1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on April, 24 2010 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
Karl Berry <karl@freefriends.org>
Olaf Bachmann <obachman@mathematik.uni-kl.de>
and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>
-->
<head>
<title>Maxima 5.21.1 Manual: 30. Series</title>
<meta name="description" content="Maxima 5.21.1 Manual: 30. Series">
<meta name="keywords" content="Maxima 5.21.1 Manual: 30. Series">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
color: black;
background: white;
margin-left: 8%;
margin-right: 13%;
}
h1
{
margin-left: +8%;
font-size: 150%;
font-family: sans-serif
}
h2
{
font-size: 125%;
font-family: sans-serif
}
h3
{
font-size: 100%;
font-family: sans-serif
}
h2,h3,h4,h5,h6 { margin-left: +4%; }
div.textbox
{
border: solid;
border-width: thin;
/* width: 100%; */
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em
}
div.titlebox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(200,255,255);
font-family: sans-serif
}
div.synopsisbox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(255,220,255);
/*background: rgb(200,255,255); */
/* font-family: fixed */
}
pre.example
{
border: 1px solid gray;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 1em;
padding-right: 1em;
/* background: rgb(247,242,180); */ /* kind of sandy */
/* background: rgb(200,255,255); */ /* sky blue */
background-color: #F1F5F9; /* light blue-gray */
/* font-family: "Lucida Console", monospace */
}
div.spacerbox
{
border: none;
padding-top: 2em;
padding-bottom: 2em
}
div.image
{
margin: 0;
padding: 1em;
text-align: center;
}
div.categorybox
{
border: 1px solid gray;
padding-top: 0px;
padding-bottom: 0px;
padding-left: 1em;
padding-right: 1em;
background: rgb(247,242,220);
}
-->
</style>
<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Series"></a>
<a name="SEC134"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="maxima_29.html#SEC133" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC135" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima_29.html#SEC131" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_31.html#SEC138" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_79.html#SEC331" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="chapter"> 30. Series </h1>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#SEC135">30.1 Introduction to Series</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC136">30.2 Functions and Variables for Series</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC137">30.3 Poisson series</a></td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<p><a name="Item_003a-Introduction-to-Series"></a>
</p><hr size="6">
<a name="Introduction-to-Series"></a>
<a name="SEC135"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC134" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC136" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC134" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC134" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_31.html#SEC138" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_79.html#SEC331" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 30.1 Introduction to Series </h2>
<p>Maxima contains functions <code>taylor</code> and <code>powerseries</code> for finding the
series of differentiable functions. It also has tools such as <code>nusum</code>
capable of finding the closed form of some series. Operations such as addition and multiplication work as usual on series. This section presents the global variables which control the expansion.
</p>
<p><a name="Item_003a-Functions-and-Variables-for-Series"></a>
</p><hr size="6">
<a name="Functions-and-Variables-for-Series"></a>
<a name="SEC136"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC135" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC137" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC134" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC134" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_31.html#SEC138" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_79.html#SEC331" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 30.2 Functions and Variables for Series </h2>
<p><a name="Item_003a-cauchysum"></a>
</p><dl>
<dt><u>Option variable:</u> <b>cauchysum</b>
<a name="IDX1106"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When multiplying together sums with <code>inf</code> as their upper limit,
if <code>sumexpand</code> is <code>true</code> and <code>cauchysum</code> is <code>true</code>
then the Cauchy product will be used rather than the usual
product.
In the Cauchy product the index of the inner summation is a
function of the index of the outer one rather than varying
independently.
</p>
<p>Example:
</p>
<pre class="example">(%i1) sumexpand: false$
(%i2) cauchysum: false$
(%i3) s: sum (f(i), i, 0, inf) * sum (g(j), j, 0, inf);
inf inf
==== ====
\ \
(%o3) ( > f(i)) > g(j)
/ /
==== ====
i = 0 j = 0
(%i4) sumexpand: true$
(%i5) cauchysum: true$
(%i6) ''s;
inf i1
==== ====
\ \
(%o6) > > g(i1 - i2) f(i2)
/ /
==== ====
i1 = 0 i2 = 0
</pre>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Sums-and-products">Sums and products</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-deftaylor"></a>
</p><dl>
<dt><u>Function:</u> <b>deftaylor</b><i> (<var>f_1</var>(<var>x_1</var>), <var>expr_1</var>, ..., <var>f_n</var>(<var>x_n</var>), <var>expr_n</var>)</i>
<a name="IDX1107"></a>
</dt>
<dd><p>For each function <var>f_i</var> of one variable <var>x_i</var>,
<code>deftaylor</code> defines <var>expr_i</var> as the Taylor series about zero.
<var>expr_i</var> is typically a polynomial in <var>x_i</var> or a summation;
more general expressions are accepted by <code>deftaylor</code> without complaint.
</p>
<p><code>powerseries (<var>f_i</var>(<var>x_i</var>), <var>x_i</var>, 0)</code>
returns the series defined by <code>deftaylor</code>.
