File: bradic.dem

package info (click to toggle)
maxima 5.21.1-2squeeze
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 94,928 kB
  • ctags: 43,849
  • sloc: lisp: 298,974; fortran: 14,666; perl: 14,325; tcl: 10,494; sh: 4,052; makefile: 2,975; ansic: 471; awk: 24; sed: 7
file content (88 lines) | stat: -rw-r--r-- 3,410 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
/* Copyright (C) 2008 Viktor T. Toth <http://www.vttoth.com/>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be
 * useful, but WITHOUT ANY WARRANTY; without even the implied
 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 * PURPOSE.  See the GNU General Public License for more details.
 *
 * Deriving the field equations from the action for Brans-Dicke cosmology
 *
 */
("Deriving the field equations in FLRW cosmology for the Brans-Dicke action" )$
if get('ctensor,'version)=false then load(ctensor);
if get('itensor,'version)=false then load(itensor);
("The first step is to construct a symmetrized Riemann tensor.")$
("For this, we employ an auxiliary symmetrized metric.")$
remsym(g,2,0);
remsym(g,0,2);
remsym(gg,2,0);
remsym(gg,0,2);
remcomps(gg);
imetric(gg);
icurvature([a,b,c],[e])*gg([d,e],[])$
contract(rename(expand(%)))$
%,ichr2$
contract(rename(expand(%)))$
canform(%)$
contract(rename(expand(%)))$
("We now reexpress gg by symmetrizing g using kdels and simplify:")$
components(gg([a,b],[]),kdels([a,b],[u,v])*g([u,v],[])/2);
components(gg([],[a,b]),kdels([u,v],[a,b])*g([],[u,v])/2);
%th(5),gg$
("Some of the following simplifications may take some time...")$
contract(rename(expand(%th(2))))$
contract(canform(%))$
("Now we can switch to the real metric:")$
imetric(g);
contract(rename(expand(%th(3))))$
("At last, we got the covariant Riemann tensor.")$
remcomps(R);
components(R([a,b,c,d],[]),%th(3));
("What we really need, though, is the curvature scalar:")$
g([],[a,b])*R([a,b,c,d])*g([],[c,d])$
contract(rename(canform(%)))$
contract(rename(canform(%)))$
components(R([],[]),%);
("Before going further, we establish the symmetry properties of g.")$
decsym(g,2,0,[sym(all)],[]);
decsym(g,0,2,[],[sym(all)]);
("Now we can construct the Brans-Dicke action.")$
L1:1/(16*%pi)*(('R([],[])))*sqrt(-determinant(g))$
L2:1/(16*%pi)*(w*gg([],[a,b])*f([],[],a)*f([],[],b)/f([],[]))*sqrt(-determinant(g))$
L0:radcan(-f([],[])*L1+L2)$
L0:contract(ev(L0,R))$
("We construct and simplify the 2nd order Euler-Lagrange equation:")$
canform(contract(canform(rename(contract(expand(diff(L0,g([],[m,n]))-idiff(diff(L0,g([],[m,n],k)),k)+idiff(rename(idiff(contract(diff(L0,g([],[m,n],k,l))),k),1000),l)))))))$
ishow(e([m,n],[])=canform(%*16*%pi/sqrt(-determinant(g))))$
("We build a ctensor program to calculate tensor components:")$
EQ:ic_convert(%th(2))$
("Now we set up the FLRW metric of cosmology:")$
ct_coords:[t,r,u,v];
lg:ident(4);
lg[2,2]:-a^2/(1-k*r^2);
lg[3,3]:-a^2*r^2;
lg[4,4]:-a^2*r^2*sin(u)^2;
("Let's not forget that the scalar field is also a function of time.")$
dependencies(a(t),f(t));
cmetric();
derivabbrev:true;
christof(false);
("We can at last evaluate the Euler-Lagrange equation...")$
e:zeromatrix(4,4);
("This is definitely going to take a little time...")$
ev(EQ);
ug.e$
subst(f,f([],[]),%)$
expand(radcan(%/f));
("As a last step, let us calculate the Hamiltonian associated with f.")$
ic_convert(L([],[])=L0)$
ev(%)$
L:factor(subst(f,f([],[]),L));
P:subst(diff(f,t),ft,diff(subst(ft,diff(f,t),L),ft));
H:ratsimp(P*diff(f,t)-L);
/* End of demo -- comment line needed by MAXIMA to resume demo menu */