1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Created on April, 24 2010 by texi2html 1.76 -->
<!--
Written by: Lionel Cons <Lionel.Cons@cern.ch> (original author)
Karl Berry <karl@freefriends.org>
Olaf Bachmann <obachman@mathematik.uni-kl.de>
and many others.
Maintained by: Many creative people <dev@texi2html.cvshome.org>
Send bugs and suggestions to <users@texi2html.cvshome.org>
-->
<head>
<title>Maxima 5.21.1 Manual: 49. dynamics</title>
<meta name="description" content="Maxima 5.21.1 Manual: 49. dynamics">
<meta name="keywords" content="Maxima 5.21.1 Manual: 49. dynamics">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html 1.76">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
body
{
color: black;
background: white;
margin-left: 8%;
margin-right: 13%;
}
h1
{
margin-left: +8%;
font-size: 150%;
font-family: sans-serif
}
h2
{
font-size: 125%;
font-family: sans-serif
}
h3
{
font-size: 100%;
font-family: sans-serif
}
h2,h3,h4,h5,h6 { margin-left: +4%; }
div.textbox
{
border: solid;
border-width: thin;
/* width: 100%; */
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em
}
div.titlebox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(200,255,255);
font-family: sans-serif
}
div.synopsisbox
{
border: none;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 2em;
padding-right: 2em;
background: rgb(255,220,255);
/*background: rgb(200,255,255); */
/* font-family: fixed */
}
pre.example
{
border: 1px solid gray;
padding-top: 1em;
padding-bottom: 1em;
padding-left: 1em;
padding-right: 1em;
/* background: rgb(247,242,180); */ /* kind of sandy */
/* background: rgb(200,255,255); */ /* sky blue */
background-color: #F1F5F9; /* light blue-gray */
/* font-family: "Lucida Console", monospace */
}
div.spacerbox
{
border: none;
padding-top: 2em;
padding-bottom: 2em
}
div.image
{
margin: 0;
padding: 1em;
text-align: center;
}
div.categorybox
{
border: 1px solid gray;
padding-top: 0px;
padding-bottom: 0px;
padding-left: 1em;
padding-right: 1em;
background: rgb(247,242,220);
}
-->
</style>
<link rel="icon" href="http://maxima.sourceforge.net/favicon.ico"/>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="dynamics"></a>
<a name="SEC214"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="maxima_48.html#SEC213" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC215" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima_48.html#SEC209" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_50.html#SEC217" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_79.html#SEC331" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h1 class="chapter"> 49. dynamics </h1>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top"><a href="#SEC215">49.1 Introduction to dynamics</a></td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top"><a href="#SEC216">49.2 Functions and Variables for dynamics</a></td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<p><a name="Item_003a-Introduction-to-dynamics"></a>
</p><hr size="6">
<a name="Introduction-to-dynamics"></a>
<a name="SEC215"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC214" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#SEC216" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC214" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC214" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_50.html#SEC217" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_79.html#SEC331" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 49.1 Introduction to dynamics </h2>
<p>The additional package <code>dynamics</code> includes several
functions to create various graphical representations of discrete
dynamical systems and fractals, and an implementation of the Runge-Kutta
4th-order numerical method for solving systems of differential equations.
</p>
<p>To use the functions in this package you must first load it with
<code>load("dynamics")</code>.
</p>
<p><b>Changes introduced in Maxima 5.12</b>
</p>
<p>Starting with Maxima 5.12, the dynamics package now uses the function
<code>plot2d</code> to do the graphs. The commands that produce graphics
(with the exception of <code>julia</code> and <code>mandelbrot</code>) now accept
any options of <code>plot2d</code>, including the option to change among the
various graphical interfaces, using different plot styles and colors,
and representing one or both axes in a logarithmic scale. The old
options <var>domain</var>, <var>pointsize</var>, <var>xcenter</var>, <var>xradius</var>,
<var>ycenter</var>, <var>yradius</var>, <var>xaxislabel</var> and <var>yaxislabel</var>
are not accepted in this new version.