</p>
<p><code>deftaylor</code> returns a list of the functions
<var>f_1</var>, ..., <var>f_n</var>.
<code>deftaylor</code> evaluates its arguments.
</p>
<p>Example:
</p>
<pre class="example">(%i1) deftaylor (f(x), x^2 + sum(x^i/(2^i*i!^2), i, 4, inf));
(%o1) [f]
(%i2) powerseries (f(x), x, 0);
inf
==== i1
\ x 2
(%o2) > -------- + x
/ i1 2
==== 2 i1!
i1 = 4
(%i3) taylor (exp (sqrt (f(x))), x, 0, 4);
2 3 4
x 3073 x 12817 x
(%o3)/T/ 1 + x + -- + ------- + -------- + . . .
2 18432 307200
</pre>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Power-series">Power series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-maxtayorder"></a>
</p><dl>
<dt><u>Option variable:</u> <b>maxtayorder</b>
<a name="IDX1108"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>maxtayorder</code> is <code>true</code>, then during algebraic
manipulation of (truncated) Taylor series, <code>taylor</code> tries to retain
as many terms as are known to be correct.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Power-series">Power series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-niceindices"></a>
</p><dl>
<dt><u>Function:</u> <b>niceindices</b><i> (<var>expr</var>)</i>
<a name="IDX1109"></a>
</dt>
<dd><p>Renames the indices of sums and products in <var>expr</var>.
<code>niceindices</code> attempts to rename each index to the value of <code>niceindicespref[1]</code>,
unless that name appears in the summand or multiplicand,
in which case <code>niceindices</code> tries
the succeeding elements of <code>niceindicespref</code> in turn, until an unused variable is found.
If the entire list is exhausted,
additional indices are constructed by appending integers to the value of
<code>niceindicespref[1]</code>, e.g., <code>i0</code>, <code>i1</code>, <code>i2</code>, ....
</p>
<p><code>niceindices</code> returns an expression.
<code>niceindices</code> evaluates its argument.
</p>
<p>Example:
</p>
<pre class="example">(%i1) niceindicespref;
(%o1) [i, j, k, l, m, n]
(%i2) product (sum (f (foo + i*j*bar), foo, 1, inf), bar, 1, inf);
inf inf
/===\ ====
! ! \
(%o2) ! ! > f(bar i j + foo)
! ! /
bar = 1 ====
foo = 1
(%i3) niceindices (%);
inf inf
/===\ ====
! ! \
(%o3) ! ! > f(i j l + k)
! ! /
l = 1 ====
k = 1
</pre>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Sums-and-products">Sums and products</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-niceindicespref"></a>
</p><dl>
<dt><u>Option variable:</u> <b>niceindicespref</b>
<a name="IDX1110"></a>
</dt>
<dd><p>Default value: <code>[i, j, k, l, m, n]</code>
</p>
<p><code>niceindicespref</code> is the list from which <code>niceindices</code>
takes the names of indices for sums and products.
</p>
<p>The elements of <code>niceindicespref</code> are typically names of variables,
although that is not enforced by <code>niceindices</code>.
</p>
<p>Example:
</p>
<pre class="example">(%i1) niceindicespref: [p, q, r, s, t, u]$
(%i2) product (sum (f (foo + i*j*bar), foo, 1, inf), bar, 1, inf);
inf inf
/===\ ====
! ! \
(%o2) ! ! > f(bar i j + foo)
! ! /
bar = 1 ====
foo = 1
(%i3) niceindices (%);
inf inf
/===\ ====
! ! \
(%o3) ! ! > f(i j q + p)
! ! /
q = 1 ====
p = 1
</pre>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Sums-and-products">Sums and products</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-nusum"></a>
</p><dl>
<dt><u>Function:</u> <b>nusum</b><i> (<var>expr</var>, <var>x</var>, <var>i_0</var>, <var>i_1</var>)</i>
<a name="IDX1111"></a>
</dt>
<dd><p>Carries out indefinite hypergeometric summation of <var>expr</var> with
respect to <var>x</var> using a decision procedure due to R.W. Gosper.
<var>expr</var> and the result must be expressible as products of integer powers,
factorials, binomials, and rational functions.
</p>
<p>The terms "definite"
and "indefinite summation" are used analogously to "definite" and
"indefinite integration".
To sum indefinitely means to give a symbolic result
for the sum over intervals of variable length, not just e.g. 0 to
inf. Thus, since there is no formula for the general partial sum of
the binomial series, <code>nusum</code> can't do it.
</p>
<p><code>nusum</code> and <code>unsum</code> know a little about sums and differences of finite products.
