same structure as the first list, nested list, or matrix argument,
@code{@var{x}[i_1]...[i_m]} has the same structure as the second list, nested list, or matrix argument,
@code{@var{x}[i_1]...[i_m][j_1]...[j_n]} has the same structure as the third list, nested list, or matrix argument,
and so on,
where @var{m}, @var{n}, ... are the numbers of indices required to access the
elements of each argument (one for a list, two for a matrix, one or more for a nested list).
Arguments which are not lists or matrices have no effect on the structure of the return value.
Note that the effect of @code{outermap} is different from that of applying @var{f}
to each one of the elements of the outer product returned by @code{cartesian_product}.
@code{outermap} preserves the structure of the arguments in the return value,
while @code{cartesian_product} does not.
@code{outermap} evaluates its arguments.
See also @code{map}, @code{maplist}, and @code{apply}.
@c CROSS REF OTHER FUNCTIONS HERE ??
Examples:
Elementary examples of @code{outermap}.
To show the argument combinations more clearly, @code{F} is left undefined.
@c ===beg===
@c outermap (F, [a, b, c], [1, 2, 3]);
@c outermap (F, matrix ([a, b], [c, d]), matrix ([1, 2], [3, 4]));
@c outermap (F, [a, b], x, matrix ([1, 2], [3, 4]));
@c outermap (F, [a, b], matrix ([1, 2]), matrix ([x], [y]));
@c outermap ("+", [a, b, c], [1, 2, 3]);
@c ===end===
@example
(%i1) outermap(F, [a, b, c], [1, 2, 3]);
(%o1) [[F(a, 1), F(a, 2), F(a, 3)], [F(b, 1), F(b, 2), F(b, 3)],
[F(c, 1), F(c, 2), F(c, 3)]]
(%i2) outermap(F, matrix([a, b],[c, d]), matrix([1, 2],[3, 4]));
[ [ F(a, 1) F(a, 2) ] [ F(b, 1) F(b, 2) ] ]
[ [ ] [ ] ]
[ [ F(a, 3) F(a, 4) ] [ F(b, 3) F(b, 4) ] ]
(%o2) [ ]
[ [ F(c, 1) F(c, 2) ] [ F(d, 1) F(d, 2) ] ]
[ [ ] [ ] ]
[ [ F(c, 3) F(c, 4) ] [ F(d, 3) F(d, 4) ] ]
(%i3) outermap (F, [a, b], x, matrix ([1, 2], [3, 4]));
[ F(a, x, 1) F(a, x, 2) ] [ F(b, x, 1) F(b, x, 2) ]
(%o3) [[ ], [ ]]
[ F(a, x, 3) F(a, x, 4) ] [ F(b, x, 3) F(b, x, 4) ]
(%i4) outermap (F, [a, b], matrix ([1, 2]), matrix ([x], [y]));
[ [ F(a, 1, x) ] [ F(a, 2, x) ] ]
(%o4) [[ [ ] [ ] ],
[ [ F(a, 1, y) ] [ F(a, 2, y) ] ]
[ [ F(b, 1, x) ] [ F(b, 2, x) ] ]
[ [ ] [ ] ]]
[ [ F(b, 1, y) ] [ F(b, 2, y) ] ]
(%i5) outermap ("+", [a, b, c], [1, 2, 3]);
(%o5) [[a + 1, a + 2, a + 3], [b + 1, b + 2, b + 3],
[c + 1, c + 2, c + 3]]
@end example
A closer examination of the @code{outermap} return value.
The first, second, and third arguments are a matrix, a list, and a matrix, respectively.
The return value is a matrix.
Each element of that matrix is a list,
and each element of each list is a matrix.
@c ===beg===
@c arg_1 : matrix ([a, b], [c, d]);
@c arg_2 : [11, 22];
@c arg_3 : matrix ([xx, yy]);
@c xx_0 : outermap (lambda ([x, y, z], x / y + z), arg_1,
@c arg_2, arg_3);
@c xx_1 : xx_0 [1][1];
@c xx_2 : xx_0 [1][1] [1];
@c xx_3 : xx_0 [1][1] [1] [1][1];
@c [op (arg_1), op (arg_2), op (arg_3)];
@c [op (xx_0), op (xx_1), op (xx_2)];
@c ===end===
@example
(%i1) arg_1 : matrix ([a, b], [c, d]);
[ a b ]
(%o1) [ ]
[ c d ]
(%i2) arg_2 : [11, 22];
(%o2) [11, 22]
(%i3) arg_3 : matrix ([xx, yy]);
(%o3) [ xx yy ]
(%i4) xx_0 : outermap(lambda([x, y, z], x / y + z), arg_1,
arg_2, arg_3);
[ [ a a ] [ a a ] ]
[ [[ xx + -- yy + -- ], [ xx + -- yy + -- ]] ]
[ [ 11 11 ] [ 22 22 ] ]
(%o4) Col 1 = [ ]
[ [ c c ] [ c c ] ]
[ [[ xx + -- yy + -- ], [ xx + -- yy + -- ]] ]
[ [ 11 11 ] [ 22 22 ] ]
[ [ b b ] [ b b ] ]
[ [[ xx + -- yy + -- ], [ xx + -- yy + -- ]] ]
[ [ 11 11 ] [ 22 22 ] ]
Col 2 = [ ]
[ [ d d ] [ d d ] ]
[ [[ xx + -- yy + -- ], [ xx + -- yy + -- ]] ]
[ [ 11 11 ] [ 22 22 ] ]
(%i5) xx_1 : xx_0 [1][1];
[ a a ] [ a a ]
(%o5) [[ xx + -- yy + -- ], [ xx + -- yy + -- ]]
[ 11 11 ] [ 22 22 ]
(%i6) xx_2 : xx_0 [1][1] [1];
[ a a ]
(%o6) [ xx + -- yy + -- ]
[ 11 11 ]
(%i7) xx_3 : xx_0 [1][1] [1] [1][1];
a
(%o7) xx + --
11
(%i8) [op (arg_1), op (arg_2), op (arg_3)];
(%o8) [matrix, [, matrix]
(%i9) [op (xx_0), op (xx_1), op (xx_2)];
(%o9) [matrix, [, matrix]
@end example
@code{outermap} preserves the structure of the arguments in the return value,
while @code{cartesian_product} does not.
@c ===beg===
@c outermap (F, [a, b, c], [1, 2, 3]);
@c setify (flatten (%));
@c map (lambda ([L], apply (F, L)),
@c cartesian_product ({a, b, c}, {1, 2, 3}));
@c is (equal (%, %th (2)));
@c ===end===
@example
(%i1) outermap (F, [a, b, c], [1, 2, 3]);
(%o1) [[F(a, 1), F(a, 2), F(a, 3)], [F(b, 1), F(b, 2), F(b, 3)],
[F(c, 1), F(c, 2), F(c, 3)]]
(%i2) setify (flatten (%));
(%o2) @{F(a, 1), F(a, 2), F(a, 3), F(b, 1), F(b, 2), F(b, 3),
F(c, 1), F(c, 2), F(c, 3)@}
(%i3) map(lambda([L], apply(F, L)),
cartesian_product(@{a, b, c@}, @{1, 2, 3@}));
(%o3) @{F(a, 1), F(a, 2), F(a, 3), F(b, 1), F(b, 2), F(b, 3),
F(c, 1), F(c, 2), F(c, 3)@}
(%i4) is (equal (%, %th (2)));
(%o4) true
@end example
@opencatbox
@category{Function application}
@closecatbox
@end deffn
|