</p>
<p>All programs will now accept any variables names, and not just <var>x</var>
and <var>y</var> as in the older versions. Two required parameters have
changes in two of the programs: <code>evolution2d</code> now requires a list
naming explicitely the two independent variables, and the horizontal
range for <code>orbits</code> no longer requires a step size; the range
should only specify the variable name, and the minimum and maximum
values; the number of steps can now be changed with the option
<var>nticks</var>.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Dynamical-systems">Dynamical systems</a>
·
<a href="maxima_95.html#Category_003a-Share-packages">Share packages</a>
·
<a href="maxima_95.html#Category_003a-Package-dynamics">Package dynamics</a>
</p>
</div>
<p><a name="Item_003a-Functions-and-Variables-for-dynamics"></a>
</p><hr size="6">
<a name="Functions-and-Variables-for-dynamics"></a>
<a name="SEC216"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC215" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="maxima_50.html#SEC217" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="#SEC214" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="#SEC214" title="Up section"> Up </a>]</td>
<td valign="middle" align="left">[<a href="maxima_50.html#SEC217" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_79.html#SEC331" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<h2 class="section"> 49.2 Functions and Variables for dynamics </h2>
<p><a name="Item_003a-chaosgame"></a>
</p><dl>
<dt><u>Function:</u> <b>chaosgame</b><i> (<code>[[</code><var>x1</var>, <var>y1</var><code>]</code>...<code>[</code><var>xm</var>, <var>ym</var><code>]]</code>, <code>[</code><var>x0</var>, <var>y0</var><code>]</code>, <var>b</var>, <var>n</var>, ..., options, ...);</i>
<a name="IDX2017"></a>
</dt>
<dd><p>Implements the so-called chaos game: the initial point (<var>x0</var>,
<var>y0</var>) is plotted and then one of the <var>m</var> points
<code>[</code><var>x1</var>, <var>y1</var><code>]</code>...<code>[</code><var>xm</var>, <var>ym</var><code>]</code>
will be selected at random. The next point plotted will be on the
segment from the previous point plotted to the point chosen randomly, at a
distance from the random point which will be <var>b</var> times that segment's
length. The procedure is repeated <var>n</var> times.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Package-dynamics">Package dynamics</a>
·
<a href="maxima_95.html#Category_003a-Plotting">Plotting</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-evolution"></a>
</p><dl>
<dt><u>Function:</u> <b>evolution</b><i> (<var>F</var>, <var>y0</var>, <var>n</var>, ..., options, ...);</i>
<a name="IDX2018"></a>
</dt>
<dd><p>Draws <var>n+1</var> points in a two-dimensional graph, where the horizontal
coordinates of the points are the integers 0, 1, 2, ..., <var>n</var>, and
the vertical coordinates are the corresponding values <var>y(n)</var> of the
sequence defined by the recurrence relation
</p><pre class="example"> y(n+1) = F(y(n))
</pre>
<p>With initial value <var>y(0)</var> equal to <var>y0</var>. <var>F</var> must be an
expression that depends only on one variable (in the example, it
depend on <var>y</var>, but any other variable can be used),
<var>y0</var> must be a real number and <var>n</var> must be a positive integer.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Package-dynamics">Package dynamics</a>
·
<a href="maxima_95.html#Category_003a-Plotting">Plotting</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-evolution2d"></a>
</p><dl>
<dt><u>Function:</u> <b>evolution2d</b><i> (<code>[</code><var>F</var>, <var>G</var><code>]</code>, <code>[</code><var>u</var>, <var>v</var><code>]</code>, <code>[</code><var>u0</var>, <var>y0</var><code>]</code>, <var>n</var>, ..., options, ...);</i>
<a name="IDX2019"></a>
</dt>
<dd><p>Shows, in a two-dimensional plot, the first <var>n+1</var> points in the
sequence of points defined by the two-dimensional discrete dynamical
system with recurrence relations
</p><pre class="example"> u(n+1) = F(u(n), v(n)) v(n+1) = G(u(n), v(n))
</pre>
<p>With initial values <var>u0</var> and <var>v0</var>. <var>F</var> and <var>G</var> must be
two expressions that depend only on two variables, <var>u</var> and
<var>v</var>, which must be named explicitely in a list.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Package-dynamics">Package dynamics</a>
·
<a href="maxima_95.html#Category_003a-Plotting">Plotting</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-ifs"></a>
</p><dl>
<dt><u>Function:</u> <b>ifs</b><i> (<code>[</code><var>r1</var>, ..., <var>rm</var><code>]</code>, <code>[</code><var>A1</var>, ..., <var>Am</var><code>]</code>, <code>[[</code><var>x1</var>, <var>y1</var><code>]</code>, ..., <code>[</code><var>xm</var>, <var>ym</var><code>]]</code>, <code>[</code><var>x0</var>, <var>y0</var><code>]</code>, <var>n</var>, ..., options, ...);</i>
<a name="IDX2020"></a>
</dt>
<dd><p>Implements the Iterated Function System method. This method is similar
to the method described in the function <code>chaosgame</code>, but instead of
shrinking the segment from the current point to the randomly chosen
point, the 2 components of that segment will be multiplied by the 2 by 2
matrix <var>Ai</var> that corresponds to the point chosen randomly.
