File: rtestode.mac

package info (click to toggle)
maxima 5.21.1-2squeeze
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 94,928 kB
  • ctags: 43,849
  • sloc: lisp: 298,974; fortran: 14,666; perl: 14,325; tcl: 10,494; sh: 4,052; makefile: 2,975; ansic: 471; awk: 24; sed: 7
file content (205 lines) | stat: -rw-r--r-- 5,055 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/* ODE tests */

kill(all);
done;

/* Trivial ode - bug 866510 */
ode2('diff(y,x),y,x);
y=%c;

/* Examples from "The Maxima Book" */

ode2(x^2*'diff(y,x)+3*x*y=sin(x)/x, y, x);
y = (%c-cos(x))/x^3;
ic1(%, x=1, y=1);
y = -((cos(x)-cos(1)-1)/x^3);
method;
linear;

soln:ode2('diff(y,x,2) + y = 4*x, y, x);
y = %k1*sin(x) + %k2*cos(x) + 4*x;
method;
variationofparameters;
ic2(soln, x=0, y=1, diff(y,x)=3);
y = -sin(x)+cos(x)+4*x;
bc2(soln, x=0, y=3, x=2, y=1);
y = -((3*cos(2)+7)*sin(x)/sin(2)) + 3*cos(x) + 4*x;

ode2((3*x^2+4*x+2)=(2*y-1)*'diff(y,x), y, x);
y^2-y = x^3+2*x^2+2*x+%c;
method;
separable;

ode2(x^2*cos(x*y)*'diff(y,x) + (sin(x*y)+x*y*(cos(x*y)))=0, y, x);
x*sin(x*y)=%c;
method;
exact;

ode2( (2*x*y-exp(-2*y))*'diff(y,x)+y=0, y, x);
x*exp(2*y) - log(y) = %c;
method;
exact; 
intfactor;
exp(2*y)/y;

ode2( 'diff(y,x)=(y/x)^2+2*(y/x), y, x);
-((x*y+x^2)/y) = %c;
method;
exact;

ode2( 'diff(y,x)+(2/x)*y=(1/x^2)*y^3, y, x);
y = 1/(sqrt( 2/(5*x^5) + %c)*x^2);
method;
bernoulli;
odeindex;
3;

ode2( 'diff(y,x,2)-3*'diff(y,x)+2*y=0, y, x);
y = %k1*exp(2*x) + %k2*exp(x);
method;
constcoeff;

ode2( 'diff(y,x,2)-4*'diff(y,x)+4*y=0, y, x);
y = (%k2*x + %k1)*exp(2*x);
method;
constcoeff;

ode2(x^2*'diff(y,x,2)+x*'diff(y,x)-y=0, y, x);
y=%k2*x-%k1/(2*x);
method;
exact;

ode2( x^2*'diff(y,x,2)+4*x*'diff(y,x)+2*y=0, y, x);
y=%k1/x+%k2/x^2;
method;
exact; /*euler*/

ode2( x^2*'diff(y,x,2)+5*x*'diff(y,x)+4*y=0, y, x);
y=(%k2*log(x)+%k1)/x^2;
method;
euler;

ode2( x^2*'diff(y,x,2)+x*'diff(y,x)+(x^2-1/4)*y=0, y, x);
y=(%k1*sin(x)+%k2*cos(x))/sqrt(x);
method;
bessel;

ode2( x^2*'diff(y,x,2)+x*'diff(y,x)+(x^2-4)*y=0, y, x);
y=%k1*bessel_j(2,x)+%k2*bessel_y(2,x);
method;
bessel;

ode2( (x-1)^2*'diff(y,x,2)+(x-1)*'diff(y,x)+((x-1)^2-4)*y=0, y, x);
y=%k1*bessel_j(2,x-1)+%k2*bessel_y(2,x-1);
method;
bessel;

ode2( x^2*'diff(y,x,2)+x*'diff(y,x)+(x^2-1/9)*y=0, y, x);
y=bessel_j(-1/3,x)*%k2+bessel_j(1/3,x)*%k1;
method;
bessel;

/* Bug report 2876387: asks if obvious non-integers are integers */ 
(declare(n,integer),ode2(x^2*'diff(y,x,2)+x*'diff(y,x)+(x^2-n^2)*y=0,y,x));
y = %k2*bessel_y(n,x)+%k1*bessel_j(n,x);
(remove(n,integer),method);
bessel;