See also <code>unsum</code>.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) nusum (n*n!, n, 0, n);
Dependent equations eliminated: (1)
(%o1) (n + 1)! - 1
(%i2) nusum (n^4*4^n/binomial(2*n,n), n, 0, n);
4 3 2 n
2 (n + 1) (63 n + 112 n + 18 n - 22 n + 3) 4 2
(%o2) ------------------------------------------------ - ------
693 binomial(2 n, n) 3 11 7
(%i3) unsum (%, n);
4 n
n 4
(%o3) ----------------
binomial(2 n, n)
(%i4) unsum (prod (i^2, i, 1, n), n);
n - 1
/===\
! ! 2
(%o4) ( ! ! i ) (n - 1) (n + 1)
! !
i = 1
(%i5) nusum (%, n, 1, n);
Dependent equations eliminated: (2 3)
n
/===\
! ! 2
(%o5) ! ! i - 1
! !
i = 1
</pre>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Sums-and-products">Sums and products</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-pade"></a>
</p><dl>
<dt><u>Function:</u> <b>pade</b><i> (<var>taylor_series</var>, <var>numer_deg_bound</var>, <var>denom_deg_bound</var>)</i>
<a name="IDX1112"></a>
</dt>
<dd><p>Returns a list of
all rational functions which have the given Taylor series expansion
where the sum of the degrees of the numerator and the denominator is
less than or equal to the truncation level of the power series, i.e.
are "best" approximants, and which additionally satisfy the specified
degree bounds.
</p>
<p><var>taylor_series</var> is a univariate Taylor series.
<var>numer_deg_bound</var> and <var>denom_deg_bound</var>
are positive integers specifying degree bounds on
the numerator and denominator.
</p>
<p><var>taylor_series</var> can also be a Laurent series, and the degree
bounds can be <code>inf</code> which causes all rational functions whose total
degree is less than or equal to the length of the power series to be
returned. Total degree is defined as <code><var>numer_deg_bound</var> + <var>denom_deg_bound</var></code>.
Length of a power series is defined as
<code>"truncation level" + 1 - min(0, "order of series")</code>.
</p>
<pre class="example">(%i1) taylor (1 + x + x^2 + x^3, x, 0, 3);
2 3
(%o1)/T/ 1 + x + x + x + . . .
(%i2) pade (%, 1, 1);
1
(%o2) [- -----]
x - 1
(%i3) t: taylor(-(83787*x^10 - 45552*x^9 - 187296*x^8
+ 387072*x^7 + 86016*x^6 - 1507328*x^5
+ 1966080*x^4 + 4194304*x^3 - 25165824*x^2
+ 67108864*x - 134217728)
/134217728, x, 0, 10);
2 3 4 5 6 7
x 3 x x 15 x 23 x 21 x 189 x
(%o3)/T/ 1 - - + ---- - -- - ----- + ----- - ----- - ------
2 16 32 1024 2048 32768 65536
8 9 10
5853 x 2847 x 83787 x
+ ------- + ------- - --------- + . . .
4194304 8388608 134217728
(%i4) pade (t, 4, 4);
(%o4) []
</pre>
<p>There is no rational function of degree 4 numerator/denominator, with this
power series expansion. You must in general have degree of the numerator and
degree of the denominator adding up to at least the degree of the power series,
in order to have enough unknown coefficients to solve.
</p>
<pre class="example">(%i5) pade (t, 5, 5);
5 4 3
(%o5) [- (520256329 x - 96719020632 x - 489651410240 x
2
- 1619100813312 x - 2176885157888 x - 2386516803584)
5 4 3
/(47041365435 x + 381702613848 x + 1360678489152 x
2
+ 2856700692480 x + 3370143559680 x + 2386516803584)]
</pre>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Power-series">Power series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-powerdisp"></a>
</p><dl>
<dt><u>Option variable:</u> <b>powerdisp</b>
<a name="IDX1113"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>powerdisp</code> is <code>true</code>,
a sum is displayed with its terms in order of increasing power.
Thus a polynomial is displayed as a truncated power series,
with the constant term first and the highest power last.
</p>
<p>By default, terms of a sum are displayed in order of decreasing power.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Display-flags-and-variables">Display flags and variables</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-powerseries"></a>
</p><dl>
<dt><u>Function:</u> <b>powerseries</b><i> (<var>expr</var>, <var>x</var>, <var>a</var>)</i>
<a name="IDX1114"></a>
</dt>
<dd><p>Returns the general form of the power series expansion for <var>expr</var> in the
variable <var>x</var> about the point <var>a</var> (which may be <code>inf</code> for infinity):
</p><pre class="example"> inf
====
\ n
> b (x - a)
/ n
====
n = 0
</pre>
<p>If <code>powerseries</code> is unable to expand <var>expr</var>,
<code>taylor</code> may give the first several terms of the series.
</p>
<p>When <code>verbose</code> is <code>true</code>,
<code>powerseries</code> prints progress messages.
</p>
<pre class="example">(%i1) verbose: true$
(%i2) powerseries (log(sin(x)/x), x, 0);
can't expand
log(sin(x))
so we'll try again after applying the rule:
d
/ -- (sin(x))
[ dx
log(sin(x)) = i ----------- dx
] sin(x)
/
in the first simplification we have returned:
/
[
i cot(x) dx - log(x)
]
/
inf
==== i1 2 i1 2 i1
\ (- 1) 2 bern(2 i1) x
> ------------------------------
/ i1 (2 i1)!