</p>
<p>The random choice of one of the <var>m</var> attractive points can be made with
a non-uniform probability distribution defined by the weights
<var>r1</var>,...,<var>rm</var>. Those weights are given in cumulative form; for instance if there are 3 points with probabilities 0.2, 0.5 and
0.3, the weights <var>r1</var>, <var>r2</var> and <var>r3</var> could be 2, 7 and 10.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Package-dynamics">Package dynamics</a>
·
<a href="maxima_95.html#Category_003a-Plotting">Plotting</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-julia"></a>
</p><dl>
<dt><u>Function:</u> <b>julia</b><i> (<var>x</var>, <var>y</var>, ...<var>options</var>...)</i>
<a name="IDX2021"></a>
</dt>
<dd><p>Creates a graphics file with the representation of the Julia set for the
complex number (<var>x</var> + i <var>y</var>). The parameters <var>x</var> and <var>y</var>
must be real. The file is created in the current directory or in the user's
directory, using the XPM graphics format. The program may take several
seconds to run and after it is finished, a message will be printed with
the name of the file created.
</p>
<p>The points which do not belong to the Julia set are assigned different
colors, according to the number of iterations it takes the sequence
starting at that point to move out of the convergence circle of radius
2. The maximum number of iterations is set with the option <var>levels</var>;
after that number of iterations, if the sequence is still inside the
convergence circle, the point will be painted with the color defined by
the option <var>color</var>.
</p>
<p>All the colors used for the points that do not belong to the Julia set
will have the same <var>saturation</var> and <var>value</var>, but with different
hue angles distributed uniformly between <var>hue</var> and (<var>hue</var> +
<var>huerange</var>).
</p>
<p><var>options</var> is an optional sequence of options. The list of accepted
options is given in a section below.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Package-dynamics">Package dynamics</a>
·
<a href="maxima_95.html#Category_003a-Plotting">Plotting</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-mandelbrot"></a>
</p><dl>
<dt><u>Function:</u> <b>mandelbrot</b><i> (<var>options</var>)</i>
<a name="IDX2022"></a>
</dt>
<dd><p>Creates a graphics file with the representation of the Mandelbrot
set. The file is created in the current directory or in the user's
directory, using the XPM graphics format. The program may take several
seconds to run and after it is finished, a message will be printed with
the name of the file created.
</p>
<p>The points which do not belong to the Mandelbrot set are
assigned different colors, according to the number of iterations it
takes the sequence generated with that point to move out of the
convergence circle o radius 2. The maximum number of iterations is set with
the option <var>levels</var>; after that number of iterations, if the
sequence is still inside the convergence circle, the point will be
painted with the color defined by the option <var>color</var>.
</p>
<p>All the colors used for the points that do not belong to the Mandelbrot
set will have the same <var>saturation</var> and <var>value</var>, but with
different hue angles distributed uniformly between <var>hue</var> and
(<var>hue</var> + <var>huerange</var>).
</p>
<p><var>options</var> is an optional sequence of options. The list of accepted
options is given in a section below.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Package-dynamics">Package dynamics</a>
·
<a href="maxima_95.html#Category_003a-Plotting">Plotting</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-orbits"></a>
</p><dl>
<dt><u>Function:</u> <b>orbits</b><i> (<var>F</var>, <var>y0</var>, <var>n1</var>, <var>n2</var>, [<var>x</var>, <var>x0</var>, <var>xf</var>, <var>xstep</var>], ...options...);</i>
<a name="IDX2023"></a>
</dt>
<dd><p>Draws the orbits diagram for a family of one-dimensional
discrete dynamical systems, with one parameter <var>x</var>; that kind of
diagram is used to study the bifurcations of a one-dimensional discrete
system.