(declare(v,noninteger),ode2(x^2*'diff(y,x,2)+x*'diff(y,x)+(x^2-v^2)*y=0,y,x));
y = %k1*bessel_j(v,x)+%k2*bessel_j(-v,x);
(remove(v,noninteger),method);
bessel;
 
ode2(x^2*'diff(y,x,2)+x*'diff(y,x)+(x^2-3)*y=0,y,x);
y = %k1*bessel_j(sqrt(3),x)+%k2*bessel_j(-sqrt(3),x);
method;
bessel;

ode2( 'diff(y,x,2)+2*'diff(y,x)+y=exp(x), y, x);
y=exp(x)/4+(%k2*x+%k1)*exp(-x);
method;
variationofparameters;
yp;
exp(x)/4;

ode2( x*'diff(y,x,2)+('diff(y,x))^2=0, y, x);
/* y='integrate(1/(log(x)+%k1),x)+%k2;
   Because of adding more integrals for the power function we get a result
   12/2008 */
y=%k2-expintegral_e(1,-log(x)-%k1)*%e^-%k1;
method;
freeofy;

ode2( y*'diff(y,x,2)+('diff(y,x))^2=0, y, x);
y^2/(2*%k1)=x+%k2;
method;
freeofx;

eq: 'diff(y,x,2)+x*'diff(y,x)+exp(-x^2)*y=0;
'diff(y,x,2)+x*'diff(y,x,1)+%e^-x^2*y = 0;
ans:ode2(eq,y,x);
y = %k1*sin((1/2) * sqrt(2)*sqrt(%pi)*erf(x/sqrt(2)))+%k2*cos((1/2) * sqrt(2)*sqrt(%pi)*erf(x/sqrt(2)));
is(ratsimp(ev(eq,ans,diff)));
true;
method;
xformtoconstcoeff;

eq:x*'diff(y,x,2)+(x^2-1)*'diff(y,x,1)+x^3*y=0;
x*'diff(y,x,2)+(x^2-1)*'diff(y,x,1)+x^3*y=0;
ans:ode2(eq,y,x);
y=%e^-(x^2/4)*(%k1*sin(sqrt(3)*x^2/4)+%k2*cos(sqrt(3)*x^2/4));
is(ratsimp(ev(eq,ans,diff)));
true;
method;
xformtoconstcoeff;

/* Tests of desolve */

eqn1:'diff(f(x),x) = sin(x)+'diff(g(x),x);
'diff(f(x),x,1) = 'diff(g(x),x,1)+sin(x);
eqn2:'diff(g(x),x,2) = 'diff(f(x),x)-cos(x);
'diff(g(x),x,2) = 'diff(f(x),x,1)-cos(x);
desolve([eqn1,eqn2],[f(x),g(x)]);
[f(x)=%e^x*(at('diff(g(x),x,1),x = 0))-at('diff(g(x),x,1),x = 0)+f(0),g(x)=%e^x*(at('diff(g(x),x,1),x=0))-at('diff(g(x),x,1),x = 0)+cos(x)+g(0)-1];
atvalue('diff(g(x),x),x = 0,a);
a;
atvalue(f(x),x = 0,1);
1;
desolve([eqn1,eqn2],[f(x),g(x)]);
[f(x) = a*%e^x-a+1,g(x) = cos(x)+a*%e^x-a+g(0)-1];
remove(f,atvalue,g,atvalue);
done;

atvalue('diff(g(x),x),x = 0,a);
a;
atvalue(f(x),x = 0,1);
1;
desolve([eqn1,eqn2],[f(x),g(x)]);
[f(x) = a*%e^x-a+1,g(x) = cos(x)+a*%e^x-a+g(0)-1];

eqn3: 'diff(f(x),x,2)+f(x)=2*x;
'diff(f(x),x,2)+f(x)=2*x;
desolve(eqn3,f(x));
''(f(x) = sin(x)*(at('diff(f(x),x,1),x = 0)-2)+f(0)*cos(x)+2*x);

/* Examples mentioned in bug report [ 1063454 ] bug in ode2
 * First one was reported to fail in CMUCL with "run out of heap" message.
 * Others were reported to be OK. Put them all here for good measure.
 */

(ode2 ('diff(y, t, 2) + 'diff(y, t) + y - sin(t), y, t),
 rhs(%%), ratsimp (diff(%%, t, 2) + diff(%%, t) + %% - sin(t)));
0;

(ode2 ('diff(y, t, 2) + 'diff(y, t) + 2*y - sin(t), y, t),
 rhs(%%), ratsimp (diff(%%, t, 2) + diff(%%, t) + 2*%% - sin(t)));
0;

(ode2 ('diff(y, t, 2) + 'diff(y, t) + y - exp(%i*t), y, t),
 rhs(%%), ratsimp (diff(%%, t, 2) + diff(%%, t) + %% - exp(%i*t)));
0;

/* bug report 1063454 claims "maxima gets stuck" on the following */
(integrate (my_integrand : exp(t/2) * sin(t) * sin(sqrt(3) * t/2), t),
 ratsimp (exponentialize (diff (%%, t) - my_integrand)));
0;