====
i1 = 1
(%o2) -------------------------------------
2
</pre>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Power-series">Power series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-psexpand"></a>
</p><dl>
<dt><u>Option variable:</u> <b>psexpand</b>
<a name="IDX1115"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>psexpand</code> is <code>true</code>,
an extended rational function expression is displayed fully expanded.
The switch <code>ratexpand</code> has the same effect.
</p>
<p>When <code>psexpand</code> is <code>false</code>,
a multivariate expression is displayed just as in the rational function package.
</p>
<p>When <code>psexpand</code> is <code>multi</code>,
then terms with the same total degree in the variables are grouped together.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Display-flags-and-variables">Display flags and variables</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-revert"></a>
</p><dl>
<dt><u>Function:</u> <b>revert</b><i> (<var>expr</var>, <var>x</var>)</i>
<a name="IDX1116"></a>
</dt>
<dt><u>Function:</u> <b>revert2</b><i> (<var>expr</var>, <var>x</var>, <var>n</var>)</i>
<a name="IDX1117"></a>
</dt>
<dd><p>These functions return the reversion of <var>expr</var>, a Taylor series about zero in the variable <var>x</var>.
<code>revert</code> returns a polynomial of degree equal to the highest power in <var>expr</var>.
<code>revert2</code> returns a polynomial of degree <var>n</var>,
which may be greater than, equal to, or less than the degree of <var>expr</var>.
</p>
<p><code>load ("revert")</code> loads these functions.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) load ("revert")$
(%i2) t: taylor (exp(x) - 1, x, 0, 6);
2 3 4 5 6
x x x x x
(%o2)/T/ x + -- + -- + -- + --- + --- + . . .
2 6 24 120 720
(%i3) revert (t, x);
6 5 4 3 2
10 x - 12 x + 15 x - 20 x + 30 x - 60 x
(%o3)/R/ - --------------------------------------------
60
(%i4) ratexpand (%);
6 5 4 3 2
x x x x x
(%o4) - -- + -- - -- + -- - -- + x
6 5 4 3 2
(%i5) taylor (log(x+1), x, 0, 6);
2 3 4 5 6
x x x x x
(%o5)/T/ x - -- + -- - -- + -- - -- + . . .
2 3 4 5 6
(%i6) ratsimp (revert (t, x) - taylor (log(x+1), x, 0, 6));
(%o6) 0
(%i7) revert2 (t, x, 4);
4 3 2
x x x
(%o7) - -- + -- - -- + x
4 3 2
</pre>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Power-series">Power series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-taylor"></a>
</p><dl>
<dt><u>Function:</u> <b>taylor</b><i> (<var>expr</var>, <var>x</var>, <var>a</var>, <var>n</var>)</i>
<a name="IDX1118"></a>
</dt>
<dt><u>Function:</u> <b>taylor</b><i> (<var>expr</var>, [<var>x_1</var>, <var>x_2</var>, ...], <var>a</var>, <var>n</var>)</i>
<a name="IDX1119"></a>
</dt>
<dt><u>Function:</u> <b>taylor</b><i> (<var>expr</var>, [<var>x</var>, <var>a</var>, <var>n</var>, 'asymp])</i>
<a name="IDX1120"></a>
</dt>
<dt><u>Function:</u> <b>taylor</b><i> (<var>expr</var>, [<var>x_1</var>, <var>x_2</var>, ...], [<var>a_1</var>, <var>a_2</var>, ...], [<var>n_1</var>, <var>n_2</var>, ...])</i>
<a name="IDX1121"></a>
</dt>
<dt><u>Function:</u> <b>taylor</b><i> (<var>expr</var>, [<var>x_1</var>, <var>a_1</var>, <var>n_1</var>], [<var>x_2</var>, <var>a_2</var>, <var>n_2</var>], ...)</i>
<a name="IDX1122"></a>
</dt>
<dd><p><code>taylor (<var>expr</var>, <var>x</var>, <var>a</var>, <var>n</var>)</code> expands the expression <var>expr</var>
in a truncated Taylor or Laurent series in the variable <var>x</var>
around the point <var>a</var>,
containing terms through <code>(<var>x</var> - <var>a</var>)^<var>n</var></code>.
</p>
<p>If <var>expr</var> is of the form <code><var>f</var>(<var>x</var>)/<var>g</var>(<var>x</var>)</code>
and <code><var>g</var>(<var>x</var>)</code> has no terms up to degree <var>n</var>
then <code>taylor</code> attempts to expand <code><var>g</var>(<var>x</var>)</code> up to degree <code>2 <var>n</var></code>.
If there are still no nonzero terms, <code>taylor</code> doubles the
degree of the expansion of <code><var>g</var>(<var>x</var>)</code>
so long as the degree of the expansion is less than or equal to <code><var>n</var> 2^taylordepth</code>.