</p>
<p>The function <var>F(y)</var> defines a sequence with a starting value of
<var>y0</var>, as in the case of the function <code>evolution</code>, but in this
case that function will also depend on a parameter <var>x</var> that will
take values in the interval from <var>x0</var> to <var>xf</var> with increments of
<var>xstep</var>. Each value used for the parameter <var>x</var> is shown on the
horizontal axis. The vertical axis will show the <var>n2</var> values
of the sequence <var>y(n1+1)</var>,..., <var>y(n1+n2+1)</var> obtained after letting
the sequence evolve <var>n1</var> iterations.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Package-dynamics">Package dynamics</a>
·
<a href="maxima_95.html#Category_003a-Plotting">Plotting</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-rk"></a>
</p><dl>
<dt><u>Function:</u> <b>rk</b><i> (<var>ODE</var>, <var>var</var>, <var>initial</var>, <var>domain</var>)</i>
<a name="IDX2024"></a>
</dt>
<dt><u>Function:</u> <b>rk</b><i> ([<var>ODE1</var>,...,<var>ODEm</var>], [<var>v1</var>,...,<var>vm</var>], [<var>init1</var>,...,<var>initm</var>], <var>domain</var>)</i>
<a name="IDX2025"></a>
</dt>
<dd><p>The first form solves numerically one first-order ordinary differential
equation, and the second form solves a system of m of those equations,
using the 4th order Runge-Kutta method. <var>var</var> represents the dependent
variable. <var>ODE</var> must be an expression that depends only on the independent
and dependent variables and defines the derivative of the dependent
variable with respect to the independent variable.
</p>
<p>The independent variable is specified with <code>domain</code>, which must be a
list of four elements as, for instance:
</p><pre class="example">[t, 0, 10, 0.1]
</pre><p>the first element of the list identifies the independent variable, the
second and third elements are the initial and final values for that
variable, and the last element sets the increments that should be used
within that interval.
</p>
<p>If <var>m</var> equations are going to be solved, there should be <var>m</var>
dependent variables <var>v1</var>, <var>v2</var>, ..., <var>vm</var>. The initial values
for those variables will be <var>init1</var>, <var>init2</var>, ..., <var>initm</var>.
There will still be just one independent variable defined by <code>domain</code>,
as in the previous case. <var>ODE1</var>, ..., <var>ODEm</var> are the expressions
that define the derivatives of each dependent variable in
terms of the independent variable. The only variables that may appear in
those expressions are the independent variable and any of the dependent
variables. It is important to give the derivatives <var>ODE1</var>, ...,
<var>ODEm</var> in the list in exactly the same order used for the dependent
variables; for instance, the third element in the list will be interpreted
as the derivative of the third dependent variable.
</p>
<p>The program will try to integrate the equations from the initial value
of the independent variable until its last value, using constant
increments. If at some step one of the dependent variables takes an
absolute value too large, the integration will be interrupted at that
point. The result will be a list with as many elements as the number of
iterations made. Each element in the results list is itself another list
with <var>m</var>+1 elements: the value of the independent variable, followed
by the values of the dependent variables corresponding to that point.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Package-dynamics">Package dynamics</a>
·
<a href="maxima_95.html#Category_003a-Differential-equations">Differential equations</a>
·
<a href="maxima_95.html#Category_003a-Numerical-methods">Numerical methods</a>
</p>
</div>
</dd></dl>
<p><a name="Item_003a-staircase"></a>
</p><dl>
<dt><u>Function:</u> <b>staircase</b><i> (<var>F</var>, <var>y0</var>, <var>n</var>, ...options...);</i>
<a name="IDX2026"></a>
</dt>
<dd><p>Draws a staircase diagram for the sequence defined by the recurrence
relation
</p><pre class="example"> y(n+1) = F(y(n))
</pre>
<p>The interpretation and allowed values of the input parameters is the
same as for the function <code>evolution</code>. A staircase diagram consists
of a plot of the function <var>F(y)</var>, together with the line
<var>G(y)</var> <code>=</code> <var>y</var>. A vertical segment is drawn from the
point (<var>y0</var>, <var>y0</var>) on that line until the point where it
intersects the function <var>F</var>. From that point a horizontal segment is
drawn until it reaches the point (<var>y1</var>, <var>y1</var>) on the line, and
the procedure is repeated <var>n</var> times until the point (<var>yn</var>, <var>yn</var>)
is reached.
</p>
<div class=categorybox>
<p>Categories: <a href="maxima_95.html#Category_003a-Package-dynamics">Package dynamics</a>
·
<a href="maxima_95.html#Category_003a-Plotting">Plotting</a>
</p>
</div>
</dd></dl>
<p><b>Options</b>
</p>
<p>Each option is a list of two or more items. The first item is the name
of the option, and the remainder comprises the arguments for the option.
