1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/*
Copyright (C) 2002, 2008 Barton Willis
Brief Description: Maxima code for dimensional analysis.
I release this file under the terms of the GNU General Public License, version 2
*/
put('dimension,2,'version)$
/*
If e is a list, return true if either e is empty or if e[i] = e[j]
for all 1 <= i,j <= length(e). If e isn't a list, return false.
*/
all_equalp (e) := listp(e) and cardinality(setify(e))< 2;
/*
fundamental_dimensions is a Maxima list that is used by the functions
dimensionless, natural_unit, and dimension_as_list; the function
dimension doesn't use this list. A user may insert or remove elements
from the list; for example, to use quantities that involve
temperature, you could append temp onto fundamental_dimensions.
You'll get into trouble if you call any one of the functions
dimensionless, natural_unit, or dimension_as_list with expressions
that have dimensions not in the list fundamental_dimensions.
Be careful.
The default value of fundamental_dimensions is [mass, length, time].
You can change this list to anything you like.
*/
assume('mass > 0);
assume('length > 0);
assume('time > 0);
fundamental_dimensions : ['mass, 'length, 'time];
/* Notes
0. When e is a list, map dimension over the list.
1. Use logcontract so that log(a) - log(b) is okay when a and b have the
same dimensions.
2.5 dimension(a[x]) = dimension(a) regardless of what x is.
3. In a sum, check that all terms have the same dimensions; if not,
signal the error "The expression is dimensionally inconsistent."
4. abs, sqrt, max, and min are the only prefix functions that may
take an argument that isn't dimensionless.
5. Check that all function arguments are dimensionless; if not,
signal the error "The expression is dimensionally inconsistent."
Return the dimensions of the expression e; if e is dimensionally
inconsistent, signal an error "The expression is dimensionally inconsistent."
The infix binary operators +, *, /, ^, ^^, ., = and ~ are supported.
(Maxima's vector package defines ~ to be the cross product
operator.) For the = operator, the expression is dimensionally
inconsistent if the dimension of the right and left sides differ.
It supports the prefix unary negation and the abs function. The nary
min and max functions are supported; for the min and max functions,
all arguments must have the same dimension, otherwise, the
expression is dimensionally inconsistent.
*/
dimension (e) := block([inflag : true, e_op, dim, var, i, n],
if listp(e) then ( /* 0 */
map ('dimension, e))
else (
e : logcontract (e), /* 1 */
if not mapatom(e) then e_op : op(e),
if constantp (e) then (
1)
else if symbolp (e) then (
if member(e, fundamental_dimensions) then (
e)
else (
dim : get (e, 'dimension),
if dim = false then (
funmake ('dimension, [e]))
else (
dim)))
else if subvarp (e) then ( /* 2.5 */
dimension(inpart(e,0)))
else if e_op = "*" or e_op = "." or e_op = "~" then (
xreduce("*", map ('dimension, args (e))))
else if e_op = "/" then (
dimension(num(e)) / dimension(denom(e)))
/* apply (e_op, map ('dimension, args (e)))) */
else if (e_op = "^" or e_op = "^^") and dimension (inpart (e,2)) = 1 then (
dimension(inpart(e,1)) ^ inpart(e,2))
else if e_op = "-" then (
dimension(inpart(e,1)))
else if e_op = "+" or e_op = 'max or e_op = 'min then ( /*3*/
dim : map ('dimension, args (e)),
if all_equalp (dim) then (
first (dim))
else (
error ("The expression is dimensionally inconsistent.")))
else if e_op = 'matrix then (
dim : map ('dimension, args (e)),
dim : apply ('append, dim),
if all_equalp (dim) then (
first(dim))
else (
error ("The expression is dimensionally inconsistent.")))
else if (e_op = "=" or e_op = "#" or e_op = "<" or e_op = ">" or e_op = "<=" or e_op = ">=" ) then (
if inpart(e,1) = 0 then (
dimension (inpart(e,2)))
else if inpart (e,2) = 0 then (
dimension (inpart(e,1)))
else (
dim : dimension(inpart(e,1)),
if dim = dimension(inpart(e,2)) then (
dim )
else (
error ("The expression is dimensionally inconsistent."))))
else if e_op = 'abs then ( /* 4 */
dimension (inpart (e, 1)))
else if e_op = 'sqrt then (
dimension (inpart(e,1)) ^ (1/2))
else if e_op = nounify('diff) then (
var : args(e),
n : length(var) - 1,
dim : dimension (inpart(var,1)),
for i : 2 thru n step 2 do (
dim : dim / dimension (inpart(var,i)) ^ inpart(var,i+1)),
dim)
else if e_op = nounify('integrate) then (
var : args(e),
dim : dimension(inpart(var,1)) * dimension(inpart(var,2)),
if length (e) = 4 and not all_equalp([dimension(inpart(var,2)),
dimension(inpart(var,3)),dimension(inpart(var,4))]) then (
error ("The expression is dimensionally inconsistent."))
else (
dim))
else if e_op = nounify('sum) or e_op = nounify('product) then (
error("The function dimension doesn't handle sums or products."))
else if e_op = "DIV" or e_op = "div" or e_op = "GRAD" or e_op = "grad" or
e_op = "CURL" or e_op = "curl" then (
if listp(inpart(e,1)) then (
dim : map ('dimension, inpart(e,1)),
if all_equalp(dim) then (
dim : first(dim))
else (
error ("The expression is dimensionally inconsistent.")))
else (
dim : dimension (inpart(e,1))),
dim / 'length)
else if e_op = "laplacian" then (
dimension(inpart(e,1) / 'length^2))
else ( /* 5 */
dim : map ('dimension, args(e)),
if all_equalp (cons (1,dim)) then (
dim : dimension(inpart(e,0)),
if not atom(dim) and ?equal(inpart(dim,0),'dimension) then (
1)
else (
dim ))
else (
error ("The expression is dimensionally inconsistent.")))));
/*
For the expression e, return a list of the exponents of the
fundamental_dimensions. Thus if fundamental_dimensions =
[mass, length, time] and c is a velocity, dimension_as_list(c)
returns [0,1,-1].
*/
dimension_as_list(e) := (
if listp(e) then map('dimension_as_list, e)
else (
e : dimension(e),
if polynomialp(e, fundamental_dimensions, lambda([x], numberp(x)), lambda([x], integerp(x))) then
makelist(hipow(e, dk), dk, fundamental_dimensions)
else error("Unable to determine the dimension of", e)));
/*
Return a basis for the dimensionless quantities that can be formed from a product of powers of elements
of the list e. The basis excludes constants.
*/
dimensionless(e) := (
require_list(e,"first", "dimensionless"),
args(map(lambda([s], xreduce("*", map("^", e, first(transpose(s))))),
nullspace(transpose(funmake('matrix, map('dimension_as_list, e)))))));
natural_unit(dim,e) := block([vars, s, linsolve_params : true,
back_subst : true, globalsolve : false],
require_list(e,"second", "natural_unit"),
dim : dimension_as_list(dim),
s : map ('dimension_as_list, e),
vars : makelist(?gensym(),k,1,length(e)),
s : linsolve(s . vars - dim, vars),
s : xreduce("*", map("^", e, map('rhs, s))),
s : subst(map("=", %rnum_list, makelist(0,i,1,length(%rnum_list))), s),
map(lambda([x], s * x), cons(1, dimensionless(e))));
|