</p>
<p><code>taylor (<var>expr</var>, [<var>x_1</var>, <var>x_2</var>, ...], <var>a</var>, <var>n</var>)</code>
returns a truncated power series
of degree <var>n</var> in all variables <var>x_1</var>, <var>x_2</var>, ...
about the point <code>(<var>a</var>, <var>a</var>, ...)</code>.
</p>
<p><code>taylor (<var>expr</var>, [<var>x_1</var>, <var>a_1</var>, <var>n_1</var>], [<var>x_2</var>, <var>a_2</var>, <var>n_2</var>], ...)</code>
returns a truncated power series in the variables <var>x_1</var>, <var>x_2</var>, ...
about the point <code>(<var>a_1</var>, <var>a_2</var>, ...)</code>,
truncated at <var>n_1</var>, <var>n_2</var>, ....
</p>
<p><code>taylor (<var>expr</var>, [<var>x_1</var>, <var>x_2</var>, ...], [<var>a_1</var>, <var>a_2</var>, ...], [<var>n_1</var>, <var>n_2</var>, ...])</code>
returns a truncated power series in the variables <var>x_1</var>, <var>x_2</var>, ...
about the point <code>(<var>a_1</var>, <var>a_2</var>, ...)</code>,
truncated at <var>n_1</var>, <var>n_2</var>, ....
</p>
<p><code>taylor (<var>expr</var>, [<var>x</var>, <var>a</var>, <var>n</var>, 'asymp])</code>
returns an expansion of <var>expr</var> in negative powers of <code><var>x</var> - <var>a</var></code>.
The highest order term is <code>(<var>x</var> - <var>a</var>)^<var>-n</var></code>.
</p>
<p>When <code>maxtayorder</code> is <code>true</code>, then during algebraic
manipulation of (truncated) Taylor series, <code>taylor</code> tries to retain
as many terms as are known to be correct.
</p>
<p>When <code>psexpand</code> is <code>true</code>,
an extended rational function expression is displayed fully expanded.
The switch <code>ratexpand</code> has the same effect.
When <code>psexpand</code> is <code>false</code>,
a multivariate expression is displayed just as in the rational function package.
When <code>psexpand</code> is <code>multi</code>,
then terms with the same total degree in the variables are grouped together.
</p>
<p>See also the <code>taylor_logexpand</code> switch for controlling expansion.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) taylor (sqrt (sin(x) + a*x + 1), x, 0, 3);
2 2
(a + 1) x (a + 2 a + 1) x
(%o1)/T/ 1 + --------- - -----------------
2 8
3 2 3
(3 a + 9 a + 9 a - 1) x
+ -------------------------- + . . .
48
(%i2) %^2;
3
x
(%o2)/T/ 1 + (a + 1) x - -- + . . .
6
(%i3) taylor (sqrt (x + 1), x, 0, 5);
2 3 4 5
x x x 5 x 7 x
(%o3)/T/ 1 + - - -- + -- - ---- + ---- + . . .
2 8 16 128 256
(%i4) %^2;
(%o4)/T/ 1 + x + . . .
(%i5) product ((1 + x^i)^2.5, i, 1, inf)/(1 + x^2);
inf
/===\
! ! i 2.5
! ! (x + 1)
! !
i = 1
(%o5) -----------------
2
x + 1
(%i6) ev (taylor(%, x, 0, 3), keepfloat);
2 3
(%o6)/T/ 1 + 2.5 x + 3.375 x + 6.5625 x + . . .
(%i7) taylor (1/log (x + 1), x, 0, 3);
2 3
1 1 x x 19 x
(%o7)/T/ - + - - -- + -- - ----- + . . .
x 2 12 24 720
(%i8) taylor (cos(x) - sec(x), x, 0, 5);
4
2 x
(%o8)/T/ - x - -- + . . .
6
(%i9) taylor ((cos(x) - sec(x))^3, x, 0, 5);
(%o9)/T/ 0 + . . .
(%i10) taylor (1/(cos(x) - sec(x))^3, x, 0, 5);
2 4
1 1 11 347 6767 x 15377 x
(%o10)/T/ - -- + ---- + ------ - ----- - ------- - --------
6 4 2 15120 604800 7983360
x 2 x 120 x
+ . . .
(%i11) taylor (sqrt (1 - k^2*sin(x)^2), x, 0, 6);
2 2 4 2 4
k x (3 k - 4 k ) x
(%o11)/T/ 1 - ----- - ----------------
2 24
6 4 2 6
(45 k - 60 k + 16 k ) x
- -------------------------- + . . .
720
(%i12) taylor ((x + 1)^n, x, 0, 4);
2 2 3 2 3
(n - n) x (n - 3 n + 2 n) x
(%o12)/T/ 1 + n x + ----------- + --------------------
2 6
4 3 2 4
(n - 6 n + 11 n - 6 n) x
+ ---------------------------- + . . .