</p>
<p>The options accepted by the functions <code>evolution</code>, <code>evolution2d</code>,
<code>staircase</code>, <code>orbits</code>, <code>ifs</code> and <code>chaosgame</code> are the same as the options for
<code>plot2d</code>. In addition to those options, <code>orbits</code> accepts and
extra option <var>pixels</var> that sets up the maximum number of different
points that will be represented in the vertical direction.
</p>
<p>The following options are accepted by the functions <code>julia</code> and <code>mandelbrot</code>:
</p>
<ul>
<li>
<em>size</em> takes either one or two arguments. If only one argument is
given, the width and height of the graphic file created will be equal to
that value, in pixels. If two arguments are given, they will define the
width and height. The default value is 400 pixels for both the width and
height. If the two values are not equal, the set will appear distorted.
</li><li>
<em>levels</em> defines the maximum number of iterations, which is also
equal to the number of colors used for points not belonging to the
set. The default value is 12; larger values mean much longer processing
times.
</li><li>
<em>huerange</em> defines the range of hue angles used for the hue of
points not belonging to the set. The default value is 360,
which means that the colors will expand all the range of hues. Values
bigger than 360, will mean repeated ranges of the hue, and negative
values can be used to make the hue angle decrease as the number of
iterations increases.
</li><li>
<em>hue</em> sets the hue, in degrees, of the first color used for the
points which do not belong to the set. Its default value is 300 degrees,
which corresponds to magenta; the values for other standard colors are 0
for red, 45 for orange, 60 for yellow, 120 for green, 180 for cyan and
240 for blue. See also option <var>huerange</var>.
</li><li>
<em>saturation</em> sets the value of the saturation used for points not
belonging to the set. It must be between 0 and 1. The default is 0.46.
</li><li>
<em>value</em> sets the value of the colors used for points not belonging
to the set. It must be between 0 and 1; the higher the value, the
brighter the colors. The default is 0.96
</li><li>
<em>color</em> must be followed by three parameters that define the hue,
saturation and value, for the color used to represent the points of the
set. The default value is 0 for the three parameters, which corresponds
to black. For an explanation of the range of allowed values, see options
<var>hue</var>, <var>saturation</var> and <var>value</var>.
</li><li>
<em>center</em> must be followed by two real parameters, which give the
coordinates, on the complex plane, of the point in the center of the
region shown. The default value is 0 for both coordinates (the origin).
</li><li>
<em>radius</em> sets the radius of the biggest circle inside the square
region that will be displayed. The default value is 2.
</li><li>
<em>filename</em> gives the name of the file where the resulting graph will
be saved. The extension .xpm will be added to that name. If the file
already exists, it will be replaced by the file generated by the
function. The default values are julia for the Julia set, and mandelbrot
for the Mandelbrot set.
</li></ul>
<p><b>Examples</b>
</p>
<p>Graphical representation and staircase diagram for the sequence:
2, cos(2), cos(cos(2)),...
</p>
<pre class="example">(%i1) load("dynamics")$
(%i2) evolution(cos(y), 2, 11);
(%i3) staircase(cos(y), 1, 11, [y, 0, 1.2]);
</pre>
<p><div class="image"><img src="./figures/dynamics1.gif" alt="figures/dynamics1"></div>
<div class="image"><img src="./figures/dynamics2.gif" alt="figures/dynamics2"></div>
</p>
<p>If your system is slow, you'll have to reduce the number of iterations in
the following examples. And if the dots appear too small in your
monitor, you might want to try a different style, such as
<code>[</code><var>style</var>,<code>[</code><var>points</var>,0.8<code>]]</code>.
</p>
<p>Orbits diagram for the quadratic map, with a parameter <var>a</var>.
