1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
|
/*************** -*- Mode: MACSYMA; Package: MAXIMA -*- ******************/
/***************************************************************************
*** *****
*** Copyright (c) 1984 by William Schelter,University of Texas *****
*** All rights reserved *****
***************************************************************************/
kill(all);
done$
n!/(n+1)!;
n!/(n+1)!$
minfactorial(%);
1/(n+1)$
(n+1)^2*n!^2;
(n+1)^2*n!^2$
factcomb(%);
(n+1)!^2$
qunit(17);
sqrt(17)+4$
expand(%*(sqrt(17)-4));
1$
cf([1,2,-3]+[1,-2,1]);
[1,1,1,2]$
cfdisrep(%);
''(cfdisrep(cf(8/5)))$
cflength:4;
4$
cf(sqrt(3));
[1,1,2,1,2,1,2,1,2]$
cfexpand(%);
matrix([265,97],[153,56])$
ev(%[1,2]/%[2,2],numer);
1.7321428571428572$
cf([1,2,-3]+[1,-2,1]);
[1,1,1,2]$
cfdisrep(%);
''(cfdisrep(cf(8/5)))$
cflength:4;
4$
cf(sqrt(3));
[1,1,2,1,2,1,2,1,2]$
cfexpand(%);
matrix([265,97],[153,56])$
ev(%[1,2]/%[2,2],numer);
1.7321428571428572$
(foop1(L1, L2) := length(L1) <= length(L2) and L1 = makelist (L2[i], i, 1, length(L1)),
foop(L1, L2) := foop1(L1, L2) or last(L1) # 1 and foop1 (reverse (append ([1, last(L1) - 1], rest (reverse (L1)))), L2),
ratepsilon : 1b-16,
0);
0;
(expr: 2^(1/3),
cf(expr),
foop (%%, cf(rat(bfloat(expr)))));
true;
(expr: 8^(1/4),
cf(expr),
foop (%%, cf(rat(bfloat(expr)))));
true;
(expr: 12^(1/5),
cf(expr),
foop (%%, cf(rat(bfloat(expr)))));
true;
(expr : 2^(1/3) + 3^(1/4) + 4^(1/5),
cf(expr),
foop (%%, cf(rat(bfloat(expr)))));
true;
(expr : sqrt(2) + 2^(2/3) + sqrt(17) - 11^(7/5),
cf(expr),
foop (%%, cf(rat(bfloat(expr)))));
true;
(reset (ratepsilon), 0);
0;
declare(j,even);
done$
featurep(j,integer);
true$
map(f,x+a*y+b*z);
f(b*z)+f(a*y)+f(x)$
map(lambda([u],partfrac(u,x)),x+1/(x^3+4*x^2+5*x+2));
1/(x+2)-1/(x+1)+1/(x+1)^2+x$
map(ratsimp,x/(x^2+x)+(y^2+y)/y);
y+1/(x+1)+1$
map("=",[a,b],[-0.5,3]);
[a = -0.5,b = 3]$
fullmap(g,a+b*c);
g(b)*g(c)+g(a)$
map(g,a+b*c);
g(b*c)+g(a)$
fullmapl("+",[3,[4,5]],[[a,1],[0,-1.5]]);
[[a+3,4],[4,3.5]]$
exp1:(a^2+2*a+1)*y+x^2;
(a^2+2*a+1)*y+x^2$
scanmap(factor,%);
(a+1)^2*y+x^2$
u*v^(a*x+b)+c;
u*v^(a*x+b)+c$
scanmap('f,%);
f(f(f(u)*f(f(v)^f(f(f(a)*f(x))+f(b))))+f(c))$
append([y+x,0,-3.2],[2.5e+20,x]);
[y+x,0,-3.2,2.5e+20,x]$
my_union(x,y):=if x = [] then y
else (if member(t:first(x),y) then my_union(rest(x),y)
else cons(t,my_union(rest(x),y)));
my_union(x,y):=if x = [] then y
else (if member(t:first(x),y) then my_union(rest(x),y)
else cons(t,my_union(rest(x),y)))$
my_union([a,b,1,1/2,x^2],[-x^2,a,y,1/2]);
[b,1,x^2,-x^2,a,y,1/2]$
bernpoly(x,5);
x^5-5*x^4/2+5*x^3/3-x/6$
maplist(numfactor,%);
[1,-5/2,5/3,-1/6]$
apply(min,%);
-5/2$
factcomb(3*x/(2*3^x*x!));
3^(1-x)/(2*(x-1)!)$
|