24
(%i13) taylor (sin (y + x), x, 0, 3, y, 0, 3);
3 2
y y
(%o13)/T/ y - -- + . . . + (1 - -- + . . .) x
6 2
3 2
y y 2 1 y 3
+ (- - + -- + . . .) x + (- - + -- + . . .) x + . . .
2 12 6 12
(%i14) taylor (sin (y + x), [x, y], 0, 3);
3 2 2 3
x + 3 y x + 3 y x + y
(%o14)/T/ y + x - ------------------------- + . . .
6
(%i15) taylor (1/sin (y + x), x, 0, 3, y, 0, 3);
1 y 1 1 1 2
(%o15)/T/ - + - + . . . + (- -- + - + . . .) x + (-- + . . .) x
y 6 2 6 3
y y
1 3
+ (- -- + . . .) x + . . .
4
y
(%i16) taylor (1/sin (y + x), [x, y], 0, 3);
3 2 2 3
1 x + y 7 x + 21 y x + 21 y x + 7 y
(%o16)/T/ ----- + ----- + ------------------------------- + . . .
x + y 6 360
</pre>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Power-series">Power series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-taylordepth"></a>
</p><dl>
<dt><u>Option variable:</u> <b>taylordepth</b>
<a name="IDX1123"></a>
</dt>
<dd><p>Default value: 3
</p>
<p>If there are still no nonzero terms, <code>taylor</code> doubles the
degree of the expansion of <code><var>g</var>(<var>x</var>)</code>
so long as the degree of the expansion is less than or equal to <code><var>n</var> 2^taylordepth</code>.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Power-series">Power series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-taylorinfo"></a>
</p><dl>
<dt><u>Function:</u> <b>taylorinfo</b><i> (<var>expr</var>)</i>
<a name="IDX1124"></a>
</dt>
<dd><p>Returns information about the Taylor series <var>expr</var>.
The return value is a list of lists.
Each list comprises the name of a variable,
the point of expansion, and the degree of the expansion.
</p>
<p><code>taylorinfo</code> returns <code>false</code> if <var>expr</var> is not a Taylor series.
</p>
<p>Example:
</p>
<pre class="example">(%i1) taylor ((1 - y^2)/(1 - x), x, 0, 3, [y, a, inf]);
2 2
(%o1)/T/ - (y - a) - 2 a (y - a) + (1 - a )
2 2
+ (1 - a - 2 a (y - a) - (y - a) ) x
2 2 2
+ (1 - a - 2 a (y - a) - (y - a) ) x
2 2 3
+ (1 - a - 2 a (y - a) - (y - a) ) x + . . .
(%i2) taylorinfo(%);
(%o2) [[y, a, inf], [x, 0, 3]]
</pre>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Power-series">Power series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-taylorp"></a>
</p><dl>
<dt><u>Function:</u> <b>taylorp</b><i> (<var>expr</var>)</i>
<a name="IDX1125"></a>
</dt>
<dd><p>Returns <code>true</code> if <var>expr</var> is a Taylor series,
and <code>false</code> otherwise.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Predicate-functions">Predicate functions</a>
·
<a href="maxima_95.html#Category_003a-Power-series">Power series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-taylor_005flogexpand"></a>
</p><dl>
<dt><u>Option variable:</u> <b>taylor_logexpand</b>
<a name="IDX1126"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p><code>taylor_logexpand</code> controls expansions of logarithms in
<code>taylor</code> series.
</p>
<p>When <code>taylor_logexpand</code> is <code>true</code>, all logarithms are expanded fully so that
zero-recognition problems involving logarithmic identities do not
disturb the expansion process. However, this scheme is not always
mathematically correct since it ignores branch information.
</p>
<p>When <code>taylor_logexpand</code> is set to <code>false</code>, then the only expansion of logarithms
that occur is that necessary to obtain a formal power series.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Power-series">Power series</a>
·
<a href="maxima_95.html#Category_003a-Exponential-and-logarithm-functions">Exponential and logarithm functions</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-taylor_005forder_005fcoefficients"></a>
</p><dl>
<dt><u>Option variable:</u> <b>taylor_order_coefficients</b>
<a name="IDX1127"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p><code>taylor_order_coefficients</code> controls the ordering of
coefficients in a Taylor series.
</p>
<p>When <code>taylor_order_coefficients</code> is <code>true</code>,
coefficients of taylor series are ordered canonically.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Power-series">Power series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-taylor_005fsimplifier"></a>
</p><dl>
<dt><u>Function:</u> <b>taylor_simplifier</b><i> (<var>expr</var>)</i>
<a name="IDX1128"></a>
</dt>
<dd><p>Simplifies coefficients of the power series <var>expr</var>.
<code>taylor</code> calls this function.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Power-series">Power series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-taylor_005ftruncate_005fpolynomials"></a>
</p><dl>
<dt><u>Option variable:</u> <b>taylor_truncate_polynomials</b>
<a name="IDX1129"></a>
</dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>taylor_truncate_polynomials</code> is <code>true</code>,
polynomials are truncated based upon the input truncation levels.