</p><pre class="example"> x(n+1) = a + x(n)^2
</pre>
<pre class="example">(%i4) orbits(x^2+a, 0, 50, 200, [a, -2, 0.25], [style, dots]);
</pre>
<p><div class="image"><img src="./figures/dynamics3.gif" alt="figures/dynamics3"></div>
</p>
<p>To enlarge the region around the lower bifurcation near x <code>=</code> -1.25 use:
</p><pre class="example">(%i5) orbits(x^2+a, 0, 100, 400, [a,-1,-1.53], [x,-1.6,-0.8],
[nticks, 400], [style,dots]);
</pre>
<p><div class="image"><img src="./figures/dynamics4.gif" alt="figures/dynamics4"></div>
</p>
<p>Evolution of a two-dimensional system that leads to a fractal:
</p>
<pre class="example">(%i6) f: 0.6*x*(1+2*x)+0.8*y*(x-1)-y^2-0.9$
(%i7) g: 0.1*x*(1-6*x+4*y)+0.1*y*(1+9*y)-0.4$
(%i8) evolution2d([f,g], [x,y], [-0.5,0], 50000, [style,dots]);
</pre>
<p><div class="image"><img src="./figures/dynamics5.gif" alt="figures/dynamics5"></div>
</p>
<p>And an enlargement of a small region in that fractal:
</p>
<pre class="example">(%i9) evolution2d([f,g], [x,y], [-0.5,0], 300000, [x,-0.8,-0.6],
[y,-0.4,-0.2], [style, dots]);
</pre>
<p><div class="image"><img src="./figures/dynamics6.gif" alt="figures/dynamics6"></div>
</p>
<p>A plot of Sierpinsky's triangle, obtained with the chaos game:
</p>
<pre class="example">(%i9) chaosgame([[0, 0], [1, 0], [0.5, sqrt(3)/2]], [0.1, 0.1], 1/2,
30000, [style, dots]);
</pre>
<p><div class="image"><img src="./figures/dynamics7.gif" alt="figures/dynamics7"></div>
</p>
<p>Barnsley's fern, obtained with an Iterated Function System:
</p>
<pre class="example">(%i10) a1: matrix([0.85,0.04],[-0.04,0.85])$
(%i11) a2: matrix([0.2,-0.26],[0.23,0.22])$
(%i12) a3: matrix([-0.15,0.28],[0.26,0.24])$
(%i13) a4: matrix([0,0],[0,0.16])$
(%i14) p1: [0,1.6]$
(%i15) p2: [0,1.6]$
(%i16) p3: [0,0.44]$
(%i17) p4: [0,0]$
(%i18) w: [85,92,99,100]$
(%i19) ifs(w, [a1,a2,a3,a4], [p1,p2,p3,p4], [5,0], 50000, [style,dots]);
</pre>
<p><div class="image"><img src="./figures/dynamics8.gif" alt="figures/dynamics8"></div>
</p>
<p>To create a file named <em>dynamics9.xpm</em> with a graphical
representation of the Mandelbrot set, with 12 colors, use:
</p>
<pre class="example">mandelbrot([filename,"dynamics9"])$
</pre>
<p><div class="image"><img src="./figures/dynamics9.gif" alt="figures/dynamics9"></div>
</p>
<p>and the Julia set for the number (-0.55 + i 0.6) can be obtained with:
</p><pre class="example">julia(-0.55, 0.6, [levels, 36], [center, 0, 0.6], [radius, 0.3],
[hue, 240], [huerange, -180], [filename, "dynamics10"])$
</pre>
<p>the graph will be saved in the file <em>dynamics10.xpm</em> and will show
the region from -0.3 to 0.3 in the x direction, and from 0.3 to 0.9 in
the y direction. 36 colors will be used, starting with blue and ending
with yellow.
</p>
<p><div class="image"><img src="./figures/dynamics10.gif" alt="figures/dynamics10"></div>
</p>
<p>To solve numerically the differential equation
</p>
<pre class="example"> dx/dt = t - x^2
</pre>
<p>With initial value x(t=0) = 1, in the interval of t from 0 to 8 and with
increments of 0.1 for t, use:
</p>
<pre class="example">(%i20) results: rk(t-x^2,x,1,[t,0,8,0.1])$
</pre>
<p>the results will be saved in the list <code>results</code>.
</p>
<p>To solve numerically the system:
</p>
<pre class="example"> dx/dt = 4-x^2-4*y^2 dy/dt = y^2-x^2+1
</pre>
<p>for t between 0 and 4, and with values of -1.25 and 0.75 for x and y at t=0:
</p>
<pre class="example">(%i21) sol: rk([4-x^2-4*y^2,y^2-x^2+1],[x,y],[-1.25,0.75],[t,0,4,0.02])$
</pre>
<p><a name="Item_003a-ezunits"></a>
</p><hr size="6">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#SEC214" title="Beginning of this chapter or previous chapter"> << </a>]</td>
<td valign="middle" align="left">[<a href="maxima_50.html#SEC217" title="Next chapter"> >> </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="maxima.html#SEC_Top" title="Cover (top) of document">Top</a>]</td>
<td valign="middle" align="left">[<a href="maxima_toc.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="maxima_79.html#SEC331" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="maxima_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
<font size="-1">
This document was generated by <em>Robert Dodier</em> on <em>April, 24 2010</em> using <a href="http://texi2html.cvshome.org/"><em>texi2html 1.76</em></a>.
</font>
<br>
</p>
</body>
</html>
|