</p>
<p>Otherwise,
polynomials input to <code>taylor</code> are considered to have infinite precison.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Power-series">Power series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-taytorat"></a>
</p><dl>
<dt><u>Function:</u> <b>taytorat</b><i> (<var>expr</var>)</i>
<a name="IDX1130"></a>
</dt>
<dd><p>Converts <var>expr</var> from <code>taylor</code> form to canonical rational expression (CRE) form.
The effect is the same as <code>rat (ratdisrep (<var>expr</var>))</code>, but faster.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Power-series">Power series</a>
·
<a href="maxima_95.html#Category_003a-Rational-expressions">Rational expressions</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-trunc"></a>
</p><dl>
<dt><u>Function:</u> <b>trunc</b><i> (<var>expr</var>)</i>
<a name="IDX1131"></a>
</dt>
<dd><p>Annotates the internal representation of the general expression <var>expr</var>
so that it is displayed as if its sums were truncated Taylor series.
<var>expr</var> is not otherwise modified.
</p>
<p>Example:
</p>
<pre class="example">(%i1) expr: x^2 + x + 1;
2
(%o1) x + x + 1
(%i2) trunc (expr);
2
(%o2) 1 + x + x + . . .
(%i3) is (expr = trunc (expr));
(%o3) true
</pre>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Power-series">Power series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-unsum"></a>
</p><dl>
<dt><u>Function:</u> <b>unsum</b><i> (<var>f</var>, <var>n</var>)</i>
<a name="IDX1132"></a>
</dt>
<dd><p>Returns the first backward difference <code><var>f</var>(<var>n</var>) - <var>f</var>(<var>n</var> - 1)</code>.
Thus <code>unsum</code> in a sense is the inverse of <code>sum</code>.
</p>
<p>See also <code>nusum</code>.
</p>
<p>Examples:
</p>
<pre class="example">(%i1) g(p) := p*4^n/binomial(2*n,n);
n
p 4
(%o1) g(p) := ----------------
binomial(2 n, n)
(%i2) g(n^4);
4 n
n 4
(%o2) ----------------
binomial(2 n, n)
(%i3) nusum (%, n, 0, n);
4 3 2 n
2 (n + 1) (63 n + 112 n + 18 n - 22 n + 3) 4 2
(%o3) ------------------------------------------------ - ------
693 binomial(2 n, n) 3 11 7
(%i4) unsum (%, n);
4 n
n 4
(%o4) ----------------
binomial(2 n, n)
</pre>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Sums-and-products">Sums and products</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-verbose"></a>
</p><dl>
<dt><u>Option variable:</u> <b>verbose</b>
<a name="IDX1133"></a>
</dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>verbose</code> is <code>true</code>,
<code>powerseries</code> prints progress messages.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Power-series">Power series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-Poisson-series"></a>
</p><hr size="6">
<a name="Poisson-series"></a>
<a name="SEC137"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC136" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="maxima_31.html#SEC138" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC134" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC134" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_31.html#SEC138" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_79.html#SEC331" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 30.3 Poisson series </h2>
<p><a name="Item_003a-intopois"></a>
</p><dl>
<dt><u>Function:</u> <b>intopois</b><i> (<var>a</var>)</i>
<a name="IDX1134"></a>
</dt>
<dd><p>Converts <var>a</var> into a Poisson encoding.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Poisson-series">Poisson series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-outofpois"></a>
</p><dl>
<dt><u>Function:</u> <b>outofpois</b><i> (<var>a</var>)</i>
<a name="IDX1135"></a>
</dt>
<dd><p>Converts <var>a</var> from Poisson encoding to general
representation. If <var>a</var> is not in Poisson form, <code>outofpois</code> carries out the conversion,
i.e., the return value is <code>outofpois (intopois (<var>a</var>))</code>.
This function is thus a canonical simplifier
for sums of powers of sine and cosine terms of a particular type.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Poisson-series">Poisson series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-poisdiff"></a>
</p><dl>
<dt><u>Function:</u> <b>poisdiff</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX1136"></a>
</dt>
<dd><p>Differentiates <var>a</var> with respect to <var>b</var>. <var>b</var> must occur only
in the trig arguments or only in the coefficients.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Poisson-series">Poisson series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-poisexpt"></a>
</p><dl>
<dt><u>Function:</u> <b>poisexpt</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX1137"></a>
</dt>
<dd><p>Functionally identical to <code>intopois (<var>a</var>^<var>b</var>)</code>.
<var>b</var> must be a positive integer.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Poisson-series">Poisson series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-poisint"></a>
</p><dl>
<dt><u>Function:</u> <b>poisint</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX1138"></a>
</dt>
<dd><p>Integrates in a similarly restricted sense (to
<code>poisdiff</code>). Non-periodic terms in <var>b</var> are dropped if <var>b</var> is in the trig
arguments.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Poisson-series">Poisson series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-poislim"></a>
</p><dl>
<dt><u>Option variable:</u> <b>poislim</b>
<a name="IDX1139"></a>
</dt>
<dd><p>Default value: 5
</p>
<p><code>poislim</code> determines the domain of the coefficients in
the arguments of the trig functions. The initial value of 5
corresponds to the interval [-2^(5-1)+1,2^(5-1)], or [-15,16], but it
can be set to [-2^(n-1)+1, 2^(n-1)].
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Poisson-series">Poisson series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-poismap"></a>
</p><dl>
<dt><u>Function:</u> <b>poismap</b><i> (<var>series</var>, <var>sinfn</var>, <var>cosfn</var>)</i>
<a name="IDX1140"></a>
</dt>
<dd><p>will map the functions <var>sinfn</var> on the
sine terms and <var>cosfn</var> on the cosine terms of the Poisson series given.
<var>sinfn</var> and <var>cosfn</var> are functions of two arguments which are a coefficient
and a trigonometric part of a term in series respectively.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Poisson-series">Poisson series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-poisplus"></a>
</p><dl>
<dt><u>Function:</u> <b>poisplus</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX1141"></a>
</dt>
<dd><p>Is functionally identical to <code>intopois (a + b)</code>.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Poisson-series">Poisson series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-poissimp"></a>
</p><dl>
<dt><u>Function:</u> <b>poissimp</b><i> (<var>a</var>)</i>
<a name="IDX1142"></a>
</dt>
<dd><p>Converts <var>a</var> into a Poisson series for <var>a</var> in general
representation.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Poisson-series">Poisson series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-poisson"></a>
</p><dl>
<dt><u>Special symbol:</u> <b>poisson</b>
<a name="IDX1143"></a>
</dt>
<dd><p>The symbol <code>/P/</code> follows the line label of Poisson series
expressions.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Poisson-series">Poisson series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-poissubst"></a>
</p><dl>
<dt><u>Function:</u> <b>poissubst</b><i> (<var>a</var>, <var>b</var>, <var>c</var>)</i>
<a name="IDX1144"></a>
</dt>
<dd><p>Substitutes <var>a</var> for <var>b</var> in <var>c</var>. <var>c</var> is a Poisson series.
</p>
<p>(1) Where <var>B</var> is a variable <var>u</var>, <var>v</var>, <var>w</var>, <var>x</var>, <var>y</var>, or <var>z</var>,
then <var>a</var> must be an
expression linear in those variables (e.g., <code>6*u + 4*v</code>).
</p>
<p>(2) Where <var>b</var> is other than those variables, then <var>a</var> must also be
free of those variables, and furthermore, free of sines or cosines.
</p>
<p><code>poissubst (<var>a</var>, <var>b</var>, <var>c</var>, <var>d</var>, <var>n</var>)</code> is a special type of substitution which
operates on <var>a</var> and <var>b</var> as in type (1) above, but where <var>d</var> is a Poisson
series, expands <code>cos(<var>d</var>)</code> and <code>sin(<var>d</var>)</code> to order <var>n</var> so as to provide the
result of substituting <code><var>a</var> + <var>d</var></code> for <var>b</var> in <var>c</var>. The idea is that <var>d</var> is an
expansion in terms of a small parameter. For example,
<code>poissubst (u, v, cos(v), %e, 3)</code> yields <code>cos(u)*(1 - %e^2/2) - sin(u)*(%e - %e^3/6)</code>.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Poisson-series">Poisson series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-poistimes"></a>
</p><dl>
<dt><u>Function:</u> <b>poistimes</b><i> (<var>a</var>, <var>b</var>)</i>
<a name="IDX1145"></a>
</dt>
<dd><p>Is functionally identical to <code>intopois (<var>a</var>*<var>b</var>)</code>.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Poisson-series">Poisson series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-poistrim"></a>
</p><dl>
<dt><u>Function:</u> <b>poistrim</b><i> ()</i>
<a name="IDX1146"></a>
</dt>
<dd><p>is a reserved function name which (if the user has defined
it) gets applied during Poisson multiplication. It is a predicate
function of 6 arguments which are the coefficients of the <var>u</var>, <var>v</var>, ..., <var>z</var>
in a term. Terms for which <code>poistrim</code> is <code>true</code> (for the coefficients of
that term) are eliminated during multiplication.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Poisson-series">Poisson series</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-printpois"></a>
</p><dl>
<dt><u>Function:</u> <b>printpois</b><i> (<var>a</var>)</i>
<a name="IDX1147"></a>
</dt>
<dd><p>Prints a Poisson series in a readable format. In common
with <code>outofpois</code>, it will convert <var>a</var> into a Poisson encoding first, if
necessary.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Poisson-series">Poisson series</a>
·
<a href="maxima_95.html#Category_003a-Display-functions">Display functions</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-Number-Theory"></a>
</p><hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC134" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="maxima_31.html#SEC138" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_79.html#SEC331" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
<font size="-1">
This document was generated by <em>Robert Dodier</em> on <em>April, 24 2010</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
</font>
<br>
</p>
</body>
</html>
|